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Deep Neural Networks (DNNs) are prevalent
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DNN training job size grows fast

Doubling rate:
• Training compute: ~5.7 months
• GPU processing power: ~2 years
• GPU memory: ≥ 15.5 months

Sources: 
[1] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, & Pablo Villalobos. (2022). Compute Trends 
Across Three Eras of Machine Learning. 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8)
[2] NVIDIA (https://resources.nvidia.com/l/en-us-gpu)

More GPU workers. 
More data transferred.

5.7-month doubling

2-year doubling

15.5-month doubling
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Network bandwidths grow much slower

Sources: 
[1] https://ethernetalliance.org/technology/ethernet-
roadmap/

~3-year 
doubling rate

Network is a bottleneck in distributed training.
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Synchronization in data parallel training

Parameter Server
Gradients
Aggregated 
Gradients

Copy of Model Copy of Model Copy of Model Copy of Model
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The synchronization cost is already high

BytePS, four A100 GPUs, weak scaling, Stanford Sentiment Treebank (SST2)   
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100Gbps 
network

Increase the number of workers from one to four.
Ideal speed up: 4 ×

Actual speed up:
• With GPT-2: 2.58 ×
• With BERT-base: 2.27 ×
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BytePS-Compress HiPress [SOSP’ 21] Espresso [EuroSys’ 23]
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Require decompression and re-compression at every 
synchronization step.

• Send compressed gradients to reduce the number of bits transmitted.
• Previous works integrated gradient compression into training systems.

Potential solution: gradient compression
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Issue: de- and re-compression at every synchronization step

Worker 1

Model

Worker N

① Compress
Gradients

① Compress

PS 

Compressed
Gradients

Model

Gradients
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Worker 1
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② Decompress

④ Compress
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Issue: de- and re-compression at every synchronization step
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Issue: de- and re-compression at every synchronization step
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Reduced 
Data 

Volume
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PS 

Compressed
Gradients

Decompress

Compress

Sum

Compression saving diluted by high computational cost
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Reduced 
Data 

Volume

Microbenchmark: 
A vector of 1M coordinates, 
BytePSCompress-TopK10%

ΔNetwork Time (%)

-52.4%

ΔPS Time (%)

+23.5%

ΔTotal Time (%)

-28.9%

Compression CostBackground Homomorphism High Accuracy Evaluation

Compressed
Gradients Sum



Key idea: Tensor Homomorphic Compression (THC)

Removing decompression on PS requires homomorphic compression:

𝑛: number of workers
∇!: worker 𝑖 gradient

= Decompress
1
𝑛 ⋅%

!

Compress (∇!)
1
𝑛
⋅%

!

Decompress (Compress(∇!))

PS

Sum

Decompress

Compress

12

Compressed 
Values

Compressed 
Values

Decompressed Values
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Designing a homomorphic quantization scheme

Quantization schemes:

Convert floats into quantized 
values taking fewer bits.
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……0

……

1 7

0 1 7
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Quantization schemes:
Same quantized value might 
cover different ranges.
We can’t sum up quantized 
values directly.
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……

1 7

7
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1.12

0.8

Worker-specific quantization is not homomorphic

Requires PS to scale the quantized values 
based on the per-worker range.

0 1



Achieve homomorphism by aligning worker ranges

Worker A

Worker B

1.2-1.2

1.2-1.2

Aligned Range

Aligned Range

global min global max
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Quantization with global range is homomorphic

Worker A

Worker B

1.2-1.2

1.2-1.2

Number of quantized values: 8

76…… ……0
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Quantization with global range is homomorphic

Server
6+7=13
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Worker A
1.2-1.2

0.8

1.2-1.2 1.12

Worker B
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• Shrink the quantization range through Randomized Hadamard 
Transform (RHT)
• Intuition: “squeeze” values together before quantization to reduce the 

difference between min and max values.

Optimizations for accuracy improvement
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• Shrink the quantization range 
through RHT
• Makes coordinates approach a 

normal distribution
• Happens in parallel with global 

range alignment

• Non-uniform quantization
• Enables more fine-grained 

quantized values
• Convert non-uniform indices to 

uniform quantized values with a 
lookup table built offline
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1 63 42 50 7

-1 10 -1 10

Optimizations for accuracy improvement
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PS

Sum

Quantized 
Values/Indices

Aggregated 
Quantized Values

Quantized 
Values

int … int

int … int

Compress

Decompress

Worker 𝑖

int … int

THC workflow

Model

Gradients

Global 
Updates
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Lookup (non-
uniform THC only)
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Easy In-Network Aggregation (INA) integration

No complex (de)compress 
operations.

Integer operations only.

Can be offloaded to 
programmable devices

PS

Quantized 
Values

int … int

Sum
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Lookup (non-
uniform THC only)



Switch

Gradients
Aggregated 
Gradients

THC prototype uses INA with Programmable Switches

Remove traffic between the switch and PS.

Programmable
Switch
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Evaluation setup
Models: VGG16; RoBERTa-base, GPT-2

Baselines: Horovod without compression, DGC10%, TopK10%. All using RDMA.

● Horovod: SOTA AllReduce (bandwidth optimal in homogenous settings [1]) framework.

● DGC10% and TopK10%: communicate top 10% of coordinates by magnitude.

Testbed Setup: 

Tofino 2

A100

A100

A100

A100

100 
Gbps

[1] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-reduce 
Algorithms for Clusters of Workstations. Journal of Parallel and 
Distributed Computing, 2009.
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Evaluation: Time-to-Accuracy

THC-Tofino reaches the target 
accuracy 1.43× faster than the 
Horovod-RDMA baseline through
• 4 to 8× compression ratio
• INA speedup1. 43×
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Evaluation: Time-to-Accuracy

1. 32×

THC-CPU PS reaches the target 
accuracy 1.32× faster than the 
Horovod-RDMA baseline.
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Evaluation: Time-to-Accuracy

THC reaches the target 
accuracy 2.38× faster than 
TopK and DGC by 
• eliminating PS overhead
• having a lower error.2.38×
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Additional results in paper

● THC Scalability
● Large scale experiments with 64 GPUs on AWS (up to 1.16× better 

than no-compression baseline)
● Simulations for up to 64 workers and comparisons with QSGD

● Other models
● Vision models: VGG models, ResNet models
● Language models: RoBERTa, BERT, Bart, GPT-2

● Other system opportunities
● Stragglers handling
● Packet loss
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Conclusion

● Networks take an increasingly large portion of distributed 
training time.

● Tensor Homomorphic Compression (THC) is a novel scheme 
that enables direct aggregation on compressed data.

● THC offers up to 1.47x time-to-accuracy speedup, is scalable, 
and supports in-network aggregation.

● THC is integrated into BytePS and accessible at 
https://github.com/SophiaLi06/BytePS_THC.git
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https://github.com/SophiaLi06/BytePS_THC.git


Thank you for listening!
Q&A
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