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Deep Neural Networks (DNNs) are prevalent
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DNN training job size grows fast
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Network bandwidths grow much slower
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Synchronization in data parallel training
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The synchronization cost is already high
BytePS, four A100 GPUs, weak scaling, Stanford Sentiment Treebank (SST2)

Increase the number of workers from one to four. Actual speed up:
Ideal speed up: 4 x «  With GPT-2: 2.58 x
« With BERT-base: 2.27 x
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Potential solution: gradient compression

« Send compressed gradients to reduce the number of bits transmitted.

 Previous works integrated gradient compression into training systems.

BytePS-Compress HiPress [SOSP’ 21] Espresso [EuroSys’ 23]

Require decompression and re-compression at every
synchronization step.
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Issue: de- and re-compression at every synchronization step
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Issue: de- and re-compression at every synchronization step
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Issue: de- and re-compression at every synchronization step
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Compression saving diluted by high computational cost

Microbenchmark:

A vector of 1M coordinates,
BytePSCompress-TopK10%
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Key idea: Tensor Homomorphic Compression (THC)

Removing decompression on PS requires homomorphic compression:

n: number of workers
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Designing a homomorphic quantization scheme

Worker A
Quantization schemes:
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Worker-specific quantization is not homomorphic

Worker A /
d Quantization schemes:
12 2 10 Same quantized value might
cover different ranges.
115 We can’t sum up quantized
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Requires PS to scale the quantized values
based on the per-worker range.
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Achieve homomorphism by aligning worker ranges
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Quantization with global range is homomorphic
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Quantization with global range is homomorphic
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Optimizations for accuracy improvement

« Shrink the quantization range through
Transform (RHT)

* Intuition: “squeeze” values together before
difference between min and max values.

Randomized Hadamard

quantization to reduce the
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Optimizations for accuracy improvement

 Shrink the quantization range
through RHT

» Makes coordinates approach a
normal distribution

* Happens in parallel with global
range alignment

« Non-uniform quantization
« Enables more fine-grained
quantized values
« Convert non-uniform indices to

uniform quantized values with a
lookup table built offline
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THC workflow
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Easy In-Network Aggregation (INA) integration
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THC prototype uses INA with Programmable Switches
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Evaluation setup

Models: VGG16; RoBERTa-base, GPT-2

Baselines: Horovod without compression, DGC10%, TopK10%. All using RDMA.

e Horovod: SOTA AllReduce (bandwidth optimal in homogenous settings [1]) framework.

e DGC10% and TopK10%: communicate top 10% of coordinates by magnitude.

Testbed Setup:
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[1] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-reduce
Algorithms for Clusters of Workstations. Journal of Parallel and
Distributed Computing, 2009.
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Evaluation: Time-to-Accuracy

VGG16 (Top 5 Accuracy)
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Evaluation: Time-to-Accuracy

VGG16 (Top 5 Accuracy)
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Evaluation: Time-to-Accuracy

VGG16 (Top 5 Accuracy)
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Additional results in paper

e THC Scalability
e Large scale experiments with 64 GPUs on AWS (up to 1.16x better
than no-compression baseline)
e Simulations for up to 64 workers and comparisons with QSGD

e Other models

e Vision models: VGG models, ResNet models
e lLanguage models: RoBERTa, BERT, Bart, GPT-2

e Other system opportunities
e Stragglers handling
e Packet loss
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Conclusion

e Networks take an increasingly large portion of distributed
training time.

e Tensor Homomorphic Compression (THC) is a novel scheme
that enables direct aggregation on compressed data.

e THC offers up to 1.47x time-to-accuracy speedup, is scalable,
and supports in-network aggregation.

e THC is integrated into BytePS and accessible at
https://github.com/Sophiali06/BytePS_THC.qit
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https://github.com/SophiaLi06/BytePS_THC.git

Thank you for listening!
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