

NR-Surface: NextG-ready µW-reconfigurable mmWave Metasurface

Minseok Kim*, Namjo Ahn*, and Song Min Kim

* Co-primary authors

mmWave Communication

Multi-GHz Wide Bandwidth

High throughput application

mmWave: Drawback

mmWave suffers from the limited coverage

Metasurface: emerging solution of mmWave

Metasurface can reconfigure beam to cover the blind spot.

Metasurface, Are we there yet?

[1] Lee, W., Jo, S., Lee, K. et al. Single-layer phase gradient mmWave metasurface for incident angle independent focusing. Sci Rep 11, 12671 (2021)

[2] Xiaocha Liu, Xiaoyi Wang, Guo-Min Yang, Dang Xiang, and Li-Rong Zheng, "Dual-band frequency reconfigurable metasurface antenna for millimeter wave joint communication and radar sensing systems," Opt. Express 32, 13851-13863 (2024)

[3] Yasir Saifullah, Qinzhuo Chen, Guo-Min Yang, Abu Bakar Waqas, and Feng Xu, "Dual-band multi-bit programmable reflective metasurface unit cell: design and experiment," Opt. Express 29, 2658-2668 (2021)

[4] Xu, G., Overvig, A., Kasahara, Y. et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas. Nat Commun 14, 4380 (2023). https://doi.org/10.1038/s41467-023-39818-2

[5] Bai, Xudong, et al. "Dynamic millimeter-wave OAM beam generation through programmable metasurface." Nanophotonics 11.7 (2022): 1389-1399.

[6] Lili Chen et al., Towards Seamless Wireless Link Connection, MobiSys'23

[7] Kun Qian et al., MilliMirror: 3D Printed Reflecting Surface for Millimeter-Wave Coverage Expansion, MobiCom'22

[8] Kun Woo Cho et al., mmWall: A Steerable, Transflective Metamaterial Surface for NextG mmWave Networks, NSDI 23

We present: NR-Surface

Challenges

Challenge 1

Real-time reconfiguration

Symbol-level synchronization to BS

All at uW-regime power consumption

Key Design

Low duty-cycled metasurface within NR beam management procedure Multi-symbol synchronization over low-bandwidth asymmetric communication

https://youtu.be/2mouM2IWdzc?si=kNtmlATFHwk_11Ai

NR-Surface Real-Time Reconfiguration Demo

NR-Surface Operation Overview

Beam Report Beam management procedure (20ms) ▶ 🗲 Beam Report → - Beam sweep (Sub-6GHz) • Beam1 Beam2 Beam3 Beam4 NR BS Get sync and ctrl **Reconfiguration** info (Sub-6GHz) **NR-Surface** Sync and ctrl Ctrl Interface info (Sub-6GHz) UE BS Beam Report (Sub-6GHz)

Data Transmission

Hold beam patterns for the majority (>90%) of period

Varactor-based Metasurface Design

Unit-cell

Zero power consumption at varactor to hold beam pattern

MCU enters sleep mode while beam patterns are held

Low-power Reconfigurable Metasurface

16x16 Array

				1	1	1										
	3	2	2	8		-	-	8		2	-	8	-	3	2	2
		2		8	8	1	-	1		-	-	2	8	F	1	2
			8	1	-	8		2	1	-	-	2	2	1	2	2
	0	2	3	-		12		-	-	-	1	2	2	2	2	2
		2	-	-	12	-	-	-	-	-	-	2	2	E	2	2
	8	1	8	3	2	-	2	-	1	-	2	-	-	2	-	2
		12	-	-	-	-	8	-	-	-	-	-2	2	3	2	2
			8	-	8		12	-	-	-	-		2	-	-	-
	2	2	1	-	-	-	2	-	-	-	-	-		2	2	
		-		-		-	-	-	-	2		-	-	2	2	-
	2		-	-			-	-				2	-			
	-	2	2	-	-	-2	2	-	-		-3		-	-		
	2	1	-	-	2	-	2	-	2	-	-	3	3		-	
	12	2	-	-	2	-	-	-	-	-	-	-	3			
	1	1	-	-	1	-	2			-	-	-	-	-		
		-	-	1	-					-	-			-2	2	
4	10	-	-	-	-	-	-		-							

Metasurface(256-cell) hold beam pattern at < 72nW (2.1 year lifetime with an AA battery)

Design 2: Symbol-level Sync with BS

For real-time NR-compliant reconfiguration, NR-Surface needs symbol-level synchronization (<260ns).

Narrow Band Packet Unit (NBPU)

NBPU is embedded in NB-IoT \rightarrow No BS hardware change required

NBPU: Asymmetric Communication

Asymmetric communication for ×12 narrower BW than NB-IoT

NBPU Overview

Select NB-IoT symbol to maximize NBPU SNR

NBPU Symbol design

NB-IoT uses OFDM with 12 subcarrier.

12 subcarriers makes lots of harmonics when go through envelope detector.

$$\Sigma_{k=1}^{11}\Sigma_{i=k+1}^{12}\cos(2\pi k\Delta ft + \phi_i - \phi_{i-k})$$

BS control subcarrier phase

Max SNR signal:

$$\Rightarrow \Sigma_{k=1}^{11}(12-k)\cos(2\pi k\Delta ft)$$

NBPU Symbol design

NBPU Rx VS NB-IoT

For 260ns synchronization, **fine-grained samples (×256)** are needed.

Equivalent Time Sampling for Sync

Control clock drift induce high freq sample over multiple symbols

NBPU Rx shifts 1 tic of clock (223ns) every symbol, which becomes mimicked sampling speed.

NR-Surface achieve < 234ns synchronization accuracy

End-to-End Operation

NR-Surface operates NR-compliantly within 242.7uW. $\rightarrow 2.1$ year lifetime with one AA battery

Evaluation: NR-Surface under Mobility

Scenario 1: User moves in the blind spots.

Evaluation: NR-Surface under Mobility

Scenario 1: User moves in the blind spots.

NR-Surface provides 19.3dB average gain to mobile users.

Evaluation: NR-Surface in dynamic Env.

Scenario 2: Blockage around user is dynamically changed.

Install rotatable metallic sheet with a slit in front of a user's antenna.

Evaluation: NR-Surface in dynamic Env.

Scenario 2: Blockage around user is dynamically changed.

Evaluation: NR-Surface in dynamic Env.

Scenario 2: Blockage around user is dynamically changed.

Evaluation: Multi NR-Surface & Multi UE

Supports multi NR-Surface and multi-user

Conclusion

- We introduce **NR-Surface**, a new metasurface:
- 2.1 year lifetime on a single AA battery
- Real-time operation with NR beam management procedure

Thank you https://smile.kaist.ac.kr/