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Distributed Databases Enables Large Scale Applications
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Distributed Databases Challenged by Skewed Workloads
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Data Sharding Exacerbates Skew’s Negative Impact
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Single-Machine Databases Better Handle Skew
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Performance multipliers: properties of single-machine databases 
that benefit its performance.
• Does not apply to distributed databases.

Single-Machine Databases Leverage Performance Multipliers
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Performance multipliers: properties of single-machine databases 
that benefit its performance.
• Does not apply distributed databases.

Single-Machine Databases Leverage Performance Multipliers
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ü Global database-wide techniques,
e.g. Silo [OSDI ’14].

ü Targeting local bottlenecks, 
e.g. MVTL [PODC ’18].



Distributed vs. Single-Machine Databases

Scales capacity Handles 
skewed workloads

Distributed 
databases

Single-machine 
databases

Ideal

11



TurboDB

A new hybrid architecture that integrates 
a single-machine database into a distributed database.

The distributed database scales storage capacity while 
the single-machine database “turbocharges” performance

with its performance multipliers.
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Hybrid Concurrency Control (HCC) Intuition

HCC Goal. Orchestrate two independent database’s concurrency control protocols: 
(Correctness) Both can totally order transactions in the same serial schedule.
(Performance) Turbo can execute its part without cross-node coordination.
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Correctness: HCC Enforces Process-Order Serializability

Process-ordered serializability = total order + process order.

Total order: txns are assigned a single timestamp across both local and distributed 
concurrency control protocols.

• Both protocols serialize txns by timestamp, so both converge on the same total order.

Process order: to respect process order, clients generate timestamps.
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Performance: HCC Runs Turbo as a Standalone Database

Performance Goal: prevent turbo from incurring cross-node coordination.
Solution: Run turbo as a standalone, single-machine database unaware of its role in 
hybrid architecture.

Key Insight #1: Each distributed transaction limited to sending the turbo…
• One read-write single-machine database txn of update operations.
• Multiple read-only single-machine database txns of read operations.

Key Insight #2: When turbo commits (aborts) isolated read-write txn, servers mirror 
decision.
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Phalanx Replication: Tolerating Turbo Failures

Phalanx Protocol Goal: correctly replicate the turbo’s data, but without replication 
latency penalizing single-machine performance multipliers.

Intuition (from existing work): decouple replication from transaction execution.
• After committing transaction, turbo primary makes it visible before and during its replication, 

buffering transaction’s results in the meantime.
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Phalanx Returns Committed Transactions in Correct Order

Subtle issue: turbo’s performance cannot tolerate returning buffered, committed 
transactions in timestamp order.
Solution: Frontline mechanism returns committed transactions in correct order 
without blocking progress.
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Phalanx’s Frontline Moves Forward and Backwards

Frontline definition: global threshold timestamp. Represents a snapshot of the turbo 
where all committed transactions can be correctly returned.

Frontline returns committed transactions in correct order by selectively obeying 
timestamp order.
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Frontline’s Backward Movement is Correct

Prevents newly committed, un-replicated txns from being prematurely returned.
Does not revoke correctness of previously returned transactions. 

1. Committed transaction is replicated.
2. If transaction depends on any prior transactions, those are also replicated.*
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Implementation

Built on CockroachDB [SIGMOD ’20] and Cicada [SIGMOD ’17].

Baseline: CockroachDB.

Workloads: 
• YCSB+T.
• TPC-C New-Order transactions.
• Varying skew and read-to-write ratios.

Performance metrics: throughput, latency, and scalability.
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Evaluation

YCSB+T (95% reads, 5% updates): transaction size of 10 unique keys.
Cicada stores 40M most popular keys (of 160M total keys).
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Conclusion

TurboDB: a distributed database designed for skewed workloads.

A novel, hybrid database architecture.
• Integrates a single-machine database to “turbocharge” the overall performance.
• Leverages the turbo’s performance multipliers.

Specialized designs for challenges unique to hybrid architecture.
• Hybrid Concurrency Control (HCC) ensures process-ordered serializability.
• Phalanx Replication tolerates turbo failures.

Implementation and evaluation of TurboDB.
• Up to an order of magnitude improvement under skewed workloads.
• Code: https://github.com/princeton-sns/TurboDB 

Thank you!
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Determining and Migrating Popular Keys

Determine key popularity with per-key queries-per-second (QPS) count.
• Promote keys with highest QPS to turbo.

Custom migration protocol.
• Transaction deletes keys from servers and inserts them into turbo.
• Assumes distribution does not rapidly change (i.e. diurnal workloads).

Migration protocol runs during system warmup, but not evaluation 
experiments.
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