Seer: Enabling
Future-Aware Online
Caching in Networked
Systems

Jason Lel, Vishal Shrivastav

£ PURDUE n3d|'24

Motivation: State Intens:ve H:gh Speed Network Applications

@in NATSe o 300-600 MB tables
NN to serve commmon network
applications [TEA, SIGCOMM ‘20]

\ = ~
\ \\\ S
\ ~ ~
\ ~ So
~
~ \\
\ SO ~
\ ~ S
~
\\ So
\
\
\
\
\
\
\
\
\
‘ !! E £ 3
| ~

Network
—l— . .
mmE Monitoring

it |
] @ Receive-side

—— Load Virtual switching (eee TCP processing
S PURDUE | -0 iyl <o \

Motivation: State-Intensive High-Speed Network Applications

e <100 nsinter-packet intervals 2 WP
e Millions of packet operations NAT %' —
each second

<
OOx

S
Network & —i L
mmi Monitoring §

@ Receive-side

' : i TCP processing
— Virtual switching {eee
FDPURDYE o CTC > 3

Motivation: State-Intensive High-Speed Network Applications
NAT

e State demandsand T¥T | Demand | SRAM DRAM
performance demands are in M = | j00sofmp- ~ 10sofMB seve?GB
. ‘g e few GB
conflict because it is hard to P X
have large amounts of tewTops | W X
high-speed memory
& 2

\ 3533 & b -
YY1 ?‘“ﬁ- a -
YYT (23 &%
E £ § > 4 2 —
,”J

Motivation: State-Intensive High-Speed Network Applications

° would allow high
capacity memory to be
used while maintaining
high performance

Motivation: Network Applications

® would allow
to be wA

P\ High-speed state-intensive network
applications require efficient caching

State of Practice Falls Short of Ideal Case

ke
E 3.0
e No shortage of online caching 0
algorithms - LRU, LFU, ARC, = 4
CLOCK, S3-FIFO, SIEVE, etc. v201
O
e Allfall short of optimal offline § 1.5
caching algorithm (Belady)bya @
significant margin = 1.0-
o Ranging from 2-3x higher § s
cache missratio <

O
(=)

Caching Algorithm

Setup:
2-tier fat-tree network with 144 nodes running in-network
E PURDUE load balancing application with websearch workload -

UNIVERSITY.

State of Practice Falls Short of Ideal Case

ke
E 3.0
e No shortage of online caching 0
algorithms - LRU, LFU, ARC, = 4
CLOCK, S3-FIFO, SIEVE, etc. v201
O
e Allfall short of optimal offline § 1.5
caching algorithm (Belady)bya @
significant margin = 1.0-
o Ranging from 2-3x higher § s
cache miss ratio Z00-

e ML-based solutions are prone to
mispredictions Caching Algorithm

Setup:
2-tier fat-tree network with 144 nodes running in-network
E PURDUE load balancing application with websearch workload 4

UNIVERSITY.

State of Practice Falls Short of Ideal Case

Ratio
W
o

Offline algorithm (Belady) uses knowledge of future state
accesses to make optimal caching decisions, but ...

lack
accurate awareness of future state accesses

Setup:
2-tier fat-tree network with 144 nodes running in-network
? PURDUE load balancing application with websearch workload 4

UNIVERSITY.

Key Research Question

How can be realized
accurately

Key Insight

Traditional online caching assumes future-awareness is challenging.
However...

Networked setting presents unique
opportunities to provide very accurate
visibility into future state accesses!

11

Insight 1: Header-Based State Indexing

< Header >_

Payload

—» Hash Function

Node A

e.g. 5-tuple

state index

small number of bits
(e.g., 16-20)

—

flow ID
1

2
3
4

state

15

27

E PURDUE

UNIVERSITY.

Insight 1: Header-Based State Indexing

State access indices are carried In
iIncoming packet headers, and can be
encoded using a small number of bits

(e.g.,16-20)

Insight 2: Network Delays Create Opportunities

€

o

-

N
i

—
/§7

Q

4
2,
N

AT

il

Insight 2: Network Delays Create Opportunities

\
\\
/ W

[

- future state access index /'

/

]

15

Insight 2: Network Delays Create Opportunities

Delays in the network can be leveraged to
forward state index information in
advance!

16

Insight 3: Neighbors Are Most Accurate Notifiers

Issue with multi-hop notification: e Hardto estimate future packet
e Unpredictable queueing delay ¢ (state access) time of arrival
e Packet may be dropped . . ® Needed for optimal caching!

@\

B

Insight 3: Neighbors Are Most Accurate Notifiers

Issue with multi-hop notification: o future packet
e queueing delay . (state access)
o P4 — :

Multi-hop notification provides inaccurate

estimation of future state access time, but
optimal algorithm (Belady) heavily relies on it

18

Insight 3: Neighbors Are Most Accurate Notifiers

e Instead, our applications

3133
: future state access index /' only rely on notification
from directly connected
neighbors
\

]

s e @(\ \

19

Insight 3: Neighbors Are Most Accurate Notifiers

2,

egress queue Cache

y /
| link speed L
PO P1 - >
—f propagation delay €
y

Application LAY
| | l\ T Jl .
p bytl es B bytes | Backing Store
Neighbor Node Target Node

7= PURDUE

UNIVERSITY.

Insight 3: Neighbors Are Most Accurate Notifiers

2

egress queue

link speed L

PURDUE

UNIVERSITY.

T=t,+(P+B)/L+¢

T: time when packet will reach target node
t,: current time at target node

P: size of packet in question PO

B: bytes of queued data in front of packet PO

|
/ PO P1 | [P2
|-=——]
Prom—
H,_J ~ = Y
P bytes B bvites
Neighbor Node
°
°
°
°
e L:linkspeed
°

propagation delay €

¢: link propagation delay

Application 3333
Backing Store
Target Node

21

Insight 3: Neighbors Are Most Accurate Notifiers

Directly connected neighbors provide a
perfectly accurate estimation of future
state access times!

— S __
: Size of packet in question PO
: bytes of queued data in front of packet PO
: link speed

? PURDUE : link propagation delay

22

Putting It All Together

1. State access indices are carried in incoming packet
headers, and can be encoded using a small number of bits.

2. Delays in the network can be leveraged to forward state
iIndex information in advance.

3. Directly connected neighbors provide a perfectly accurate
estimate of future state access times.

23

Our Contributions

Seer: A Future-Aware Online Caching System

1. Low-Overhead
2. Future-Aware

3. Fast

(1) Low-Overhead

Future State Access Notification
for each packet contains:

e State access index
e [uture time of arrival of
corresponding packet

Naive solution for notification:
control packets

e High bandwidth overhead - one

control packet per data packet
o |If all pkts are minimume-sized, can
consume half of total bandwidth!

27 PURRYE

state access index
future time of arrival

notification queue

Caéhe

Héééé , (} —

Application
egress queue Backing Store

Neighbor Node Target Node

State access notifications carried
in control packets

25

(1) Low-Overhead

Future State Access Notification
for each packet contains:

e State access index
e [uture time of arrival of
corresponding packet

Naive solution for notification:
control packets

e High bandwidth overhead - one

control packet per data packet
o |If all pkts are minimume-sized, can
consume half of total bandwidth!

27 PURRYE

Batching reduces number of control packets but
can delay notification while it waits for batch

notification queue
L] =
Ny
\\% Cache
f
[f— &
é Application iR 2
egress queue Backing Store
Neighbor Node Target Node

26

(1) Low-Overhead

Future State Access Notification
for each packet contains:

e State access index
e [uture time of arrival of
corresponding packet

Naive solution for notification:
control packets

e High bandwidth overhead - one

control packet per data packet
o |If all pkts are minimume-sized, can
consume half of total bandwidth!

E PURDUE

UNIVERSITY.

Batching reduces number of control packets but
can delay notification while it waits for batch

notification queue

|]
N

X
Ik

egress queue

Neighbor Node

2,
: Cache
Application i

Backing Store

Target Node

How to send future state notifications ina
timely manner and with low overhead?

27

(1)

L ow-Overhead

e Send notificationsin IPG
o Ethernet PHY enforces a

2

minimum of 96 bit
inter-packet gap (IPG)
between packets

Can carry multiple packets’
state access notification
within a single IPG

Limitation: Limited # of bits
for communication

m Limits rate at which packet
notifications can be sent

PURDUE

UNIVERSITY.

<«—Inter-Packet Gap——>

Packet A

' ’ inotiﬁcation notification notification
D

notification queue / /

[;//11/

notification
A

Previous Packet

egress queue
Neighbor Node

SR

B

| Ay
0 A .;I

: Caghe
Application i

Backing Store

Target Node

Send notifications using
IPG between packets

28

(1)

2

Optimization:

Send notifications over IPG
under normal scenarios
Send a control packet when
notification queue exceeds
configurable parameter m

PURDUE

UNIVERSITY.

t=1

Batching

m=6

notification queue

n2|/in1| (n0

IPG

packet queue

v2| [p1[[po];

n1({n0 :

29

(1) Optimization: Batching

e Send notifications over IPG

under normal scenarios _ m=6
o Send a Con‘trol packet When notification queue n2 | n1| |n0 PG

. . . n1|no0 ipoi

notification queue exceeds | .. qee 2 el

configurable parameter m

o By configuring m, we =2 e ‘ ontrol packet

. notification queue n9| [n8|||n7| [n6| [n5| |n4| (n3| [n2|| s i -
control bandwidth i Lng’ﬁg T
overhead of control pkts packetqueve |p9] 08| [p7] [06] [n5] [p4] [p3] [p2] [p1] 1~
@ PURDUE
UNIVERSITY. 30

(1) Optimization:

e Send notifications over IPG
under normal scenarios

e Send a control packet when
notification queue exceeds

configurable parameter m

o By configuring m, we
control bandwidth
overhead of control pkts

Batching
t=1 e
notification queue n2||in1| (nO
packet queue tp;2j !)j! @\-
t=2 mz=6
notification queue n9| In8||(n7| [n6| [n5| |nd4| |n3| |N2||H

IPG

n1({n0

IPG

control packet

—

]

YY

packet queue

9] [pe] [p7] [p6| |p5| [p4] [p3] [p2] [p1]-

Timely notification with low bandwidth
overhead and no batching delay

E PURDUE

UNIVERSITY.

n9|nd

n’

né

n5

n4

n3|n2

31

(2) Future-Aware

e Cache manager uses received future state access notifications
to make smarter and cache decisions

e Cache manager consists of two components:
o Future-Aware
o Future-Aware

27 PURRYE

32

(2)

Future-Aware

e Goal: Fetch state in order of

2

One received notification queue per
iInput port

Combine into one logically sorted
queue based on future access time
Fetch soonest state not in cache

PURDUE

UNIVERSITY.

port C

port A

port B

Received Notification Queue

p1

p0

t=5

t=1

> Logically-Ordered Queue

—> FD5 pl| p4 p0

Received Notification Queue

p2
t=3

Received Notification Queue

p5
=6

p4

=4

p3
t=2

=6 =5 t=4 & g—ﬂ t=1

prefetch |p3 |

Cache
p0| p4 |p1

evictr

Backing Store

33

(2) Future-Aware

e Goal: Fetch state in order of

Received Notification Queue -
51| [P0 N Loglcally:grdered C}ueue
. L == 5| i1 | —>) [25] o] [p4] b2 [B3] [0
o Onereceived notification queue per —HE E B = E
. Received Notification Queue —
|npUt pOrt - " 02 prefetch p3|
. . . =3
o Combine into one logically sorted - C’ﬂ‘f =
. : — c
gueue based on future access time N Heci! “°‘E}§7t';’;49“%‘%? evicty
po e s S -
o Fetch soonest state notin cache = Bl = Backing ek
(3) Fast
t) etetcn =1 +108(P) + k clock cycles
P: number of ports
E PURDUE k: cache set size
UNIVERSITY. 34

(2) Future-Aware

e Goal: Fetch state in order of

Received Notification Queue -
o] [p0 N Logically-Ordered (;}H_e_ye
. L A i 5| i1 | —>) [25] o] [p4] b2 [B3] [0
o Onereceived notification queue per — E B B B 2 E
. Received Notification Queue —
|npUt pOrt - " 02 prefetch p3|
. . . =3 '
o Combine into one logically sorted - C":‘;“Ie =
. : m— o
gueue based on future access time N Hacaked “°‘E§at'fg49“i‘%? evicty
po B B [i
o Fetch soonest state notin cache = Bl B Backing Siio
o |If cache s full — eviction algorithm
(3) Fast
t) etetcn =1 +108(P) + k clock cycles
P: number of ports
E PURDUE k: cache set size
UNIVERSITY. 35

(2) Future-Aware

e Goal: Emulate as closely as possible:
e FEvictan entry that will be accessed furthest in the future

e Challenge: Knowledge of only a partial set of future state accesses

E PURDUE

UNIVERSITY.

(2) Future-Aware

e Our solution:
o Split cache into two sets: objects with known access
time vs unknown access time
o Prioritize evicting objects with unknown access time
using any cache heuristic

e Bounded performance
o Worst case: Caching heuristic

E PURDUE

UNIVERSITY.

Logically-Ordered Queue

p5

p1

p4

p2

p3

p0

t=6

t=5

t=4

t=3

t=2

t=1

p7

p4

p0

X

X

=5

t=4

t=1

p6||ip1

.l Cache

Any Cache Heuristic

(e.g. LRU)

37

(2) Future-Aware

e Our solution:
o Split cache into two sets: objects with known access
time vs unknown access time
o Prioritize evicting objects with unknown access time
using any cache heuristic
o When cache solely contains objects with known
access time, evict according to

e Bounded performance
o Worst case: Caching heuristic
o Best case:

E PURDUE

UNIVERSITY.

Logically-Ordered Queue

p5

p1

p4

p2

p3

t=6

t=5

t=4

t=3

t=2

p0
t=1,

v

N

p1

¥
p4

p2

p3

t=5

=4

t=3

t=2

- -

v

Cache

Belady's Algorithm

evict

Ezf

38

(2) Future-Aware

e Our solution:

o Split cache into two sets: objects with known access LOgicalty-dorad Guaue.
time vs unknown access time tfé nﬂ; tgfﬁi ;:23 1‘3 lzgl
o Prioritize evicting objects with unknown access time
using any cache heuristic S o1l ol 7 p'ﬂ‘
o When cache solely contains objects with known (L= ‘75 tzgac:\:: = &
access time, evict according to !
¢ Bounded performance Beladys Agoritm | evict g
o Worst case: Caching heuristic
o Best case: (3) Fast
t = k clock cycles

evict

27 PURRYE

k: cache set size

39

Prototype

e FPGA prototype DR ot [
o Altera Stratix V FPGA: 234 K adaptive logic

e Seer modifies Ethernet physical layer (PHY) e

to access IPG t
o Replaces defaultidle O values in IPG with state
access notification

2

id3, val3 3 id6, valé

‘: 2-way set associative
SRAM cache

id98, val98

Evict®

id99,val99
id100, val100

._Cache Manager

‘\

o= ‘. \\
logic

/

2 Priority Classes (FIFOs)

][]

Ordered list
(flip-flops)

Recvd
FPM

modules, 52 Mbits SRAM, four 10 Gbps %gg
network ports ;

A

Media Access Control (MAC)

Reconciliation Sublayer (RS)
A

v XGMIl 156.25 MHz

Physical Coding Sublayer (PCS)

y XSBI 644.53125 MHz

Physical Medium Attachment (PMA)

Physical Medium Dependent (PMD)

PURDUE

UNIVERSITY.

Egress Ingress

40

Evaluation Setup

16 spines s | s

9 ToRs B T T

16 hosts |

per rack

Applications:

-— L4 Load Balancing
(per connection state)

T 1 — Intrusion Detection

(per flow state)

Packet-level simulatorin C

e T[wo-tier Fattree topology
o 16 spine switches
o 9racks
o 16 hosts/rack (total 144)
o Full bisection bandwidth

100 Gbps links

100 ns per-hop
propagation delay

100 ns backing memory
access latency

96 bit inter-packet gap

DCTCP congestion control
ECMP load balancing
Switches support ECN

Evaluation metric:
o Cache miss ratio

E PURDUE

UNIVERSITY.

41

Evaluation: Good Case for Seer

O
e Incast Traffic Pattern: E 3.0 ; ';:gr _
o Incast.trafflc re.sults in most L g p— DAY | Loweris better
queueing at neighbor node %
o Provides furthest visibility S 2.0
into future state accesses O 1.5+
e Seerremains within 7-20% g 10 -
of Belady E s I
e Seer performs 20-100% S o'o _I —‘ _l

better than LRU - . , . : |
\’) ' © \’s) \’) e
RO \/01“ ST 507 %Y ok
Packet Size

Performance for each packet size normalized w.r.t.
E PURDUE corresponding Seer performance

UNIVERSITY.

Evaluation: Bad Case for Seer

O
- ' : < | I LRU
e Permutation Traffic Pattern: < 1.6 o | Lower is better
o Permutation traffic over full 2 1.41 —
: : : = [Belady
bisection bandwidth fattree % 1.2+
network results in least < 1.0
queueing at neighbor node S 0.8
o Provides least visibility into soc RHE-BR BB R
future state accesses Té 0.4
e Seerremains within 35-40% = 0.21
=
of Belady 0.0 , ,
D ® 0 P o® p®
e Seer performs 2-5% better RN ¢ 9% % o
than LRU Packet Size

Performance for each packet size normalized w.r.t.
E PURDUE corresponding Seer performance

UNIVERSITY.

Evaluation: Realistic Workload

e Websearch workload % 3
. m . 7]
o Replrdesegtatlve of datacenter - | Lower is better
workloa v
. _ s 2.0-
o Heavy-tailed flow size v
distribution G 1.5-
$
e 60-180% lower cache miss ratio S 1.0-
for Seer compared to state-of-art %
c 0.5
e Flow completion time (FCT) show g
similar trend: 0.0-

o Seer reduces FCT by 25-75% OSSN o e‘@ o ‘2

compared to LRU Caching Algorithm

E PURDUE Normalized w.r.t. Seer

UNIVERSITY.

Conclusion
e Seer enables future-aware online caching in a networked system

e Seer makes three key technical contributions:
o Low-Overhead Protocol for
o Design of Future-Aware
o Fast

e Seer performs close to optimal offline caching in practice, with worst
case performance bounded by state-of-the-art caching heuristic

E PURDUE

UNIVERSITY.

Thank You

Any questions?

7 PURDUE nediva

