
SwiftPaxos: Fast Geo-Replicated State Machines

Fedor Ryabinin¹², Alexey Gotsman¹, Pierre Sutra³

¹ IMDEA Software

² Universidad Politécnica de Madrid

³ Telecom SudParis & INRIA

Geo-replicated data

1

1

Geo-replicated data

r1

r3

r2

(2)

(1)

(3)

Goal:
transparent efficient
geo-replication

(1) command
(2) replication protocol
(3) response

r1, r2, r3 = data replicas 1

Geo-replicated data

r1

r3

r2

(2)

Goal:
transparent efficient
and robust
geo-replication

1

(1)

(3)

Geo-replicated data

Each replica holds a log L
Execute commands in log order
To decide a command at position L[i]
- run i-th consensus

B+ A+ C

B+ A+

B

r1

r2

r3

X+ = command
 is executed

L[0] L[1] L[2]

State-machine Replication

2

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

B
C

A = x ← 42

= y ← 7

= z ← x + y

3

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

B
C

A = x ← 42

= y ← 7

= z ← x + y

3

How:
- For each command, compute its dependencies.
- Execute commands wrt. dependencies.

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

B
C

A = x ← 42

= y ← 7

= z ← x + y

In this example,
- A can execute before or after B.

3

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

B
C

A = x ← 42

= y ← 7

= z ← x + y

In this example,
- A can execute before or after B.
- C depends on both A and B.

3

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

Invariants:
- At each replica, dependencies are acyclic. B

C

A = x ← 42

= y ← 7

= z ← x + y

4

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

Invariants:
- At each replica, dependencies are acyclic.
- Replicas agree on dependencies.

B
C

A = x ← 42

= y ← 7

= z ← x + y

4

Execute conflicting commands in the same order

B+ A C

B+

A+

r1

r2

r3

SwiftPaxos

B
C

A = x ← 42

= y ← 7

= z ← x + y

Invariants:
- At each replica, dependencies are acyclic.
- Replicas agree on dependencies.
- For two conflicting commands X and Y, either X is a

dependency of Y, or the converse is true. 4

Summary

● A new strongly-consistent replication protocol
● Maintains at least Paxos latency
● Executes commands in optimal time:

- 1 RTT when no contention (conflicts already solved by the network)
- 1.5 RTT otherwise

Key novelty

(double-voting) in consensus, a replica can vote twice, once for its own
proposal then for the leader’s.

SwiftPaxos / overview

5

r1

r2

r3

r4

r5

SwiftPaxos / fast path

B

∅ →B
“B should be
ordered first”

6

r1

r2

r3

r4

r5

B

∅ →B

SwiftPaxos / fast path

∅ →B

6

r1

r2

r3

r4

r5

B

∅ →B

B+

SwiftPaxos / fast path

X+ = command
 is executed

∅ →B

6

r1

r2

r3

r4

r5

B B+

SwiftPaxos / best-case latency (2δ)

X+

δ

δ

Features
- Optimal best-case latency

= command
 is executed

6

r1

r2

r3

r4

r5

A

SwiftPaxos / dependencies tracking

B

“B should be ordered
before A”

B →A

7

r1

r2

r3

r4

r5

A

SwiftPaxos / dependencies tracking

B

B

A = x ← 42

= y ← 7

∅ →A “nothing precedes A”

Commands A and B can
execute in any order

7

r1

r2

r3

r4

r5

A

SwiftPaxos / dependencies tracking

B

∅ →A

∅ →A

A+ Features
- Optimal best-case latency
- Leverage commutativity

B

A = x ← 42

= y ← 7

7

r1

r2

r3

r4

r5

A

SwiftPaxos / dependencies tracking

B

C

B

C

A = x ← 42

= y ← 7

= x ← 2x

A+

8

r1

r2

r3

r4

r5

A

SwiftPaxos / dependencies tracking

B

C

A →C

A →C

B

C

A = x ← 42

= y ← 7

= x ← 2x

A+ C+

8

r1

r2

r3

r4

r5

A

SwiftPaxos / dependencies tracking

B

C

A →C

A →C

B

C

A = x ← 42

= y ← 7

= x ← 2x

A+ C+ Features
- Optimal best-case latency
- Leverage commutativity
- Use spontaneous order in

the network

8

r1

r2

r3

r4

r5

D

SwiftPaxos / double voting

(L)

B

D

= y ← 7

= return x + y

L = leader replica

B

9

r1

r2

r3

r4

r5

D

SwiftPaxos / double voting

(L)

B

B

D

= y ← 7

= return x + y

9

r1

r2

r3

r4

r5

D

(L)

SwiftPaxos / double voting

D →B

∅ →B

B

B

D

= y ← 7

= return x + y

9

r1

r2

r3

r4

r5

(L)

SwiftPaxos / double voting

D

B

B

D

= y ← 7

= return x + y

9

r1

r2

r3

r4

r5

vote twice!

(L)

SwiftPaxos / double voting

D

∅ →B

B

B

D

= y ← 7

= return x + y

9

r1

r2

r3

r4

r5

vote twice!

(L)

SwiftPaxos / double voting

∅ →B

hint: the leader is part of all the quorums
 of the ongoing ballot

B

D

B

D

= y ← 7

= return x + y

9

r1

r2

r3

r4

r5

(L)

SwiftPaxos / double voting

Features
- Optimal best-case latency
- Leverage commutativity
- Use spontaneous order in

the network
- At least Paxos speed

B

D

B+

δ

δ
δ

B

D

= y ← 7

= return x + y

9

r1

r2

r3

r4

r5

SwiftPaxos / non-collocated clients

D

B

D

= y ← 7

= return x + y

10

r1

r2

r3

r4

r5

SwiftPaxos / non-collocated clients

D+

D

B

D

= y ← 7

= return x + y0

10

r1

r2

r3

r4

r5

SwiftPaxos / optimistic execution

(L)

D

D+

0

B

D

= y ← 7

= return x + y
D

10

r1

r2

r3

r4

r5

SwiftPaxos / optimistic execution

D

B

D

= y ← 7

= return x + y

(L)
D+

0

∅ →D

10

r1

r2

r3

r4

r5

SwiftPaxos / optimistic execution

D

B

D

= y ← 7

= return x + y

(L)
D+

7

B

B+

10

r1

r2

r3

r4

r5

SwiftPaxos / optimistic execution

D

B

D

= y ← 7

= return x + y

(L)
D+

7

B

B+

B → D

10

r1

r2

r3

r4

r5

SwiftPaxos / latency (2δ, 3δ)

D

B

D

= y ← 7

= return x + y

(L)
D+

B

B+

δ δ

δ

Features
- Optimal best-case latency
- Leverage commutativity
- Use spontaneous order in

the network
- At least Paxos speed
- Quick reply to

non-collocated clients

10

SwiftPaxos / related work

 sequential conflict-free contention-free general

Paxos 4δ

FastPaxos+ 2δ+1 3δ+1

Generalized Paxos 2δ+1 6δ+1

Egalitarian Paxos 2δ+1 O(nδ)

CURP 2δ 3δ+1

SwiftPaxos 2δ 3δ

(sequential) no concurrent commands
(conflict-free) concurrent commands do not conflict
(contention-free) concurrent conflicting commands are received in the same order everywhere

11

 fast path dependencies
tracking

optimistic
execution

double-voting

Paxos

FastPaxos+

Generalized Paxos

Egalitarian Paxos

CURP

SwiftPaxos

SwiftPaxos / related work

supported
partially supported
not supported

12

Experiments / average latency

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (1KB)

varying conflict rate fixed 2% conflict rate
13

- baseline

Experiments / average latency

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (1KB)

13

- around 5% faster

Experiments / average latency

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (1KB)

13

- performance quickly drops w. conflicts

Experiments / average latency

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (1KB)

13

- 18% faster than Paxos on average

Experiments / average latency

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (1KB)

13

Takeaways:
- fastest protocol of all (up to 1.4x)
- always at least Paxos speed

Experiments / average latency

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (1KB)

13

Experiments / scalability

progressively add new clients (up to 5,000)
at a fixed 2% conflict rate

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (3KB)

14

Experiments / scalability

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (3KB)

- performance saturates due to convoy effect (long chains)
14

Experiments / scalability

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (3KB)

- the leader is bottlenecking (because it disseminates all commands)
14

Experiments / scalability

13 AWS EC2 sites
- 5 replica sites
- 10 client sites
no-op service (3KB)

Takeaways:
- stable performance
- low overhead at the leader 14

Experiments / applications

YCSBpipelining

15

Experiments / applications

- up to 49% improvement over CURP [NSDI ‘19]

15

Experiments / applications

Takeaways:
- consistently better performance than competitors
- can execute fast linearizable reads at any replica

15

Conclusion

SwiftPaxos

● A new (leader-driven) state-machine replication protocol
● Executes commands in optimal time:

- 1 RTT when no contention
- 1.5 RTT otherwise.

In practice,

● always faster than Paxos (16-29% better)
● up to 2.9x higher throughput than alternatives
● low metadata usage

try it!

