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Motivation: high I/O overheads

• Datacenters today:
• High network bandwidths, 

microsecond-scale latencies

• OS kernels add large 
overheads to I/O operations
• Applications can’t exploit full 

hardware performance
Attack of the killer microseconds, Barroso et al. CACM 2017
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Solution: bypass the kernel?
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OS

App

TCP/IP

NIC Driver

Sockets-> Large reductions in overheads 
for I/O intensive workloads!



Solution: bypass the kernel?
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App
Map packet queues directly into 
application’s address space

Pre-allocate pools of pinned 
memory for packet buffers

Dedicate cores to spin poll queues

Large reduction in overheads!



App

Solution: bypass the kernel?
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Pinned memory

Map packet queues directly into 
application’s address space

Pre-assign cores and memory to 
get the OS out of the way



Drawback #1: Density

Resource usage varies over 
time

Densely packing applications 
keeps utilization high

Pre-assigned resources can’t 
be shared between 
applications
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Drawback #2: Compatibility

Rewriting all applications 
would waste prior investments 
in software engineering

Only a small handful of 
applications have been ported 
to run on today’s kernel bypass 
systems!
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Junction’s contributions

• Enabling dense deployment of kernel bypass apps
• Buffer management scheme to reduce pinned memory
• NIC-assisted core scheduling to avoid polling

• Achieving compatibility with unmodified apps
• Userspace implementation of Linux syscall interface using kernel bypass
• Modified libc to convert syscall instructions to function calls
• User Interrupts to implement POSIX signals
• Optimizations to avoid sacrificing performance

• Use newer CPU instructions (WRFSBASE, RDRAND) to avoid syscalls
• Exploit fate sharing to remove security overheads
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Density
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App

Pinned memory

Goal: pack thousands of kernel bypass 
apps on a machine

Memory: Reduce pinned memory to fit 
more instances

Cores: Avoid spin polling so cores can be 
shared



Pinned memory

• Receive path: need enough buffers to 
absorb bursts and accommodate delays

• Two traffic patterns responsible for 
wasted pinned memory
• Skewed traffic
• Small packets
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Pattern #1: skewed traffic
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1 queue per-core to scale packet 
processing

• Each queue has a set of posted 
buffers

• RSS assigns incoming packets 
to queues

• Potential for skew requires 
provisioning enough buffers to 
all queues
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Pattern #2: small packets
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All packets consume a whole 
buffer regardless of size

• Results in memory 
fragmentation
• High rates of small packets 

have greater buffering needs



App
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2. Multiple packets per 
buffer

8 core instance

72 MB

Can we use NIC queues differently?
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1. Sharing a buffer 
queue

2. Multiple packets per 
buffer

16 MB

8 core instance

Can we use NIC queues differently?

72 MB
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1. Sharing a buffer 
queue

2. Multiple packets per 
buffer

Can we use NIC queues differently?

4 MB

8 core instance

16 MB

72 MB



App
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Sharing requires synchronizing

• Buffer can’t be reused 
until all cores are done 
with it

• Updates to shared 
buffer queue must be 
synchronized

8 core instance

72 MB

16 MB

4 MB



App
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Synchronization-free refill

8 core instance

000 0 000 0 000 0Per-core buffer reference 
counters

Refill thread scans 
counters and re-posts 
buffers
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Density
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App

Pinned memoryGoal: pack thousands of kernel bypass 
apps on a machine

Memory: Reduce pinned memory to fit 
more instances

Cores: Avoid spin polling so cores can be 
shared



Kernel bypass usually spin polls

• Achieves low latency

• Opportunity to share cores 
between packet arrivals
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Recent work: delegating polling

• Single spinning scheduler core 
decides core assignments

• Spin polls queues on behalf of 
idle applications
• Wake-up on packet arrival or app-

specified timeout

• Number of apps can exceed 
number of cores
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Problem: polling bottleneck
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Core scheduler

App App App App…
• Performance collapse with many 

queues
• Long delays from polling loop
• Scheduler’s cache becomes 

polluted
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Core scheduler

Solution: NIC notifications

• Scheduler polls a notification 
queue
• Idle queues are armed
• Packet arrivals on armed queues 

generate notifications
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Scaling further

• Scheduler checks timeouts for 
idle applications

• Use timer wheel to track 
timeouts
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Core scheduler
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Evaluation
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Demo

https://joshfried.io/junction_demo
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https://joshfried.io/junction_demo


Related work

• Scheduling
ZygOS [SOSP ‘17], Shinjuku [NSDI ‘19], Shenango [NSDI 19’], Caladan [OSDI ‘20], 
Persephone [SOSP ‘21]

• Hardware portability
Demikernel [SOSP ‘21]

• Dataplane OSes
mTCP [NSDI ‘14], IX [OSDI ‘14], Arrakis [OSDI ‘14], eRPC [NSDI ‘19], 
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Conclusion
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Junction aims to eliminate OS overheads by making kernel bypass 
ubiquitous in the datacenter.

Preserves high performance of kernel bypass but delivers density and 
compatibility

Available open-source: https://github.com/JunctionOS

https://github.com/JunctionOS/junction

