
Making Kernel Bypass Practical 
for the Cloud with Junction

Joshua Fried (MIT), Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse, Íñigo Goiri, 
Sameh Elnikety, Rodrigo Fonseca, and Adam Belay

NSDI 2024



Motivation: high I/O overheads

• Datacenters today:
• High network bandwidths, 

microsecond-scale latencies

• OS kernels add large 
overheads to I/O operations
• Applications can’t exploit full 

hardware performance
Attack of the killer microseconds, Barroso et al. CACM 2017

2

0

20

40

60

80

100

Raw Thread dispatch Interrupts TCP

M
ic

ro
se

co
nd

s

Cumulative Overheads



Solution: bypass the kernel?

3

OS

App

TCP/IP

NIC Driver

Sockets-> Large reductions in overheads 
for I/O intensive workloads!



Solution: bypass the kernel?

3

App
Map packet queues directly into 
application’s address space

Pre-allocate pools of pinned 
memory for packet buffers

Dedicate cores to spin poll queues

Large reduction in overheads!



App

Solution: bypass the kernel?

3

Pinned memory

Map packet queues directly into 
application’s address space

Pre-assign cores and memory to 
get the OS out of the way



Drawback #1: Density

Resource usage varies over 
time

Densely packing applications 
keeps utilization high

Pre-assigned resources can’t 
be shared between 
applications

4

Time

CP
U

Time

M
em

or
y



Drawback #2: Compatibility

Rewriting all applications 
would waste prior investments 
in software engineering

Only a small handful of 
applications have been ported 
to run on today’s kernel bypass 
systems!

5



Junction’s contributions

• Enabling dense deployment of kernel bypass apps
• Buffer management scheme to reduce pinned memory
• NIC-assisted core scheduling to avoid polling

• Achieving compatibility with unmodified apps
• Userspace implementation of Linux syscall interface using kernel bypass
• Modified libc to convert syscall instructions to function calls
• User Interrupts to implement POSIX signals
• Optimizations to avoid sacrificing performance

• Use newer CPU instructions (WRFSBASE, RDRAND) to avoid syscalls
• Exploit fate sharing to remove security overheads

6



Density

7

App

Pinned memory

Goal: pack thousands of kernel bypass 
apps on a machine

Memory: Reduce pinned memory to fit 
more instances

Cores: Avoid spin polling so cores can be 
shared



Pinned memory

• Receive path: need enough buffers to 
absorb bursts and accommodate delays

• Two traffic patterns responsible for 
wasted pinned memory
• Skewed traffic
• Small packets

8

App

Pinned memory



App

Pattern #1: skewed traffic

9

1 queue per-core to scale packet 
processing

• Each queue has a set of posted 
buffers

• RSS assigns incoming packets 
to queues

• Potential for skew requires 
provisioning enough buffers to 
all queues



App

Pattern #2: small packets

10

All packets consume a whole 
buffer regardless of size

• Results in memory 
fragmentation
• High rates of small packets 

have greater buffering needs



App

11

2. Multiple packets per 
buffer

8 core instance

72 MB

Can we use NIC queues differently?



App

11

1. Sharing a buffer 
queue

2. Multiple packets per 
buffer

16 MB

8 core instance

Can we use NIC queues differently?

72 MB



App

11

1. Sharing a buffer 
queue

2. Multiple packets per 
buffer

Can we use NIC queues differently?

4 MB

8 core instance

16 MB

72 MB



App

12

Sharing requires synchronizing

• Buffer can’t be reused 
until all cores are done 
with it

• Updates to shared 
buffer queue must be 
synchronized

8 core instance

72 MB

16 MB

4 MB



App

13

Synchronization-free refill

8 core instance

000 0 000 0 000 0Per-core buffer reference 
counters

Refill thread scans 
counters and re-posts 
buffers

2 1

16 MB

72 MB4 MB



Density

14

App

Pinned memoryGoal: pack thousands of kernel bypass 
apps on a machine

Memory: Reduce pinned memory to fit 
more instances

Cores: Avoid spin polling so cores can be 
shared



Kernel bypass usually spin polls

• Achieves low latency

• Opportunity to share cores 
between packet arrivals

15

App App App



Recent work: delegating polling

• Single spinning scheduler core 
decides core assignments

• Spin polls queues on behalf of 
idle applications
• Wake-up on packet arrival or app-

specified timeout

• Number of apps can exceed 
number of cores

16

App App App App

Core scheduler



Problem: polling bottleneck

17

Core scheduler

App App App App…
• Performance collapse with many 

queues
• Long delays from polling loop
• Scheduler’s cache becomes 

polluted

500

2000

0
Max 8 core instances

4000



Core scheduler

Solution: NIC notifications

• Scheduler polls a notification 
queue
• Idle queues are armed
• Packet arrivals on armed queues 

generate notifications

18

App App App App…

500

2000

0
Max 8 core instances

4000



Scaling further

• Scheduler checks timeouts for 
idle applications

• Use timer wheel to track 
timeouts

19

Core scheduler

App App App App…

2000

0
Max 8 core instances

4000

500 3500



Evaluation

20

0 500 1000 1500 2000 2500 3000 3500 4000
Number of applica ions

0

200

400

600

800

1000

La
 e

nc
y

P
99

 (�
s)

No op imiza ions Junc ion

Better

Better



Demo

https://joshfried.io/junction_demo

21

https://joshfried.io/junction_demo


Related work

• Scheduling
ZygOS [SOSP ‘17], Shinjuku [NSDI ‘19], Shenango [NSDI 19’], Caladan [OSDI ‘20], 
Persephone [SOSP ‘21]

• Hardware portability
Demikernel [SOSP ‘21]

• Dataplane OSes
mTCP [NSDI ‘14], IX [OSDI ‘14], Arrakis [OSDI ‘14], eRPC [NSDI ‘19], 

22



Conclusion

23

Junction aims to eliminate OS overheads by making kernel bypass 
ubiquitous in the datacenter.

Preserves high performance of kernel bypass but delivers density and 
compatibility

Available open-source: https://github.com/JunctionOS

https://github.com/JunctionOS/junction

