
MESSI : Behavioral Testing of
BGP Implementations

Rathin Singha, Rajdeep Mondal,
Ryan Beckett, Siva Kesava Reddy Kakarla,

Todd Millstein, George Varghese

UCLA Microsoft

BGP : The backbone of modern internet routing

Connects autonomous systems

Ubiquitous (used by ISPs,
enterprises, DCs etc.)

Large blast radius!

Outages caused by BGP bugs

Previous works on BGP testing
Significant research done on identifying BGP config bugs

According to a study*, 36% of the significant and customer-impacting incidents in
Microsoft’s network are caused by implementation bugs.

But, less work on automatically finding BGP protocol implementation errors!

RCC
[NSDI’05]

Minesweeper
[SIGCOMM’17]

Lightyear
[SIGCOMM’23]

HSA
[NSDI’12]

Batfish
[NSDI’15]

Bagpipe
[NetPL’16]

Timepiece
[PLDI’23]

Plankton
[NSDI’20]

ARC
[SIGCOMM’16]

Tiramisu
[NSDI’20]

Hoyan
[SIGCOMM’20]

RCDC
[SIGCOMM’19]

* Crystalnet: Faithfully emulating large production networks. [SOSP ’17]

Our goal
Automatically generating tests for BGP implementations

to find behavioral bugs

Test case =
Config

State

Route Control message
announcing the

availability of a path

Route-map that
filters/modifies a route

before installing

What router does with
a route depends on

previous control
messages

Key Challenge
is to jointly

generate these
triplets

Existing approach limitations

Fuzz testing

Symbolic
execution

randomly generated triplets are
unlikely to find bugs that need a

particular combination

implementation has lot of
paths due to low level

optimizations. i.e. limited
coverage

MESSI: Modular Exploration of State and Structure Inclusively

The first automated approach and tool MESSI to identify
RFC violations in black-box BGP implementations.

Key Results

● Generated 150K+ test cases

● 22 bugs found across 6 popular BGP implementations -

FRR, Quagga, BIRD, GoBGP, Batfish, Fastplane

● Found bugs in: Prefix lists, Regexes, Communities, AS

path, MED, incremental updates etc.

● 8 bugs already fixed.

Our approach : Model-based testing

Test cases for
different paths in

model
BGP RFC (Specs)

● Generates tests that capture complex semantic behaviors (joint
generation of triplet)

● Simpler model → Symbolic execution possible
● Coverage guarantees with bounded size of symbolic inputs.

Executable model of BGP

Symbolic
Execution

Previous work SCALE* used Model-based testing approach to find
bugs in DNS nameservers.

Key challenges

BGP
specific

challenges

1. BGP has a lot of components (e.g. filtering,
decision, aggregation) → too many paths in
model

2. BGP is stateful. Input space huge →
coverage issue

3. BGP has complex configs (e.g. regexes)

* Siva Kesava Reddy Kakarla, Ryan Beckett, Todd Millstein, and George Varghese. {SCALE}: Automatically finding {RFC}
compliance bugs in {DNS} nameservers.(NSDI 22)

1. Dealing with protocol complexity via modularity

test cases for
different paths in

model
BGP RFC (Specs)

Filtering (m paths) & Decision (n paths)

m x n ⇒ m + n

Alleviates complexity problem!

Decision Filtering

Aggregation Dynamics

Symbolic
execution

2. Modularity also helps to deal with Statefulness

Each model only needs minimum symbolic states

Alleviates state problem!

Config

Route

Route
Filtering

State

Route

Decision
Process

No state
required!

1 state
required

(best-path)

Testing BGP dynamics (another kind of statefulness)
Many implementations have bugs because they use optimizations for incremental

updates of route maps

Route
Filtering

Route-map
(symbolic)

Route
(symbolic)

accept/deny

Dynamic
Route

Filtering

Updated
Route-map
(symbolic)

Route
(symbolic)

Initial
Route-map
(symbolic)

If decision differs

If decision same

The Hamming Distance
is kept small:

1. Otherwise state
space will blow up

1. Most of the changes
done by managers
are local

3. Dealing with complex structures: Regexes

How to generate fixed set of regexes with coverage
guarantees?

Config

State

Route

Test case

● Route-maps can have regexes (community,

as-path)

● We need to deal with symbolic regex. i.e. beyond

current solver capabilities

● So the model needs to use a fixed set of regexes

Regex enumeration and testing framework

Hybrid approach

ENUMERATION + FUZZING + GRAPH TRAVERSAL

x*|x+

Exhaustively
enumerating regex
templates upto a

size

([2-3]+:[0][1]*)*|([4-5]:[2]?)+

Populate the regex
templates with random

regexes for the
Route-Map

Pos: 3:11, Neg: 1:2

Generate positive &
negative examples with
node and edge coverage
on DFA for the Route

Coverage Guarantee 1 Coverage Guarantee 2

Results

● Generated 150K+ test cases

● 22 bugs found across 6 popular BGP implementations -

FRR, Quagga, BIRD, GoBGP, Batfish, Fastplane

● Found bugs in: Prefix lists, Regexes, Communities, AS

path, MED, incremental updates etc.

● 8 bugs already fixed.

Example Bug #1 (GoBGP)

MESSI

prefix-set ps1:
 ip-prefix:0.0.0.0/0,
 Mask-range:10..10
Policy-definitions:
 Conditions:
 Match-prefix-set: ps1

Route-Map

Generate Config

100.10.0.0/10

Send Route

Extract RIB Routing Information Base

Reason:

Buggy code for dealing
0.0.0.0/0 prefix and a

single mask length

RIB shows no
installed route.

Challenge:

Bug caused by some
very specific

combination of route
and config

All prefixes
with

mask-length
10 should be

accepted

Example Bug #2 (FRR)

MESSI

ip prefix-list TEST seq 5
permit any

route-map RMAP permit 10
 match ip-address
prefix-list TEST
exit

Route-Map

Generate Config

10.1.1.0/24
Send Route

Extract RIB

ip prefix-list TEST seq 5
permit 10.2.2.0/24

route-map RMAP permit 10
 match ip-address
prefix-list TEST
exit

Route-Map

Prefix List
Updated

Routing Information Base
10.1.1.0/24

Routing Information Base
10.1.1.0/24

RIB stays
Same

Reason:

The underlying “any”
flag stays enabled even

after the change in
route map

Challenge:

The bug is only
reproduced if the

config changed from
“permit-any”, i.e.
depends on state

The first automated approach and tool MESSI to identify
RFC violations in black-box BGP implementations.

Modular exploration to deal with protocol complexity.

Efficient enumerative testing of regular expression which cannot otherwise be
handled by symbolic testing.

A testing framework to catch bugs due to
BGP dynamics caused by incorrect implementation

attempts to do incremental computation

Contributions

Future Work

1. Support BGP features like Redistribution, Reflection etc.

1. Testing the integration of multiple BGP features

1. Automate the process of Model Building using LLMs

1. Applying these ideas to other stateful protocols with complex
structures

Limitations

1. We focus on RFC compliance bugs but not performance or
coding bugs e.g. overflow

2. We don’t test route reflection, confederations,
redistribution.

3. We don’t model some regex features like constraining a
route’s community set size

4. Modular exploration possibly doesn’t test complicated
interaction between BGP features but it allows to test each
feature extensively.

