
Accelerating Skewed Workloads
With Performance Multipliers in the

TurboDB Distributed Database

Jennifer Lam
Jeffrey Helt Wyatt Lloyd Haonan Lu

Princeton University University at Buffalo

Distributed Databases Overview
Front-end

clients

User

User

Results

Server

2

Data ATx Logic
Read A
Write D

Results

Data D

(Raft group)

Server(Raft group)
Distributed
Concurrency Control
Serializes transactions
across multiple machines

Server
Data G
Data H
Data I

Data E
Data F

Data B
Data C

(Raft group)

User requests

User requests

Distributed Databases Enables Large Scale Applications

3

Tx Logic
Read A
Write D

(Raft group)

(Raft group)

Data G
Data H
Data I

Tx Logic
Read E
Write G

Tx Logic
Read B
Read H

Scale capacity!

Scale throughput for
uniform workload!

Data A
Data B
Data C

Throughput

Throughput

Throughput

Data D
Data E
Data F

Front-end
clients

(Raft group)

Server

Server

Server

Distributed Databases Challenged by Skewed Workloads

4

Tx Logic
Write A
Write D

(Raft group)

(Raft group)

Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write A
Write D

popular

Contention leads
to excessive aborts
and retries that
degrade system
performance.

Data A
Data B
Data C

Data D
Data E
Data F

Front-end
clients

Server

Server

Server

popular

(Raft group)

Throughput

Throughput

Throughput

Data Sharding Exacerbates Skew’s Negative Impact

5

Tx Logic
Write A
Write D

(Raft group)

(Raft group)

Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write A
Write D

popular

Data A
Data B
Data CCulprit: cross-node

coordination.
Transactions incur
network latency.

Longer latencies than local transactions à longer transaction lifetimes à likely to conflict.

Front-end
clients

Data D
Data E
Data F

(Raft group)

Server

Server

Server

popular

Single-Machine Databases Better Handle Skew

6

Single-machine database

Data A popular

Data D

6

Single machine databases: centralize data on one server.
• No cross-node coordination à transactions do not incur network latency.

Data E
Data F

Data B
Data C

popular

Performance multipliers: properties of single-machine databases
that benefit its performance.
• Does not apply to distributed databases.

Single-Machine Databases Leverage Performance Multipliers

7

Data A popular

Data D

7

Data E
Data F

Data B
Data C

popular

Clients
One-stop execution: all transaction
requests only locally access database.

Local concurrency control techniques:
performance optimizations exploit data
being central to one machine.

Performance multipliers: properties of single-machine databases
that benefit its performance.
• Does not apply to distributed databases.

Single-Machine Databases Leverage Performance Multipliers

8

Data A popular

Data D

8

Data E
Data F

Data B
Data C

popular

Clients
One-stop execution: all transaction
requests only locally access database.

Local concurrency control techniques:
performance optimizations exploit data
being central to one machine.

Performance multipliers: properties of single-machine databases
that benefit its performance.
• Does not apply to distributed databases.

Single-Machine Databases Leverage Performance Multipliers

9

Data A popular

Data D

9

Data E
Data F

Data B
Data C

popular

Clients
One-stop execution: all transaction
requests only locally access database.

Local concurrency control techniques:
performance optimizations exploit data
being central to one machine.

Performance multipliers: properties of single-machine databases
that benefit its performance.
• Does not apply distributed databases.

Single-Machine Databases Leverage Performance Multipliers

10

Data A popular

Data D

10

Data E
Data F

Data B
Data C

popular

One-stop execution: all transaction
requests only locally access database.

Local concurrency control techniques:
performance optimizations exploit data
being central to one machine.

ü Global database-wide techniques,
e.g. Silo [OSDI ’14].

ü Targeting local bottlenecks,
e.g. MVTL [PODC ’18].

Distributed vs. Single-Machine Databases

Scales capacity Handles
skewed workloads

Distributed
databases

Single-machine
databases

Ideal

11

TurboDB

A new hybrid architecture that integrates
a single-machine database into a distributed database.

The distributed database scales storage capacity while
the single-machine database “turbocharges” performance

with its performance multipliers.
12

Server

13

Tx Logic
Write A
Write D

Data D
Data E
Data F

(Raft group)

(Raft group)

Server

Server

(Raft group)Tx Logic
Write A
Write D

Tx Logic
Write D
Read F

popular

Write G

User

User

User requests

Results

User requests

Results

TurboDB’s Hybrid Architecture

Data G
Data H
Data I

Core challenge
Bringing the performance
multipliers to bear on skewed,
distributed workloads.

popularData A
Data B
Data C

TurboDB Distributed Database

Front-end
clients

14

Tx Logic
Write A
Write D

Data E
Data F

(Raft group)

(Raft group)

Server

Server
Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write D
Read F
Write G

User

User

TurboDB’s Hybrid Architecture

Data B

Data C

Data D

TurboDB Distributed Database

Core challenge
Bringing the performance
multipliers to bear on skewed,
distributed workloads.

Data A popular

Turbo
(Single-machine database)

User requests

User requests

Front-end
clients

Results

Results

Results

Results

15

Tx Logic
Write A
Write D

Data E
Data F

(Raft group)

(Raft group)

Server

Server
Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write D
Read F
Write G

User

User

Data B

Data C

Challenges Unique to TurboDB

TurboDB Distributed Database

Core challenge
Bringing the performance
multipliers to bear on skewed,
distributed workloads.

Turbo
(Single-machine database)

Data D

Data A popular

User requests

User requests

Front-end
clients

Key Insight
Leverage performance multipliers
by preventing turbo from
incurring cross-node coordination.

16

Tx Logic
Write A
Write D

Data E
Data F

(Raft group)

(Raft group)

Server

Server
Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write D
Read F
Write G

User

User

Data B

Data C

Challenges Unique to TurboDB

Distributed Concurrency
Control

Local Concurrency
Control

Core challenge
Leverage performance multipliers
on distributed databases.

#1: Two concurrency controls.

TurboDB Distributed Database

Data D

Data A

Turbo
(Single-machine database)

popular
User requests

User requests

Results

Results

Front-end
clients

17

Tx Logic
Write A
Write D

Data E
Data F

(Raft group)

(Raft group)

Server

Server
Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write D
Read F
Write G

User

User

Data B

Data C

Challenges Unique to TurboDB

Hybrid Concurrency
Control

Core challenge
Leverage performance multipliers
on distributed databases.

#1: Two concurrency controls.
Hybrid Concurrency Control (HCC)

TurboDB Distributed Database

Data D

Data A popular

Turbo
(Single-machine database)

User requests

User requests

Results

Results

Front-end
clients

18

Challenges Unique to TurboDB
Core challenge

Leverage performance multipliers
on distributed databases.

#1: Two concurrency controls.
Hybrid Concurrency Control (HCC)

#2: Turbo fault tolerance.
Phalanx Replication

Tx Logic
Write A
Write D

Data E
Data F

(Raft group)

(Raft group)

Server

Server
Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write D
Read F
Write G

User

User

Data B

Data C

Hybrid Concurrency
Control

User requests

User requests

Results

Results

Front-end
clients

TurboDB Distributed Database

Tail

Data A

Data D

Backup

Data A

Data D

Turbo
(Primary)

Phalanx Replication

Data D

Data A

Hybrid Concurrency Control (HCC) Intuition

HCC Goal. Orchestrate two independent database’s concurrency control protocols:
(Correctness) Both can totally order transactions in the same serial schedule.
(Performance) Turbo can execute its part without cross-node coordination.

19

Correctness: HCC Enforces Process-Order Serializability

Process-ordered serializability = total order + process order.

Total order: txns are assigned a single timestamp across both local and distributed
concurrency control protocols.

• Both protocols serialize txns by timestamp, so both converge on the same total order.

Process order: to respect process order, clients generate timestamps.

20

Performance: HCC Runs Turbo as a Standalone Database

Performance Goal: prevent turbo from incurring cross-node coordination.
Solution: Run turbo as a standalone, single-machine database unaware of its role in
hybrid architecture.

Key Insight #1: Each distributed transaction limited to sending the turbo…
• One read-write single-machine database txn of update operations.
• Multiple read-only single-machine database txns of read operations.

Key Insight #2: When turbo commits (aborts) isolated read-write txn, servers mirror
decision.

21

Abstract away txns
as turbo’s “clients.”

Transactional Atomicity Issue:
The turbo can’t match up all
requests from the same txn.

Txns encapsulate turbo requests
as isolated, single-machine
database transactions.

22

Tx Logic
Read A

Write D
(Raft group)

(Raft group)

Server

Server

HCC Supports General Transactions

Turbo

Data A

Data D

Data A

Data D

Data A

Data D

Data B
Read B

Data C

HCC Protocol

Execute Phase.
1. Client assigns timestamp ts.

2. Client locally buffers txn’s update ops;
sends (a) read ops to servers, and (b)
standalone read-only requests to turbo.

Finale-Commit Phase (serial two-
step commit)
3. Client sends buffered cool key updates to

servers. Servers prepare to commit.

4. Client sends single read-write request to
turbo. Turbo commits (aborts), and
servers mirror decision.

Enforces process-ordered
serializability.

tsFront-end
clients

Write C

23

Tx Logic
Read A

Write D
(Raft group)

(Raft group)

Server

Server

HCC Supports General Transactions

Turbo

Data A

Data D

Data A

Data D

Data A

Data D

Data B
Read B

Data C

HCC Protocol

Execute Phase.
1. Client assigns timestamp ts.

2. Client locally buffers update ops; sends
(a) read ops to servers, and (b)
standalone read-only requests to turbo.

Finale-Commit Phase (serial two-
step commit)
3. Client sends buffered cool key updates to

servers. Servers prepare to commit.
4. Client sends hot key updates as a single

read-write single-machine DB txn to
turbo. Turbo commits (aborts) and
notifies servers to mirror its decision.

Buffered update ops

Front-end
clients

Write C

= Data C

Support multi-shot transactions
with dependencies.

ts

24

Tx Logic
Read A

Write D
(Raft group)

(Raft group)

Server

Server

HCC Supports General, Multi-shot Transactions

Turbo

Data A

Data D

Data A

Data D

Data A

Data D

Data B
Read B

Data C

ts

HCC Protocol

Execute Phase.
1. Client assigns timestamp ts.

2. Client locally buffers update ops; sends
(a) read ops to servers, and (b)
standalone read-only requests to turbo.

Finale-Commit Phase (serial two-
step commit)
3. Client sends buffered cool key updates to

servers. Servers prepare to commit.

4. Client sends single read-write request to
turbo. Turbo commits (aborts), and
servers mirror decision.

Write C

Front-end
clients

25

Tx Logic
Read A

Write D
(Raft group)

(Raft group)

Server

Server

HCC Supports General, Multi-shot Transactions

Turbo

Data A

Data D

Data A

Data D

Data A

Data D

Data B
Read B

Data C

ts

HCC Protocol

Execute Phase.
1. Client assigns timestamp ts.

2. Client locally buffers update ops; sends
(a) read ops to servers, and (b)
standalone read-only requests to turbo.

Finale-Commit Phase (serial two-
step commit)
3. Client sends buffered cool key updates to

servers. Servers prepare to commit.

4. Client sends single read-write request to
turbo. Turbo commits (aborts), and
servers mirror decision.

Write C

Isolated read-
write turbo txn.

Front-end
clients

26

Tx Logic
Read A

Write D
(Raft group)

(Raft group)

Server

Server

HCC Supports General, Multi-shot Transactions

Turbo

Data A

Data D

Data A

Data D

Data A

Data D

Data B
Read B

Data C

ts

HCC Protocol

Execute Phase.
1. Client assigns timestamp ts.

2. Client locally buffers update ops; sends
(a) read ops to servers, and (b)
standalone read-only requests to turbo.

Finale-Commit Phase (serial two-
step commit)
3. Client sends buffered cool key updates to

servers. Servers prepare to commit.

4. Client sends single read-write request to
turbo. Turbo commits (aborts), and
servers mirror decision.

Write C

Front-end
clients

Committed!

27

Phalanx is a Turbo-Specific Replication Protocol

TurboDB Distributed Database

Tx Logic
Write A
Write D

Data E
Data F

(Raft group)

(Raft group)

Server

Server
Data G
Data H
Data I

Tx Logic
Write A
Write D

Tx Logic
Write D
Read F
Write G

User

User

Data B

Data C

Hybrid Concurrency
Control

User requests

User requests

Results

Results

Front-end
clients

TurboDB Distributed Database

Tail

Data A

Data D

Backup

Data A

Data D

Turbo
(Primary)

Phalanx Replication

Data D

Data A

Phalanx Replication: Tolerating Turbo Failures

Phalanx Protocol Goal: correctly replicate the turbo’s data, but without replication
latency penalizing single-machine performance multipliers.

Intuition (from existing work): decouple replication from transaction execution.
• After committing transaction, turbo primary makes it visible before and during its replication,

buffering transaction’s results in the meantime.

28

Phalanx Returns Committed Transactions in Correct Order

Subtle issue: turbo’s performance cannot tolerate returning buffered, committed
transactions in timestamp order.
Solution: Frontline mechanism returns committed transactions in correct order
without blocking progress.

29

Assigned txn
timestamp

Real-time commit on the turbo
Earlier Later

Smaller timestamp

Larger timestamp

Tx A

Tx B

Tx C

Tx D

Tx A

Tx B

Tx C

Tx D

Single-machine database
replication techniques
may require strictly
increasing timestamps.

Turbo receives pre-timestamped
requests out of order.

Phalanx’s Frontline Moves Forward and Backwards

Frontline definition: global threshold timestamp. Represents a snapshot of the turbo
where all committed transactions can be correctly returned.

Frontline returns committed transactions in correct order by selectively obeying
timestamp order.

30

Assigned txn
timestamp

Earlier Later

Smaller timestamp

Larger timestamp

Tx A

Tx B

Tx C

Tx D

New frontline moved backwards

Frontline

Real-time commit on the turbo

Included transactions
guaranteed correct to return.

Not included transactions
not guaranteed correct to
return.

Legend

Frontline’s Backward Movement is Correct

Prevents newly committed, un-replicated txns from being prematurely returned.
Does not revoke correctness of previously returned transactions.

1. Committed transaction is replicated.
2. If transaction depends on any prior transactions, those are also replicated.*

31

Assigned txn
timestamp

Earlier Later

Smaller timestamp

Larger timestamp

Tx A

Tx B

Tx C

Tx D

New frontline moved backwards

Tx E

*HCC guarantees that if txn B depends on txn A, then txn B.ts > txn A.ts.

Real-time commit on the turbo

Included transactions
guaranteed correct to return.

Not included transactions
not guaranteed correct to
return.

Legend

Implementation

Built on CockroachDB [SIGMOD ’20] and Cicada [SIGMOD ’17].

Baseline: CockroachDB.

Workloads:
• YCSB+T.
• TPC-C New-Order transactions.
• Varying skew and read-to-write ratios.

Performance metrics: throughput, latency, and scalability.

32

Evaluation

YCSB+T (95% reads, 5% updates): transaction size of 10 unique keys.
Cicada stores 40M most popular keys (of 160M total keys).

0

20k

40k

60k

80k

100k

uniform medium high

Th
ro

ug
hp

ut
 (t

ps
)

Level of Skew

CockroachDB

 19K
 8K 3K

TurboDB

 13K

 48K

 83K

33

27x

0

30k

60k

90k

 0 2 4 6 8 10 12 14 16

Cicada
Th

ro
ug

hp
ut

 (t
ps

)

Number of servers

CockroachDB
TurboDB

High skew (s = 1.2)

Evaluation

Scalability (YCSB+T) up to 16 nodes.

34

Conclusion

TurboDB: a distributed database designed for skewed workloads.

A novel, hybrid database architecture.
• Integrates a single-machine database to “turbocharge” the overall performance.
• Leverages the turbo’s performance multipliers.

Specialized designs for challenges unique to hybrid architecture.
• Hybrid Concurrency Control (HCC) ensures process-ordered serializability.
• Phalanx Replication tolerates turbo failures.

Implementation and evaluation of TurboDB.
• Up to an order of magnitude improvement under skewed workloads.
• Code: https://github.com/princeton-sns/TurboDB

Thank you!
35

https://github.com/princeton-sns/TurboDB

Backup Slides

36

Determining and Migrating Popular Keys

Determine key popularity with per-key queries-per-second (QPS) count.
• Promote keys with highest QPS to turbo.

Custom migration protocol.
• Transaction deletes keys from servers and inserts them into turbo.
• Assumes distribution does not rapidly change (i.e. diurnal workloads).

Migration protocol runs during system warmup, but not evaluation
experiments.

37

