Chisel: An optical slice of the wide-area network

Abhishek Vijaya Kumar* , Bill Owens¶ , Nikolaj Bjørner† , Binbin Guan† , Yawei Yin† , Paramvir Bahl† , Rachee Singh*

*Cornell University, †Microsoft, ¶NYSERnet

Cornell University

Talk's structure

Background and motivation

- Cloudifying 5G
- WAN slicing

Challenge 1

• Where do we slice the WAN?

Challenge 2

- How do we optimally slice?
- Results

Challenge 3

- Hardware implementation
- Results

5G is ubiquitous

- 5G offers high bandwidth and is widely adopted
- Cellular providers are adopting vRAN architecture
 - Signal demodulation, FEC decoding, checksum etc.
- vRAN architecture have strict latency requirements
- 5G applications require strong network guarantees

Extending network slices to the cloud

- Network Slice: Isolated part of the network bandwidth for QoS.
- Limited to traffic between base-station and user devices (Radio).
- No guarantees from base-station to the cloud (WAN).

Talk's structure

Background and motivation

- Cloudifying 5G
- WAN slicing

Challenge 1

• Where do we slice the WAN?

Challenge 2

- How do we optimally slice?
- Results

Challenge 3

- Hardware implementation
- Results

Where do we slice the WAN?

Comparing CHISEL with TE

Chisel consumes up to 3x lower number of packet switched ports leading to cost savings.

Chisel consumes ports only at the source and destination routers!

We should use optical slices with Chisel

- Traffic engineered slices on packet switched routers
 - Limited number of priority queues
 - Incurs queueing delay
- Optical slices
 - Predictable and stable end-to-end performance

ROADM (OCS)

Optical layer has terabits of unused spectrum

- Optical paths are overprovisioned
- Spectrum is allocated incrementally

Talk's structure

Background and motivation

- Cloudifying 5G
- WAN slicing

Challenge 1

• Where do we slice the WAN?

Challenge 2

- How do we optimally slice?
- Results

Challenge 3

- Hardware implementation
- Results

Challenges with optical slicing for 5G

- 5G bandwidth per device is 10-20 Gb/s
 => 10s of devices can cause 100s of Gbps demand
- We need fast on-demand slicing
- Physical constraints
 - Fundamental to spectrum
- Implement it on hardware
 - Without disrupting existing wavelengths
 - Interface with legacy hardware

Allocating a single optical slice

• Continuous optical spectrum is divided into chunks - Wavelengths

Optimal and rapid on-demand optical slicing

• We formulate the optimization as a MILP -- dynamically invoked

Algorithm - overview

- Goal: Maximize the allocated bandwidth across all slices
- Inputs:
 - G<V,E>: V switches, E fiber links
 - S^v: Initial spectrum on switch v
 - P_{sd}: Paths between s, d
 - B_{sd}: Bandwidth request
- Outputs:
 - y^p_{sd}: 1 if slice s,d is on path p
 - x_{sd}: s,d slice's spectrum bitmap

Objective: Encode the goal

bandwidth = $w_{sd} * mod(p)$

Maximize
$$\sum_{sd} \sum_{p \in P} y^{p}_{sd} * (bandwidth)$$

Obviate continuity constraint

Algorithmic results – successful allocations

Scales to 100s of slices while allocating more than 90% of the slices **Converges in less than 30s across multiple topologies and 100s of slices**

Reducing convergence time

Future proofing the allocations

• Higher fragmentation leads to smaller contiguous chunks

Allocation succeeds

Reduce fragmentation in the objective

17

max(sum(bw, for all slices)) + ε * max(sum(contiguous chunks))

Talk's structure

Background and motivation

- Cloudifying 5G
- WAN slicing

Challenge 1

• Where do we slice the WAN?

Challenge 2

- How do we optimally slice?
- Results

Challenge 3

- Hardware implementation
- Results

Hardware implementation

- Create the slices generated by CHISEL
- Program the ROADMs (OCSes)
- Test on two setups:
 - Lab testbed
 - Regional ISP WAN Nysernet

Impact on existing wavelengths

Conclusion

- Chisel demonstrated the advantages of optical slicing.
- Chisel can quickly and dynamically allocate 100s of optical slices.
- Chisel's output can be readily implemented on commodity hardware.
- Chisel is open source: https://opticalslice.network

