
AutoSketch: Automatic
Sketch-Oriented Compiler for

Query-driven Network Telemetry

Haifeng Sun, Qun Huang, Jinbo Sun, Wei Wang,

Jiaheng Li, Fuliang Li, Yungang Bao, Xin Yao, Gong Zhang

1

Network Telemetry
ØNetwork telemetry is significant to network management

2

Management Decisions
(e.g., Routing or ACL Rules, QoS,...)

Packets Statistics

Network

Data Center Network
Wide Area Network

...

Management

Performance Analysis
Fault Diagnosis

Anomaly detection ...

Telemetry
Sketch algorithms

Query-driven systems
Marple [SIGCOMM’17]
Sonata [SIGCOMM’18]
Newton [CoNEXT’20] …

ØSketches are popular for measuring flow statistics
• memory efficiency
• controllable accuracy

3

Sketch-based Telemetry Algorithms

User Burdens of Deploying Sketches

4

ØIt is non-trivial to deploy sketches in practice

Programmable Switches

ØBurden 1: Sketch selection
• Diverse measurement tasks
• Diverse sketch algorithms

ØBurden 2: Sketch configuration
• Theories usually show worst-case results
• Configuration for worst case not practically efficient

ØBurden 3: Sketch implementation
• Unfamiliar programming language (e.g., P4)
• Various hardware constraints

Query-driven Network Telemetry

ØReduce user burdens

ØExpressive telemetry language
• Focus on query logic
• Hide the underlying details

5

Sonata [SIGCOMM’18]

Our Work: AutoSketch

6
Programmable

Switch

Sketch.p4

User Burdens
• Sketch selection
• Sketch configuration
• Sketch implementation

Our Work: AutoSketch

7
Programmable

Switch

AutoSketch

Measurement Queries
(e.g., map, reduce)

Sketch.p4

Strong Expressiveness

Resource Efficiency

Controllable Accuracy

Combine the strengths of both
query-driven telemetry and sketches

AutoSketch in a nutshell

ØCombine the strengths of both sketches and query-driven telemetry

8

Challenges

1. How to perceive and control the
errors incurred by sketches?

2. How to map diverse telemetry
queries into appropriate sketches?

3. How to configure the mapped
sketch algorithms?

AutoSketch in a nutshell

ØCombine the strengths of both sketches and query-driven telemetry

9

Challenges

1. How to perceive and control the
errors incurred by sketches?

2. How to map diverse telemetry
queries into appropriate sketches?

3. How to configure the mapped
sketch algorithms?

AutoSketch Outline

1. Data stream abstraction with
Accuracy Intent

AutoSketch Interface

10

ddos_attack = PacketStream(qid=1)
.map(pkt -> (ipv4.dstIP, ipv4.srcIP))
.distinct()
.map((ipv4.dstIP, ipv4.srcIP) -> (ipv4.dstIP, 1))
.reduce(keys=(ipv4.dstIP,), func=sum)
.filter((ipv4.dstIP, count) -> count >= Threshold)
.map((ipv4.dstIP, count) -> (ipv4.dstIP))
.distinct()

ØData stream abstraction (e.g., map, reduce, filter)
• strong expressiveness to cover numerous queries
• widely adopted by query-driven telemetry

• Marple [SIGCOMM’17], Sonata [SIGCOMM’18], BeauCoup [SIGCOMM’20], …

AutoSketch Interface

11

ØData stream abstraction (e.g., map, reduce, filter)
• strong expressiveness to cover numerous queries
• widely adopted by query-driven telemetry

• Marple [SIGCOMM’17], Sonata [SIGCOMM’18], BeauCoup [SIGCOMM’20], …

Allow user-defined functions to track
non-summable flow-level state

def nonmt(tcp.seq):
if maxseq < tcp.seq or maxseq == 0:
maxseq = tcp.seq

else:
nm_count += 1

tcp_nm = PacketStream(qid=2)
.filter(ipv4.protocol == TCP)
.groupby({5tuple: (maxseq, nm_count)}, nonmt)

12

ØAccuracy Intent allows users to
specify an acceptable error bound
• recall

• precision

• average relative error

• confidence

ddos_attack = PacketStream(qid=1, recall_min=0.95,
precision_min=0.95, confidence=0.99)

.map(pkt -> (ipv4.dstIP, ipv4.srcIP))

.distinct()

.map((ipv4.dstIP, ipv4.srcIP) -> (ipv4.dstIP, 1))

.reduce(keys=(ipv4.dstIP,), func=sum)

.filter((ipv4.dstIP, count) -> count >= Threshold)

.map((ipv4.dstIP, count) -> (ipv4.dstIP))

.distinct()

AutoSketch Interface
ØData stream abstraction (e.g., map, reduce, filter)

• strong expressiveness to cover numerous queries
• widely adopted by query-driven telemetry

• Marple [SIGCOMM’17], Sonata [SIGCOMM’18], BeauCoup [SIGCOMM’20], …

13

ØAccuracy Intent allows users to
specify an acceptable error bound
• recall

• precision

• average relative error

• confidence

ddos_attack = PacketStream(qid=1, recall_min=0.95,
precision_min=0.95, confidence=0.99)

.map(pkt -> (ipv4.dstIP, ipv4.srcIP))

.distinct()

.map((ipv4.dstIP, ipv4.srcIP) -> (ipv4.dstIP, 1))

.reduce(keys=(ipv4.dstIP,), func=sum)

.filter((ipv4.dstIP, count) -> count >= Threshold)

.map((ipv4.dstIP, count) -> (ipv4.dstIP))

.distinct()

The accuracy intent guides the

sketch selection and configuration

AutoSketch Interface
ØData stream abstraction (e.g., map, reduce, filter)

• strong expressiveness to cover numerous queries
• widely adopted by query-driven telemetry

• Marple [SIGCOMM’17], Sonata [SIGCOMM’18], BeauCoup [SIGCOMM’20], …

AutoSketch in a nutshell

ØCombine the strengths of both sketches and query-driven telemetry

14

Challenges

1. How to perceive and control the
errors incurred by sketches?

2. How to map diverse telemetry
queries into appropriate sketches?

3. How to configure the mapped
sketch algorithms?

AutoSketch Outline

1. Data stream abstraction with
Accuracy Intent

2. Operator-level sketch
mapping

Operator-level Sketch Mapping
ØOperator-level sketch mapping

• Map each stateful operator into one sketch instance
• built-in operators (i.e., distinct, reduce)
• user-defined operators (i.e., groupby)

15

ddos_attack = PacketStream(qid=1)
.map(pkt -> (ipv4.dstIP, ipv4.srcIP))
.distinct()
.map((ipv4.dstIP, ipv4.srcIP) -> (ipv4.dstIP, 1))
.reduce(keys=(ipv4.dstIP,), func=sum)
.filter((ipv4.dstIP, count) -> count >= Threshold)
.map((ipv4.dstIP, count) -> (ipv4.dstIP))
.distinct()

Operator-level Sketch Mapping
Operator-level sketch mapping

• Map each stateful operator into
one sketch instance
• built-in operators (i.e., distinct,
reduce)

• user-defined operators (i.e., groupby)

16

Query-level sketch mapping

• Map the entire query into one
universal sketch algorithm
• Limited query tasks
• Cannot cover user-defined operators
• Hard for fine-grained sketch tuning

Better generality and flexibility

Operator-level Sketch Mapping
ØOperator-level sketch mapping

• Map each stateful operator into a sketch instance
• built-in operators (i.e., distinct, reduce)
• user-defined operators (i.e., groupby)

• Better generality and flexibility than query-level mapping

ØKey-value separation storage
• Key: Use the flowkey buffer mechanism to sequentially store new flowkeys

(OmniWindow [SIGCOMM’23])
• Value: Use different sketch algorithms to maintain various flow states

17

Sketch Mapping for User-defined Operators

def nonmt(tcp.seq):
if maxseq < tcp.seq or maxseq == 0:

maxseq = tcp.seq
else:

nm_count += 1

tcp_nm = PacketStream(qid=2)
.filter(ipv4.protocol == TCP)
.groupby({5tuple: (maxseq, nm_count)}, nonmt)

ØSketch-like structure

18

Sketch Mapping for User-defined Operators

def nonmt(tcp.seq):
if maxseq < tcp.seq or maxseq == 0:

maxseq = tcp.seq
else:

nm_count += 1

tcp_nm = PacketStream(qid=2)
.filter(ipv4.protocol == TCP)
.groupby({5tuple: (maxseq, nm_count)}, nonmt)

ØSketch-like structure

19

A groupby operator may contain multiple states
• Multi-state updates may exceed hardware capabilities
• Hard to tune memory resources for different states

Sketch Mapping for User-defined Operators

20

ØAST-based operator decomposition
• One state, One groupby

• Sketch-like structure for decomposed states

def nonmt(tcp.seq):
if maxseq < tcp.seq or maxseq == 0:
maxseq = tcp.seq

else:
nm_count += 1

tcp_nm = PacketStream(qid=2)
.filter(ipv4.protocol == TCP)
.groupby({5tuple: (maxseq, nm_count)}, nonmt)

More details in the paper

Sketch Mapping for User-defined Operators

21

ØAST-based operator decomposition
• One state, One groupby

• Sketch-like structure for decomposed states
def nonmt_cf(tcp.seq):
temp = maxseq
if maxseq < tcp.seq or maxseq == 0:
maxseq = tcp.seq

return temp
def nonmt_uf(tcp.seq, temp):
if temp >= tcp.seq:
nm_count += 1

tcp_nm = PacketStream(qid=2)
.filter(ipv4.protocol == TCP)
.groupby({5tuple: maxseq}, nonmt_cf)
.groupby({5tuple: nm_count}, nonmt_uf)

def nonmt(tcp.seq):
if maxseq < tcp.seq or maxseq == 0:
maxseq = tcp.seq

else:
nm_count += 1

tcp_nm = PacketStream(qid=2)
.filter(ipv4.protocol == TCP)
.groupby({5tuple: (maxseq, nm_count)}, nonmt)

Sketch mapping for Built-in operators

ØFixed function with well-known studied sketch algorithms

ØSampling-based sketch selection
• Initial phase of benchmark-based sketch configuration (details below)

22

ddos_attack = PacketStream(qid=1)
.map(pkt -> (ipv4.dstIP, ipv4.srcIP))
.distinct() à Bloom Filter? Counting Bloom Filter? …?
.map((ipv4.dstIP, ipv4.srcIP) -> (ipv4.dstIP, 1))
.reduce(keys=(ipv4.dstIP,), func=sum) à Count-Min Sketch? Count Sketch? …?
.filter((ipv4.dstIP, count) -> count >= Threshold)
.map((ipv4.dstIP, count) -> (ipv4.dstIP))
.distinct()

AutoSketch in a nutshell

ØCombine the strengths of both sketches and query-driven telemetry

23

Challenges

1. How to perceive and control the
errors incurred by sketches?

2. How to map diverse telemetry
queries into appropriate sketches?

3. How to configure the mapped
sketch algorithms?

AutoSketch Outline

1. Data stream abstraction with
Accuracy Intent

2. Operator-level sketch mapping
jakjfkadsjf

3. Benchmark-based sketch
configuration

Benchmark-based Sketch Configuration

• Hard to integrate the errors of multiple heterogeneous
sketches to form query-level accuracy

• Existing sketch algorithms typically address worst-case
scenarios

24

Accuracy Intent

Sketch error bound

Sketch Type & Config

ddos = PacketStream(qid=1, recall_min=0.95,
precision_min=0.95, confidence=0.95)

Benchmark-based Sketch Configuration

25

Accuracy Intent

Sketch error bound

Sketch Type & Config

ddos = PacketStream(qid=1, recall_min=0.95,
precision_min=0.95, confidence=0.95)

Ø Benchmark-based searching
• Enumerate all possible configurations
• Synthetic or real workloads
• Efficient search algorithm

• LHS-based initialization, which determines
the sketch type of built-in operators at the
same time

• Hardware-aware configuration generation
and pruning

• Return the sketch configuration that
satisfies the accuracy intent while
incurring minimal resource usage

More details in the paper

Evaluation

ØAutoSketch backend: Tofino Switch

Ø 11 telemetry queries

ØCompare with 2 state-of-the-art query-driven systems

ØCompare with 8 classical sketch algorithms

ØTwo accuracy intents

26

Accuracy intent precision_min recall_min ARE_max
AS-1 95% 95% 1%
AS-2 99% 55% 3%

Switch Resource Overhead

Ø Two specified sketches for each query
• Heavy Hitter: MV-Sketch [INFOCOM’19] HashPipe [SOSR’17]
• Superspreader: SpreadSketch [INFOCOM’20] VectorBF [TIFS’16]
• Cardinality: FM-Sketch [JCSS’85] Linear Counting [TODS’90]

Ø Two universal sketches for all queries
• FR: FlowRadar [NSDI’16]
• OS: OpenSketch [NSDI’13]

27

Heavy Hitter Superspreader Cardinality
Ø AutoSketch consumes much lower switch
resource usage than classical sketch algorithms

Ø AutoSketch needs no efforts to tune parameters

Controllable Accuracy

ØAutoSketch meets the accuracy intent for all the telemetry queries

28

More Results

ØCompare with Query-driven telemetry systems
• Marple [SIGCOMM’17], two variants of Sonata [SIGCOMM’18]
• Switch resource overhead
• Bandwidth overhead
• Query Accuracy

ØParameter tuning

ØSeaching cost

ØEfficiency of searching results

29

Future Work
ØMulti-query and distributed deployment

ØMore backends
• DPU / SmartNIC
• DPDK

ØSupport more underlying sketches
• new sketch-like structure for groupby
• adding new sketch candidates for existing operators
• introducing new operators

Ø Integrate emerging sketch optimization techniques
• SketchLib [NSDI’22], FlyMon [SIGCOMM’22], Sketchovsky [NSDI’23]
• BitSense [SIGCOMM’23], OmniWindow [SIGCOMM’23] 30

Conclusion

ØAutoSketch combines the strengths of
• Strong expressiveness
• Resource efficiency
• Controllable accuracy

ØAccuracy Intent

ØOperator-level sketch mapping

ØBenchmark-based sketch configuration

ØSource Code Available: https://github.com/N2-Sys/AutoSketch

31

https://github.com/N2-Sys/OmniWindow

Thank You!

32

