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DNN empowers a wide range of applications 
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Face Recognition Automatic Driving

ChatGPT DALL·E



Training DNN is time-consuming
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Complicated models Huge amount of data

DNN model can be very
complicated, with tens to

hundreds of layers and millions
of neurons.

Dataset is huge, e.g.,
ImageNet contains more
than 14 million images.

Llama2 uses 2 trillion tokens 
of pretraining data.

Model BERTBASE Llama2-70B
Training time 4 days, 16 x TPU v3 1.7M GPU hours, A100

https://arxiv.org/pdf/2307.09288.pdfhttps://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/1810.04805.pdf


Accelerating DNN training via data parallelism
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Ø Example of data parallelism of synchronous
SGD under the Parameter Server architecture

Ø Note that data parallelism is also widely
used in LLM training, e.g., Zero and FSDP.

https://arxiv.org/pdf/2304.11277.pdf
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https://arxiv.org/pdf/2304.11277.pdf


The speedup of data parallelism: a close look
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Ø Speedup with more GPUs: not always linear!

https://arxiv.org/pdf/1609.06870.pdf PyTorch FSDP: https://arxiv.org/pdf/2304.11277.pdf

Ø Root cause for failing to achieve linear
speedup: communication cost!

Near-linear speedup with
more GPUs within a server

Performance degrades when 
crossing multiple servers 

Communication becomes
the bottleneck!

T5-11B (LLM)

https://arxiv.org/pdf/1609.06870.pdf
https://arxiv.org/pdf/2304.11277.pdf


Application layer solution: reducing traffic volume

6

• Reduce communication bandwidth by 
only sending important gradients

• Use gradient magnitude as a simple 
heuristics for importance

• Only gradients larger than a threshold
are transmitted (e.g., top 0.1%)

ØGradient Sparsification ØGradient Quantization
• Obtain the min and max gradient values of 

each layer

• Represent the gradients with low-precision 
float (e.g., 32 bits -> 8 bits)

• The results are composed by an array 
containing the quantized value, and the 
min and max value

Reducing the number of 
gradients transmitted

Reducing the precision of 
gradients transmitted



Reducing traffic volume doesn’t eliminate the problem
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Ø Lesson learned: in AI-centric Networking (AICN), tail latency is often 
caused by the communication pattern, not only the traffic volume. This 
calls for network transport solutions!
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ResNet-18While average FCT improves effectively, 
tail FCT remains high, due to packet 

loss and retransmission timeout (RTO)



Gray failure: potential pitfalls of large-scale training
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Ø Transport for AICN must be resilient to such gray failure.

Gray Failure: The Achilles’ Heel of Cloud-Scale Systems

• Fault-tolerance and reliability are 
crucial for distributed training

• Gray failure refers to subtle and often 
undetectable issues in data center

• A common example of gray failure is the 
persistent and silent packet drops 
experienced by a network device or link.

persistent and silent 
packet drops



Observation 1: bounded-loss tolerance
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Ø The DNN training process is bounded-loss tolerant: certain packet drops don’t affect 
model convergence much!
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Convergence rounds (& model 
quality) remain unaffected, 

with 1-2% packet drops



Insight behind observation 1 
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Ø The learning direction doesn’t deviate much: With 
bounded packet losses, the direction of the 
gradient vector (or tensor) will not deviate much 
from the original, steepest direction.

Ø The learning step size doesn’t change much:   With 
bounded packet losses, the step length of the 
gradient vector remains similar.

Ø The SGD algorithm is robust to loss (self-healing):
SGD recalculates the learning objective function 
towards the optimal at each step, noise caused by 
loss in earlier iterations won’t be carried to latter 
iterations, but instead can be fixed later!

DNN training with SGD 

𝑤! 𝑤" …

Parameter Server

𝐸#[1/99 (𝑔" + 𝑔$…+𝑔!%%)] = 𝐸#[1/100(𝑔! + 𝑔" + 𝑔$…+ 𝑔!%%)]

No packet loss
With packet loss



Inspiration from observation 1
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Communication efficiency

UDP (or RDMA-UD): 
Low communication overhead, but no 
packet delivery guarantee at all, 
leading to very bad model quality

TCP (or RDMA-RC):
Good model quality with 100% 
reliability, but suffer from high 
communication overhead (long 
tail latency)

Better

MLT:
Cutting long tail latency with bounded-
loss tolerance, while maintaining good 
model quality;
Resilient to gray failure in the network

Ø Reliability requirement for AICN



Observation 2: Different gradients have different impacts
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Ø Losing different gradients may generate different impacts on model 
convergence or quality!

ResNet50 on Cifar100 
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Layer-wise: back-layer 
gradients are more 

sensitive to loss
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Magnitude-wise: larger 
gradients are more 

sensitive to loss



Insight behind magnitude-wise impact
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Ø Magnitude-wise impact: larger gradients are less loss-tolerant than small gradients  

• Larger gradient contains stronger correlation between the 
extracted feature and the objective task than smaller 
gradient does, more impact on model accuracy!

• Larger gradient indicates bigger learning step size, smaller 
gradient indicates smaller step size, more impact on 
convergence speed!

Learning step with larger 
gradients

Learning step with smaller 
gradients

Large
Medium
Small

C
o

n
v.

 R
o

u
n

d

20

30

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6 2.0



Insight behind layer-wise impact
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Ø Layer-wise impact: front-layer gradients are more loss-tolerant than back-layer 
gradients

• Front layers extract simple, class-independent features 
and can be trained from almost all samples, e.g., from
pre-training dataset, thus easier to learn!

• Back layers extract class-specific features (e.g., earrings) 
and can be trained only from specific samples with certain 
classes (e.g., women), thus much harder to learn!

Honglak Lee, NIPS’10
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Inspiration from observation 2 
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Not all gradients are equal 
in terms of the impacts on 

model convergence and 
training pipelining

When queue builds up

Prioritize front-layer gradients over 
back-layer gradients, to speed up 

training pipelining  

Priority Queueing
(both at end-host and in network) 

When buffer overflows

Selectively drop front-layer 
gradients over back-layer gradients, 

smaller gradients over larger 
gradients, to maintain model 

convergence/quality
Selective Dropping 



Observation 3: Inter-packet order-independence
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g11 g12 … g1m
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…
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Tensor Packets
(Order-independent)

Tensor

gradients

tensorID
offset

Packet Tagging

tensorID
offset

tensorID
offset

gradients

gradients

gradients

Message

Serialize Deserialize

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

}

0101101…101101
Bit Stream 01011 101…1 01101

0101101…101101
Bit Stream

Person

Packet Stream
(Order needs to be maintained)

Traditional Network Apps

DNN Training

Ø One message multiple packets, thus packet ordering matters

Ø One packet multiple messages (gradients), thus inter-packets are order-free
Ø The traffic in DNN training is periodic and predictable.

(Known Size)

(pre-determined buffer)



Inspiration from observation 3 
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For DNN training, we can break the tradeoff: per-packet load 
balancing without worrying about out-of-order issues!

Tradeoff for traditional 
network applications 

Per-flow ECMP:
coarse-grained, large flow 
hash-collision, low efficiency  

Per-packet load balancing:
fine-grained, but suffer from 
reordering problems 

Flowlet-based load balancing:
make a tradeoff in-between



MLT - Machine Learning Transport for AI-centric networking
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Bounded-loss tolerance

Not all gradients are equal, in terms 
of impacts on model convergence/ 

quality and training pipelining

Inter-packet order-independence

Optimizing training efficiency with gradient-
aware queueing and dropping

Cutting tail latency with bounded-loss tolerance

Enabling per-packet load balancing based on packet-
level order-independence

Ø To address the problem that cannot be 
solved with application layer solutions

Ø To improve model convergence and speed 
up training pipelining

Ø To maximize network utilization and 
minimize hotspots

Ø Inspired by the previous observations, MLT performs the following
domain-specific communication optimization:



MLT design overview
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Priority queueing & 
selective dropping

Per-packet load 
balancing

Bounded-loss tolerant 
transmission

Leaf switch

Spine switch

First, data are spread onto 
multi-path to minimize 
hotspots, without worrying 
about reordering issues 

If congestion happens, switch will 
perform priority queueing and 
selective dropping, if needed, to 
optimize training efficiency

Finally, a bounded-loss tolerant data 
transmission is implemented to avoid 
long tail latency!



Bounded-loss tolerant data transmission 
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MLT Rate ControlTCP Congestion Control
• Slow start (exponential)
• Timeout
• 3 dupACK and fast recovery

• Line rate start
• No timeout
• No need fast recovery
• Timely-like RTT-base CC

Much simpler

① flow finish notice

S R

② retransmit request
(or receive completed)

bound

send
buffer

recv
buffer

txrate = txrate·(1- β·(1-Thigh/rtt_new))
multiplicative decrease

rtt_new > Thigh

congestion
avoidance 

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new

feedback(rtt_new)

line rate 
start

L

txrate = LineRate

Feedback!

rtt_new > Thigh

txrate = txrate + α
additive increase

rtt_new < Tlow
rtt_diff < 0

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new

feedback(rtt_new)

Feedback!

retransmit request
retransmit missing segment



Gradient-aware priority queueing & selective dropping
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Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on 
worker/server Queueing/dropping at switch

Gradients/parameters
high

low

Priority queueing to speed 
up training pipelining: 

front layers first



Gradient-aware priority queueing & selective dropping
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Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on 
worker/server Queueing/dropping at switch

Gradients/parameters
high

low

Re-interpret ECN/RED for 
selective dropping*: 

selectively drop packets 
with smaller gradients

ECN threshold

ECN threshold

ECN threshold

ECN threshold

Set 2-bit ECN at packet header: 
Ø 00 for packets with small gradients
Ø 10 for packets with large gradients

Increased ECN marking 
thresholds to try to drop front-

layer gradients first, while 
keeping back-layer gradients

*Hu S., Chen K. et al, Aeolus: A 
Building Block for Proactive Transport 
in Datacenters, SIGCOMM 2020 



Implementation and testbed setting
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Kernel TCPVMA Library

Bounded Loss Transmission 

Data packet Control signal

MLT

Socket 

Packet Manipulation (Tx Path)

Packet
Tagging

Send(tensor) Recv(&tensor)

ML Framework MXNet PyTorch TensorFlow 

Middleware BytePS/Horovod/Specific Adapter 

Packet Manipulation (Rx Path)

VMA Library

Data packet

Tensor
Partitioning Rate ControlTransmission

Control
Tensor

Construction
Packet

Untaggin
g

Experiment Setting:
• Testbed: 8x GPU servers each with 8x 3090 GPUs, 4 Mellanox SN2100 

switches.
• Topology: 2x3 Spine-Leaf*, 100Gbps
• Models: ResNet50, VGG16, GoogleNet, Transformer, T5
• Comparison Target: vanilla ML frameworks, BytePS
*Each leaf switch has two 100Gbps links connecting to the spine switch, thus 
logically we have two spine switches. 



Speedup under different DNN models (Tensorflow, PS)
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Transformer

MLT achieves 14.1% - 62.2% improvement
compared to BytePS!



Speedup under different ML frameworks
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VGG16 MXNet

Transformer MXNet

VCG16 Pytorch

Transformer Pytorch
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MLT achieves 12.0% - 56.6% improvement 
compared to BytePS!



Network performance in larger-scale simulations

26Setting: topology 144 node leaf-spine, bandwidth 100Gbps, #servers/#workers 1/3
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MLT achieves up to 43.5% lower avg FCT and
91.7% lower tail FCT compared to pFabric!



Conclusion
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Ø MLT (Machine Learning Transport for AI-centric networking)
exploits domain-specific properties of deep learning to optimize 
communication for distributed DNN training!

Ø MLT made three key observations:
• Bounded-loss tolerance
• Different gradients generate different impacts
• Inter-packet order-independence

Ø MLT conceived three main ideas:
• Cutting tail latency via bounded-loss tolerant data transmission
• Improving training efficiency through gradient-aware priority 

queueing and selective dropping
• Maximizing network utilization by enabling per-packet load 

balancing due on inter-packet order-independence

Thank you!
For Q&A, please contact

hwangdv@connect.ust.hk


