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● State demands and 
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conflict because it is hard to 
have large amounts of 
high-speed memory

Motivation: State-Intensive High-Speed Network Applications
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Motivation: State-Intensive High-Speed Network Applications

● A cache would allow high 
capacity memory to be 
used while maintaining 
high performance Takeaway:

High-speed state-intensive network 
applications require efficient caching
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State of Practice Falls Short of Ideal Case

● No shortage of online caching 
algorithms - LRU, LFU, ARC, 
CLOCK, S3-FIFO, SIEVE, etc.

● All fall short of optimal offline 
caching algorithm (Belady) by a 
significant margin
○ Ranging from 2-3x higher 

cache miss ratio
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Setup:
2-tier fat-tree network with 144 nodes running in-network 

load balancing application with websearch workload

2x 3x

↓ Lower is better
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● No shortage of online caching 
algorithms - LRU, LFU, ARC, 
CLOCK, S3-FIFO, SIEVE, etc.

● All fall short of optimal offline 
caching algorithm (Belady) by a 
significant margin
○ Ranging from 2-3x higher 

cache miss ratio

● ML-based solutions are prone to 
mispredictions
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State of Practice Falls Short of Ideal Case

● No shortage of online caching 
algorithms

○ LRU, LFU, ARC, CLOCK, 
S3-FIFO, SIEVE, etc.

● All fall short of optimal offline 
caching algorithm (Belady) by a 
significant margin
○ Ranging from 2-3x higher 

cache miss ratio
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Setup:
2-tier fat-tree network with 144 nodes running in-network 

load balancing application with websearch workload

2x 3x

↓ Lower is better

Fundamental Cause of Performance Gap:
Offline algorithm (Belady) uses knowledge of future state 

accesses to make optimal caching decisions, but …

Traditional online caching algorithms lack
accurate awareness of future state accesses
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Key Research Question

How can future-aware caching be realized 
accurately in practice (online setting)?
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Traditional online caching assumes future-awareness is challenging.
However…

Networked setting presents unique 
opportunities to provide very accurate 

visibility into future state accesses!

Key Insight
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Hash Function

Insight 1:  Header-Based State Indexing
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Hash Function

Insight 1:  Header-Based State Indexing
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flow ID state

1 15

2 0

3 27

4 6

… …

Node A

e.g. 5-tuple

state index

small number of bits 
(e.g., 16-20)

Takeaway 1:

State access indices are carried in 
incoming packet headers, and can be 
encoded using a small number of bits
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Insight 2:  Network Delays Create Opportunities

: future state access index

Takeaway 2:

Delays in the network can be leveraged to 
forward state index information in 

advance!
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Receive-side 
TCP processing

● Hard to estimate future packet 
(state access) time of arrival

●  Needed for optimal caching!

Issue with multi-hop notification:
● Unpredictable queueing delay
● Packet may be dropped
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Receive-side 
TCP processing

● Hard to estimate future packet 
(state access) time of arrival

●  Needed for optimal caching!

Issue with multi-hop notification:
● Unpredictable queueing delay
● Packet may be dropped

Takeaway 3:

Multi-hop notification provides inaccurate 
estimation of future state access time, but 

optimal algorithm (Belady) heavily relies on it
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Insight 3:  Neighbors Are Most Accurate Notifiers
● Instead, our applications 

only rely on notification 
from directly connected 
neighbors

: future state access index
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Insight 3:  Neighbors Are Most Accurate Notifiers

20



Insight 3:  Neighbors Are Most Accurate Notifiers
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● T: time when packet will reach target node
● t0: current time at target node
● P: size of packet in question P0
● B: bytes of queued data in front of packet P0
● L: link speed
● ε: link propagation delay

T = t0 + (P + B)/L + ε



Insight 3:  Neighbors Are Most Accurate Notifiers
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● T: time when packet will reach target node
● t0: current time at target node
● P: size of packet in question P0
● B: bytes of queued data in front of packet P0
● L: link speed
● ε: link propagation delay

T = t0 + (P + B)/L + ε

Takeaway 4:

Directly connected neighbors provide a 
perfectly accurate estimation of future 

state access times!
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1. State access indices are carried in incoming packet 
headers, and can be encoded using a small number of bits.

2. Delays in the network can be leveraged to forward state 
index information in advance.

3. Directly connected neighbors provide a perfectly accurate 
estimate of future state access times.

Putting It All Together
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Our Contributions

Seer: A Future-Aware Online Caching System

1. Low-Overhead Future State Access Notification

2. Future-Aware Cache Manager

3. Fast Hardware Implementation
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State access notifications carried 
in control packets
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(1)  Low-Overhead Future State Access Notification

Future State Access Notification 
for each packet contains:
● State access index
● Future time of arrival of 

corresponding packet

Naive solution for notification: 
control packets
● High bandwidth overhead – one 

control packet per data packet
○ If all pkts are minimum-sized, can 

consume half of total bandwidth!
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Batching reduces number of control packets but 
can delay notification while it waits for batch

Future State Access Notification 
for each packet contains:
● State access index
● Future time of arrival of 

corresponding packet

Naive solution for notification: 
control packets
● High bandwidth overhead – one 

control packet per data packet
○ If all pkts are minimum-sized, can 

consume half of total bandwidth!

(1)  Low-Overhead Future State Access Notification



27

How to send future state notifications in a 
timely manner and with low overhead?

Future State Access Notification 
for each packet contains:
● State access index
● Future time of arrival of 

corresponding packet

Naive solution for notification: 
control packets
● High bandwidth overhead – one 

control packet per data packet
○ If all pkts are minimum-sized, can 

consume half of total bandwidth!

Batching reduces number of control packets but 
can delay notification while it waits for batch

(1)  Low-Overhead Future State Access Notification
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● Send notifications in IPG
○ Ethernet PHY enforces a 

minimum of 96 bit 
inter-packet gap (IPG) 
between packets

○ Can carry multiple packets’ 
state access notification 
within a single IPG

○ Zero bandwidth overhead
○ Limitation: Limited # of bits 

for communication
■ Limits rate at which packet 

notifications can be sent

Send notifications using 
IPG between packets

(1)  Low-Overhead Future State Access Notification
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● Send notifications over IPG 
under normal scenarios

● Send a control packet when 
notification queue exceeds 
configurable parameter m

(1)  Optimization: Opportunistic Batching
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● Send notifications over IPG 
under normal scenarios

● Send a control packet when 
notification queue exceeds 
configurable parameter m
○ By configuring m, we 

control bandwidth 
overhead of control pkts

(1)  Optimization: Opportunistic Batching
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● Send notifications over IPG 
under normal scenarios

● Send a control packet when 
notification queue exceeds 
configurable parameter m
○ By configuring m, we 

control bandwidth 
overhead of control pkts

(1)  Optimization: Opportunistic Batching

Best of both worlds:
Timely notification with low bandwidth 

overhead and no batching delay
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(2)  Future-Aware Cache Manager

● Cache manager uses received future state access notifications 
to make smarter prefetching and cache eviction decisions

● Cache manager consists of two components:
○ Future-Aware Prefetching
○ Future-Aware Cache Eviction
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● Goal: Fetch state in order of 
predicted time of access
○ One received notification queue per 

input port
○ Combine into one logically sorted 

queue based on future access time
○ Fetch soonest state not in cache

(2)  Future-Aware Prefetching
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● Goal: Fetch state in order of 
predicted time of access
○ One received notification queue per 

input port
○ Combine into one logically sorted 

queue based on future access time
○ Fetch soonest state not in cache

(3)  Fast Hardware Implementation
tprefetch = 1 + log(P) + k clock cycles

P: number of ports
k: cache set size

(2)  Future-Aware Prefetching
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● Goal: Fetch state in order of 
predicted time of access
○ One received notification queue per 

input port
○ Combine into one logically sorted 

queue based on future access time
○ Fetch soonest state not in cache
○ If cache is full → eviction algorithm

(2)  Future-Aware Prefetching

(3)  Fast Hardware Implementation
tprefetch = 1 + log(P) + k clock cycles

P: number of ports
k: cache set size
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● Goal: Emulate Belady’s algorithm as closely as possible: 
● Evict an entry that will be accessed furthest in the future

● Challenge: Knowledge of only a partial set of future state accesses

(2)  Future-Aware Cache Eviction
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(2)  Future-Aware Cache Eviction

● Our solution:
○ Split cache into two sets: objects with known access 

time vs unknown access time
○ Prioritize evicting objects with unknown access time 

using any cache heuristic
○ When cache solely contains objects with known 

access time, evict according to Belady’s algorithm

● Bounded performance
○ Worst case: Caching heuristic
○ Best case: Belady’s algorithm
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● Our solution:
○ Split cache into two sets: objects with known access 

time vs unknown access time
○ Prioritize evicting objects with unknown access time 

using any cache heuristic
○ When cache solely contains objects with known 

access time, evict according to Belady’s algorithm

● Bounded performance
○ Worst case: Caching heuristic
○ Best case: Belady’s algorithm

(2)  Future-Aware Cache Eviction
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(3)  Fast Hardware Implementation
tevict = k clock cycles

k: cache set size

(2)  Future-Aware Cache Eviction

● Our solution:
○ Split cache into two sets: objects with known access 

time vs unknown access time
○ Prioritize evicting objects with unknown access time 

using any cache heuristic
○ When cache solely contains objects with known 

access time, evict according to Belady’s algorithm

● Bounded performance
○ Worst case: Caching heuristic
○ Best case: Belady’s algorithm
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Prototype

● FPGA prototype
○ Altera Stratix V FPGA: 234 K adaptive logic 

modules, 52 Mbits SRAM, four 10 Gbps 
network ports

● Seer modifies Ethernet physical layer (PHY) 
to access IPG
○ Replaces default idle 0 values in IPG with state 

access notification
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Evaluation Setup

Packet-level simulator in C

● Two-tier Fattree topology
○ 16 spine switches
○ 9 racks
○ 16 hosts / rack (total 144)
○ Full bisection bandwidth

● 100 Gbps links
● 100 ns per-hop 

propagation delay
● 100 ns backing memory 

access latency
● 96 bit inter-packet gap

● DCTCP congestion control
● ECMP load balancing
● Switches support ECN

● Evaluation metric: 
○ Cache miss ratio

L4 Load Balancing

Intrusion Detection

Applications:

(per connection state)

(per flow state)



● Incast Traffic Pattern:
○ Incast traffic results in most 

queueing at neighbor node
○ Provides furthest visibility 

into future state accesses
● Seer remains within 7-20% 

of Belady
● Seer performs 20-100% 

better than LRU
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Evaluation: Good Case for Seer

↓ Lower is better

Performance for each packet size normalized w.r.t. 
corresponding Seer performance
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Evaluation: Bad Case for Seer

● Permutation Traffic Pattern:
○ Permutation traffic over full 

bisection bandwidth fattree 
network results in least 
queueing at neighbor node

○ Provides least visibility into 
future state accesses

● Seer remains within 35-40% 
of Belady

● Seer performs 2-5% better 
than LRU

↓ Lower is better

Performance for each packet size normalized w.r.t. 
corresponding Seer performance



● Websearch workload
○ Representative of datacenter 

workload
○ Heavy-tailed flow size 

distribution

● 60-180% lower cache miss ratio 
for Seer compared to state-of-art

● Flow completion time (FCT) show 
similar trend:
○ Seer reduces FCT by 25-75% 

compared to LRU
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Evaluation: Realistic Workload

↓ Lower is better

Normalized w.r.t. Seer
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Conclusion

● Seer enables future-aware online caching in a networked system

● Seer makes three key technical contributions:
○ Low-Overhead Protocol for Future State Access Notification
○ Design of Future-Aware Cache Manager
○ Fast Hardware Implementation

● Seer performs close to optimal offline caching in practice, with worst 
case performance bounded by state-of-the-art caching heuristic



Thank You
Any questions?


