Where The Wild Things Are: Brute-Force SSH Attacks In The Wild And How To Stop Them

Sachin Kumar Singh, Shreeman Gautam, Cameron Cartier, Sameer Patil, Robert Ricci

University of Utah

381 million failed brute force attempts

381 million failed brute force attempts

3.5 Daily attacks

"SSH Brute Force Attacks are still prevalent, in fact INCREASING."

381 million failed brute force attempts

Peak 3.5

million a day

ClaudLab

Public Research Facility

ClaudLab

Data Collection Public Research Facility ClaudLab No Honeypots

Data Collection Public Research Facility ClaudLab No Honeypots

Legitimate Users & Attackers

Public Research Facility

"Our unique data aided the development of blocking."

Legitimate Users & Attackers

Public Research Facility

"Our unique data aided the development of blocking."

"Provide the means to evaluate effectiveness"

Legitimate Users & Attackers

Target Machine (CloudLab Nodes)

- Target Machine (CloudLab Nodes)
 - \circ ~500 Nodes

- Target Machine (CloudLab Nodes)
 - ~500 Nodes
 - Attacker pick nodes **RANDOMLY**

- Target Machine (CloudLab Nodes)
 - ~500 Nodes
 - Attacker pick nodes RANDOMLY
- Host Machine (Source IP)

- Target Machine (CloudLab Nodes)
 - ~500 Nodes
 - Attacker pick nodes RANDOMLY
- Host Machine (Source IP)
 - ~800K IPs

- Target Machine (CloudLab Nodes)
 - ~500 Nodes
 - Attacker pick nodes RANDOMLY
- Host Machine (Source IP)
 - ~800K IPs
- Guessing Vector (*{username,password*} pairs)

- Target Machine (CloudLab Nodes)
 - ~500 Nodes
 - Attacker pick nodes RANDOMLY
- Host Machine (Source IP)
 - ~800K IPs
- Guessing Vector (*{username,password}*) pairs)
 - ~277K unique usernames

- Target Machine (CloudLab Nodes)
 - ~500 Nodes
 - Attacker pick nodes RANDOMLY
- Host Machine (Source IP)
 - ~800K IPs
- Guessing Vector ({username,password} pairs)
 - ~277K unique usernames

- Are there patterns in the usernames utilized by attackers?

- Are there patterns in the usernames utilized by attackers?

- Can these patterns be fingerprinted for effective blocking?

 $\text{Attacker} \rightarrow$

Attacker \rightarrow Guessing Vector \rightarrow

.

.

-

Attacker \rightarrow Guessing Vector \rightarrow ({username-1}, {username-2}, {username-3},

{username-n})

```
Attacker \rightarrow Guessing Vector \rightarrow ({username-1},
                          {username-2},
                          {username-3},
                          {username-n})
```


- $Attacker_1 \rightarrow$
- $Attacker_2 \rightarrow$
- $Attacker_3 \rightarrow$
- $Attacker_4 \rightarrow$

-

-

.

 $Attacker_n \rightarrow$

 $Attacker_1 \rightarrow \textbf{Username Set A}$

 $Attacker_2 \rightarrow$

 $Attacker_3 \rightarrow$

.

.

 $Attacker_4 \rightarrow \textbf{Username Set A}$

 $Attacker_n \rightarrow$
$Attacker_1 \rightarrow Username \; Set \; A$

 $Attacker_2 \rightarrow \textbf{Username Set B}$

 $Attacker_3 \rightarrow$

 $Attacker_4 \rightarrow Username \; Set \; A$

 $Attacker_n \rightarrow$

.

 $Attacker_1 \rightarrow Username \; Set \; A$

Attacker_2 \rightarrow Username Set B

 $Attacker_3 \rightarrow \textbf{Username Set C}$

 $Attacker_4 \rightarrow Username \; Set \; A$

Attacker_n \rightarrow **Username Set C**

.

 $Attacker_1 \rightarrow Username \; Set \; A$

 $Attacker_2 \rightarrow Username \; Set \; B$

 $Attacker_3 \rightarrow Username \; Set \; C$

 $Attacker_4 \rightarrow Username \; Set \; A$

Username Set A

Attacker_n \rightarrow Username Set C

.

Attacker_1 \rightarrow Username Set A \smallsetminus

Attacker_2 \rightarrow Username Set B

 $Attacker_3 \rightarrow Username \; Set \; C$

 $Attacker_4 \rightarrow Username \; Set \; A$

Username Set A

Attacker_n \rightarrow Username Set C

=

Attacker_n \rightarrow Username Set C

-

• We create a Username Blocking List (UBL) by combining all dictionaries.

- We create a Username Blocking List (UBL) by combining all dictionaries.
- We perform local sanitation to eliminate usernames from the Username Blocking List that are locally valid.

- We create a Username Blocking List (UBL) by combining all dictionaries.
- We perform local sanitation to eliminate usernames from the Username Blocking List that are locally valid.
- Any IP that attempts a failed login with a username present in the Username Blocking List is subsequently blocked.

- We create a Username Blocking List (UBL) by combining all dictionaries.
- We perform local sanitation to eliminate usernames from the Username Blocking List that are locally valid.
- Any IP that attempts a failed login with a username present in the Username Blocking List is subsequently blocked.
 - 64% attackers use dictionary
 - 94% of the attackers user at least one username from a dictionary

- How DBB performs in % Attacks Blocked and False Positives?

- How DBB performs in % Attacks Blocked and False Positives?

- Does the characteristics of Dictionary Based Blocking generalize?

Evaluating Dictionary Based Blocking (DBB)

Evaluating Dictionary Based Blocking (DBB)

• We simulated DBB on three different sites data (A,B,C) over ten weeks.

Evaluating Dictionary Based Blocking (DBB)

- We simulated DBB on three different sites data (A,B,C) over ten weeks.
- DBB effectively blocked over 99.3% of BFAs across all sites with only ~14 false positives per site.

• For three sites (A,B,C), we checked whether Username Blocking List (UBL) created at one site are effective at other sites.

Username Blocking List

Site-A

• For three sites (A,B,C), we checked whether Username Blocking List (UBL) created at one site are effective at other sites.

Username Blocking

"Dictionary Based Blocking (DBB) does generalize"

"Dictionary Based Blocking (DBB) does generalize"

"High Blocking Rate with Low False Positives"

Evaluating DBB: DBB and Fail2ban

• Default settings for DBB and Fail2ban.

Evaluating DBB: DBB and Fail2ban

• Default settings for DBB and Fail2ban.

"Dictionary Based Blocking outperforms Fail2ban with huge margin"

Revisiting SSH Brute Force Attacks in the Wild

Revisiting SSH Brute Force Attacks in the Wild

Revisiting SSH Brute Force Attacks in the Wild

Aug²⁰²¹

Revisiting SSH Brute Force Attacks in the Wild

79

Revisiting SSH Brute Force Attacks in the Wild

• Deployed Dictionary Bases Blocking for three weeks on ~400 nodes.

- Deployed Dictionary Bases Blocking for three weeks on ~400 nodes.
- Due to real-time IP blocking and filtered traffic, calculating the exact attack block rate is challenging.

- Deployed Dictionary Bases Blocking for three weeks on ~400 nodes.
- Due to real-time IP blocking and filtered traffic, calculating the exact attack block rate is challenging.
- Evaluate Dictionary Based Blocking effectiveness by comparing attack volumes pre and post-deployment.

Short answer is

Long answer is

Long answer is **NO IT DOESN'T**

- How many nodes (collectors) are required to perform effective blocking?

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

Username Blocking List

1 Collector

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

1 Collector

.

.

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

.

.

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

.

.

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

1 Collector - Blocked Minimum 97.6% attacks

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

1 Collector - Blocked Minimum 97.6% attacks 2 Collector - Blocked Minimum 98.4% attacks

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

1 Collector - Blocked Minimum 97.6% attacks 2 Collector - Blocked Minimum 98.4% attacks

6 Collector - Blocked Minimum 99.0% attacks

• To examine the effect of the number of collectors on blocking performance, we computed Username Blocking List from various number of collectors.

"Few collectors can also perform effective blocking"

.6% attacks .4% attacks

6 Collector - Blocked Minimum 99.0% attacks

1 Collector

• Analysis aided our development of blocking mechanism.

- Analysis aided our development of blocking mechanism.
- Dictionary Based Blocking is a easy to computer, light-weight mechanism.

- Analysis aided our development of blocking mechanism.
- Dictionary Based Blocking is a easy to computer, light-weight mechanism.
- Dictionary Based Blocking outperform existing mechanism by significant margin.

- Analysis aided our development of blocking mechanism.
- Dictionary Based Blocking is a easy to computer, light-weight mechanism.
- Dictionary Based Blocking outperform existing mechanism by significant margin.

Paper has more insights.

.
Questions

...