
Biao Lyu, Enge Song, Tian Pan, Jianyuan Lu, Shize Zhang, Xiaoqing Sun, Lei Gao, Chenxiao Wang, Han Xiao,

Yong Pan, Xiuheng Chen, Yandong Duan, Weisheng Wang, Kunpeng Zhou, Zhigang Zong, Xing Li,

Guangwang Li, Pengyu Zhang, Peng Cheng, Jiming Chen, and Shunmin Zhu.

POSEIDON: A Consolidated Virtual Network Controller
that Manages Millions of Tenants via Config Tree

Background: Configure Cloud via Controller

Cloud

Create VM

Update RouteCreate VPC

User leverages cloud control APIs
to manage their network

Virtual Network
Controller

VM VM…

Host
Gateway…

Cloud Control APIs

Upon receiving APIs, virtual network
controller updates the configurations of

physical devices

After that ...

Background: Workflow of Controller

①Receive the cloud control APIs

②Calculate device config changes

a) Identify all the dependent configs

③Configure physical device

VM

VPC

ACL

Route

Peer
VPC

Private
IP (PIP)

Elastic
IP (EIP) Bandwidth

……

……

There are complex dependencies
between virtual network configurations.

Background: Workflow of Controller

①Receive the cloud control APIs

②Calculate device config changes

a) Identify all the dependent configs

b) Identify the physical devices onto

which the configs must be installed

c) Config changes calculation

③Configure physical device

Dependent Configs of VM4: VPC1, PIP4, ACL1, Route1, ……
SQL+If-else

Physical Devices to install: Server2, Gateway1, ……
Compare with existing configs

Config changes of Server2: Add VM4, PIP4,VPC1, ACL1, ……

Challenge#1: Performance Degradation

Cloud venders provide more services

Lots of new devices/tables are added

Longer database search chain

——Performance degradation due to longer search chain and larger table size

Number and scale of virtual networks increase

Number of entries in major tables grows

Longer database search/update latency

P99 latency of calculating config changes in our cloud has nearly doubled.

Challenge#2: Rapid Growth of Workload

Usage of cloud resources by tenants increases

More resources need to be managed/configured

——Rapid growth of northbound API calls and southbound devices

More Northbound API calls

The scale of an individual VPC increases

An individual VPC covers more southbound devices

More southbound devices to configure

A single ACL rule may reach more
than 100,000 servers.

The daily API calls have doubled in two years,
reaching ~10,000,000,000 calls.

Challenge#3: Cloud-Native Burst Requests

Cloud-
native
apps• Extremely high concurrency in

create/delete requests
• Low tolerance for completion

time of configuration

Require controller with high throughput and low latency

Case1: In ecommerce business, resources
will be massively scaled up (e.g., tens of
thousands of containers) just before the
peak arrives.

Case2: Social media applications need to
handle surges during hot events. Thousands
of backends need to be elastically scaled in
a short interval (e.g., 500ms).

——Cloud-native apps intensify the performance requirements

Challenge#4: High Code Redundancy and OpEx

VM
Controller

Cross-region
Controller

LB
Controller…

Server
Border

gateway
Internet
gateway

LB…

Control
plane

Data
plane

APIs of
VM

APIs of
Cross-region

APIs
of LB

Flexibility

Individual Controllers

for each service

High OpEx and Code
Redundancy across controllers.

More than 50 controllers

developed over years.

Controller Lines of Codes

LB1 167K

LB2 76.9K

VPC 873K

NAT 107K

VPN 97K

Private Link 31.8K

Accelerator 135K

Design Goals and Overview of Poseidon
Design goals

1. Improve API throughput and latency
2. Reduce the OpEx

Design overview

• Architecture: Partially consolidate the common modules of separate
controllers into a unified Poseidon controller

• Abstraction: We propose service- and device-independent abstraction
to unify the management of heterogeneous devices and diverse
services’ APIs;

• Acceleration: To accelerate config calculation, we design a Tree-based
config changes calculation logic

Design#1: Partial consolidation architecture

Cloud
Control

API

Config
changes

calculation

Device
configuration

API1 API2 API3 API4

Rapid
iterated

——Observation and our choice

Same
logic

Infrequent
update

Cloud
Control

API

Config
changes

calculation

Device
configuration

API1 API2 API3 API4

To

We choose
1. Leave the development and maintenance of cloud control APIs to each service

2. Consolidate the implementations of config changes calculation and device configuration

Design#1: Partial consolidation architecture

Partition the control plane into 2 layers

p Service-related layer: For processing APIs

p Service-independent layer: For
calculating/pushing config changes

Unified agent on heterogeneous
devices

p For translating unified config changes into
underlying primitives

——Observation and our choice

OpEx and Code
redundancy

Flexibility

Individual High High

Full consolidation Low Low

Partial consolidation Low High

Design#2: Trident abstraction
——Design Consideration

Objects in Controller:

• Service: VPC、LB、NAT、etc.

• Config: ACL、Route、etc.

• Device：LVS、Router、Switch 、etc.

Core Actions:

p CRUD config/device and their relation

VM

Server

ACL

Route

VPC

Gateway1

PIP

……

……

Gateway2 ……

Gateway Group

We choose to abstract config, device and their relation in a unified way

p Install config to device

Design#2: Trident abstraction

Three basic objects:
p Conf: config on device
p Device: physical device
p Device Group: devices with same

configs
Five atomic operations:
p Create/Delete/Update: traditional

atomic operations
p Relate/Unrelate: modify the

relation between objects

Relation between:
Ø two Confs: one depend on another

Ø Device and Group: holding same configs
with other devices in group

Ø Group and Conf: devices in the group need
to install this Conf

——Design Details

Design#2: Trident abstraction

With Trident, cloud control APIs is
represented by a combination of 5
atomic operations over 3 basic objects

In the past, each API was
implemented using individual codes
(SQL+if-else).

Design#3: Tree-based config changes calculation

With Trident operations, multiple

“Device→Group→Conf ” chains

are formed.

Trident Tree

In Trident Tree, the Device’s descendants
imply all its required Confs

Configuration updates of Device
=

Difference in Device's descendants before
and after the Trident Tree changes

By caching these chains,
we obtain a “Tree”,

Design#3: Tree-based config changes calculation
In Trident Tree, the Device’s descendants
imply all its required Confs

Descendants of
Server1

Config changes of
Server1

I

II VM1, PIP1, VPC1,
ACL1, Route1

Add VM1, PIP1,
VPC1, ACL1,
Route1

III VM1, PIP1, VPC1,
ACL1, Route1, VM2,
PIP2

Add VM2, PIP2

I II III

However, obtaining the descendant changes of root nodes through naive tree traversal
would result in unacceptably long processing time for a cloud-scale Trident Tree.

Configuration updates of Device
=

Difference in Device's descendants before
and after the Trident Tree changes

Design#3: Tree-based config changes calculation

Whether A Conf
is descendant
of a Device?

Naive tree traversal from the root

Inheriting from all parent nodes

Unscalable for
ultra-scale Trident
tree (~𝟏𝟎𝟖	𝒏𝒐𝒅𝒆𝒔)

The complexity is low because：
Ø only a small number of

nodes' relations need to be
refreshed

Ø no need to traverse from
roots

Core
Task

Descendant relation is
transitive from parent to child

If parent Conf is
descendant of Device, its
children Conf are also the

Device’s descendant

Design#3: Tree-based config changes calculation
We use reference count to
denote descendant relation
between Conf and Group :

𝑟𝑒𝑓(𝐺𝑟𝑜𝑢𝑝, 𝐶𝑜𝑛𝑓)

How to design the transitive method of r𝑒𝑓(𝑆𝑒𝑟𝑣𝑒𝑟1, 𝐶𝑜𝑛𝑓") for cloud?

OR-based : ⋁# r𝑒𝑓 𝐺𝑟𝑜𝑢𝑝, 𝑃𝑎𝑟𝑒𝑛𝑡#
Ø Non-reversible -> 𝑂(𝑃𝑎𝑟𝑒𝑛𝑡#) ->

Non-scalable for wide trees
SUM-based : ∑# 𝑟𝑒𝑓(𝐺𝑟𝑜𝑢𝑝, 𝑃𝑎𝑟𝑒𝑛𝑡#)
Ø Reversible -> 𝑂(1)
Ø Transit to all descendants ->

Non-scalable for deep trees
Function-based :

@
#
𝐹(𝑟𝑒𝑓 𝐺𝑟𝑜𝑢𝑝, 𝑃𝑎𝑟𝑒𝑛𝑡#)

𝐹 𝑥 = D1, 𝑥 > 0
0, 𝑥 ≤ 0

Complexity Wide
Tree

Deep
Tree

OR- 𝑂(𝑃𝑎𝑟𝑒𝑛𝑡#) ❌ ✅

SUM- 𝑂(1) ✅ ❌

Function- 𝑂(1) ✅ ✅

Evaluation#1: Throughput and P99 completion
time improved by 21x and 4.4x

Throughput has increased from 160 TPS
to more than 3400 TPS (21x).

P50, P95 and P99 completion time
improvement: 3x, 3.5x and 4.4x.

Evaluation#2: Outperforms other Top5 vendors in
concurrent APIs processing (1.8x~55x faster)

The completion time of Vendor A and Vendor B is 1.8x~55x and 2.6x~4.8x
higher than that of Poseidon.

Evaluation#3: Reduces 22%~41% (LOC)

The reduction in OpEx and development cost has not been added to Poseidon, as LOC
of the Poseidon is only around 150K, which is much lower than the total LOC reduction.

Experiences

p How to migrate to Poseidon? = Changing the engine while the
plane is flying

p Poseidon’s performance in extreme situations (e.g., extensive
route fluctuations)

p Where to record the descendant relation between Conf and Group?

p How to detect Redis failover and recover the data for Poseidon?

p How to choose pushing and pulling when configuring devices?

p How to deploy Poseidon to a small-scale virtual network?

Summary

l We demonstrated the challenges and issues faced by virtual network
management of large-scale cloud provider, especially in the era of cloud-native
computing.

l To save the OpEx of managing numerous controllers without sacrificing flexibility
of services iterations, we propose partial consolidation architecture, service- and
device-independent abstraction, and tree-based config changes calculation
algorithm.

l To improve IO performance (the bottleneck of old controller), we proposed
hierarchical storage structure that utilizes Redis, memory, and database
simultaneously.

l After deploying Poseidon on Alibaba Cloud, we observed a 21x increase in the
throughput of virtual network configuration tasks, along with a 4.4x decrease in
the P99 API processing latency. With Poseidon, our virtual network management
performance greatly surpasses that of other major cloud vendors.

Q & A

POSEIDON: A Consolidated Virtual Network Controller
that Manages Millions of Tenants via Config Tree

