

Passengers' Safety Matters: Experience of Deploying a Large-Scale Indoor Delivery Monitoring System

Xiubin Fan, Zhongming Lin, Yuming Hu, Tianrui Jiang, Feng Qian, Zhimeng Yin, S.-H. Gary Chan, Dapeng Wu

Indoor Delivery in a Subway Station

Hong Kong subway stations

- Looks like small malls (1,500+ station shops, 300+ brands)
- Extremely busy (4.7M+ daily passengers)
- Daily goods deliveries to shops

Retail location () in stations

Example of an indoor delivery

Why Monitor Delivery Process?

- Indoor delivery accidents are common
 - E.g., Collided with passengers
- HK government propose to regulate the delivery process
 - Protect passengers' safety

Delivery trolley collided with passengers

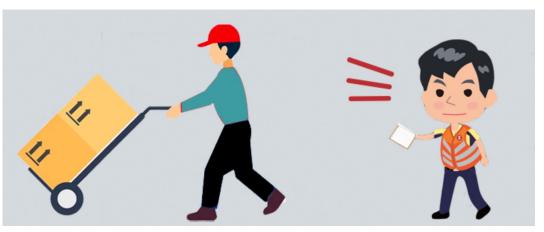
Crowded with passengers

Categories of Delivery Violations

Violations	Potential Hazards	
Speeding (over 1.5m/s)	Goods falling, collision with passengers	
Unauthorized use of passenger lifts	Goods falling, collision with passengers	
Non-designated delivery path	Unregulated	
Delivery during peak hours	Crowding caused by blocked passageways	

Speeding

Non-designated delivery path



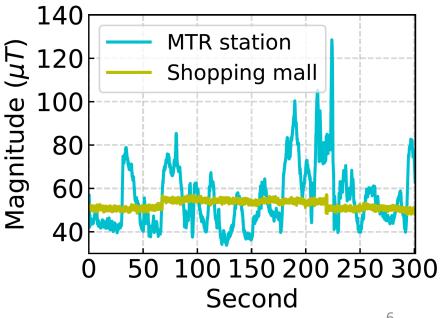
Manual Delivery Supervision

 Safety staff accompany deliveries, observe, record, and intervene violations

• Limitation:

- Speeding is difficult to accurately assess
- One staff can only accompany one trip at a time
- Labor cost

Example of monitoring delivery manually



Challenges

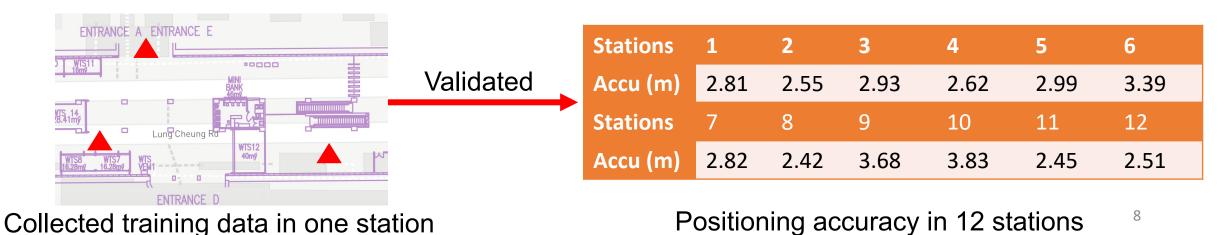
Requirements from subway corporation

- Privacy protection
- No additional power or networking cables
- Limited preparation & maintenance overhead 3)
- Aesthetic considerations 4)
- Environmental challenge
 - Unstable geomagnetic field
- Uncertain human behavior
 - Different sensor placement

DeMo Overview

Indoor Delivery Monitoring System

- Bluetooth Low Energy and Inertial Measurement Unit (IMU) readings
- IMU for speed detection
- RSSI-distance model for positioning
- Deployed in 12 subway stations in Hong Kong
- Covered 200+ shops with 40k+ deliveries

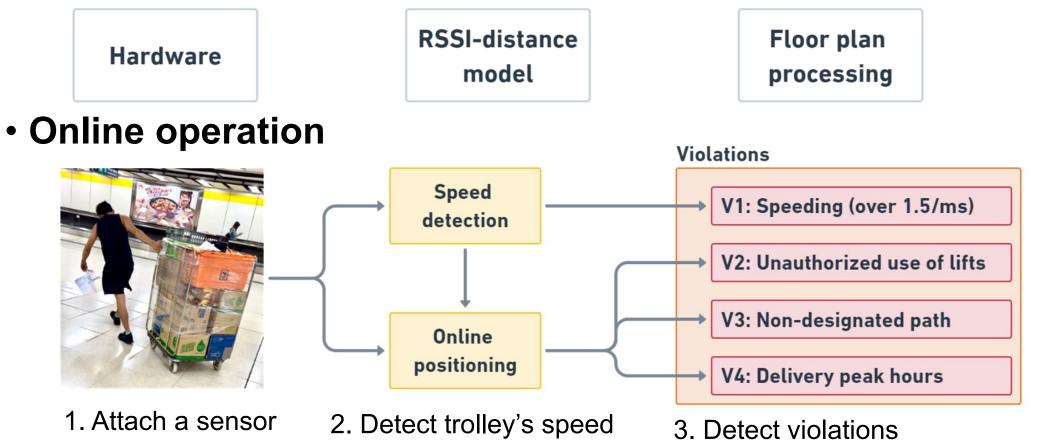


Why RSSI-Distance Model

- Limitations of fingerprint localization
 - Training the fingerprint database involves considerable labor costs
 - Updating the per-site fingerprint database is time-consuming

RSSI-distance model

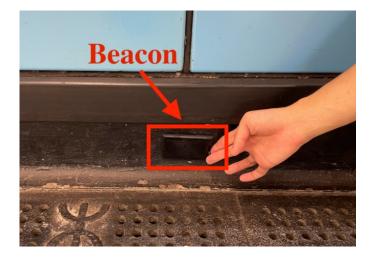
- Easy to deploy on a large scale at low cost
- Stable and accurate enough for monitoring deliveries

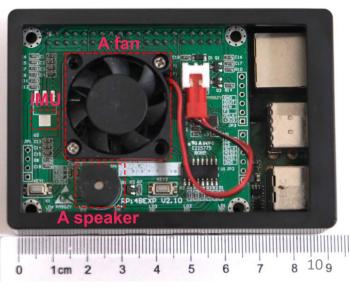


DeMo System Design

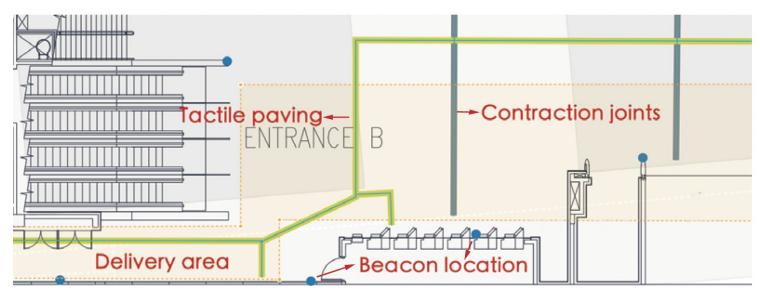
Offline preparatory

to the trolley




and location

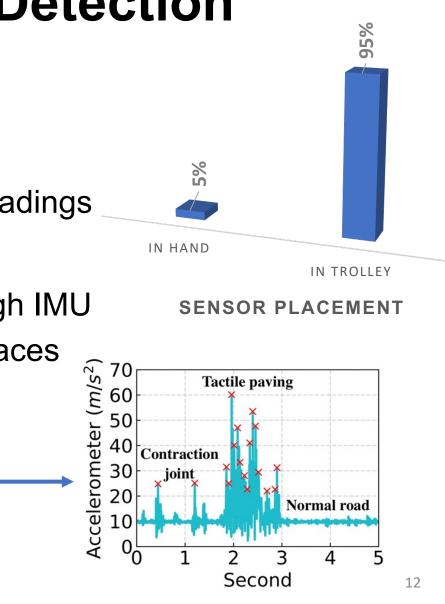
Offline Preparatory - Hardware


- Broadcaster: BLE Beacons
 - Small-sized
 - Battery-powered (~2 years)
 - Low cost (\leq 9 USD each)
- Receiver: Customized Raspberry Pi 4B
 - Battery-powered
 - Customized hardware attached on top (HAT)
 - Placed on trolleys to accompany the deliveries

- Specify the installation positions of the beacons
- Demarcate the allowed delivery zone
- Mark road surfaces to enhance speed detection performance

Example of a pre-processed floor plan

Online Operation - Speed Detection


Challenges

- Uncertain sensor placement
- Special roads show high fluctuations in readings

Solution

- Identify person or trolley placement through IMU
- Filter IMU readings from certain road surfaces

Online Operation - Positioning

Challenges

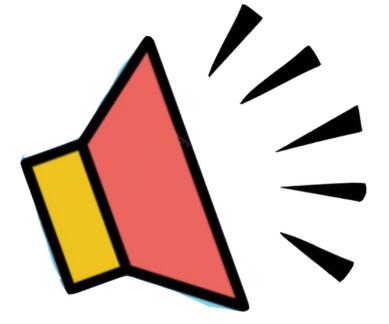
- The geomagnetic field strength in subway stations is unstable
- Miss the accurate direction of the trolley's movement

Solution

- Particle filter: translating the RSSI model into a probability model
- Integrating accelerometer and gyroscope readings
- Utilizing the trolley's historical trajectory

Real-Time Violation Detection

Speeding

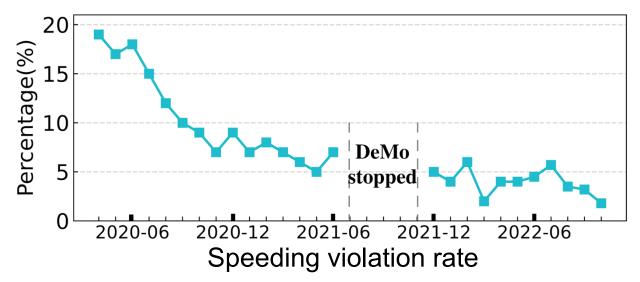

• Sensor's speed consistently exceeds 1.5 m/s

Non-designated delivery path

• Detect deviation from the pre-determined route

Unauthorized use of passenger lifts

- Monitor floor changes
- Geo-Fencing detection
- Delivery during peak hours
 - Record delivery times



Alarm upon violation detection

Large-Scale Operation Result

- Witness a significant decrease in speeding (19% to 2.7%)
- Other violations reduced from 1% to 0.5%

- Exclude placebo effect
- Lesson
 - Accurate detection and real-time alerts contribute to altering delivery behaviof⁵

Large-Scale Operation Result

DeMo vs. manual monitoring

- 1. Cost reduction: >8X
 - One-time deployment & maintenance vs. ongoing manpower costs
- 2. Monitoring efficiency
 - 88% vs. 53% of total delivery activities
- 3. Delivery behavior change: violation reduction
- 4. Full coverage of violation type

Lesson

• DeMo outperforms manual monitoring in detecting violations

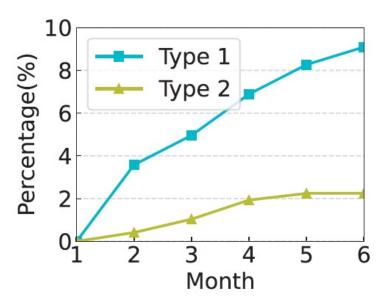
Large-Scale Operation - Maintenance

Types of beacon

Different shapes influence the failure rate of beacons

Failed beacon location

Location	Store	Entry/Exit	Corridor	Others
Failure rate (%)	5.3	3	1	0.6


Lesson

• Strategic beacon deployment could alleviate system maintenance costs

Beacon type 1 Bea

Beacon type 2


Feedback from Subway Station Staff

Over 95% of interviewees gave DeMo a high rating

• From 20 safety staff in 12 subway stations

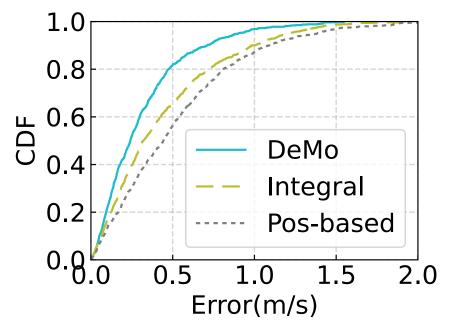
Questionnaire survey

- 1. Satisfaction with DeMo
- 2. Low complexity of device usage
- 3. Effect on violation reduction
- 4. Speed detection accuracy
- 5. Decrease of workload
- 6. Frequency of sensor damage

Evaluation via Controlled Experiment

Small-scale evaluation

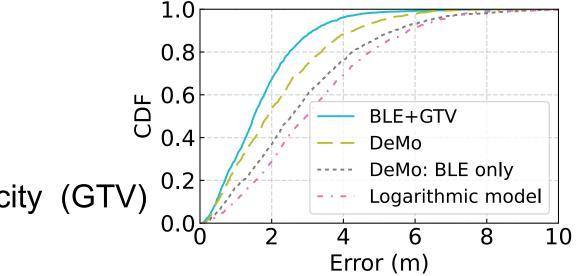
- Selected 3 stations (552, 1105, and 3,003 m²)
- Collection of simulated delivery and ground truth data
 - Including delivery time, speed, trajectory and destination



Small-Scale Evaluation

Speed detection accuracy (mean error)

- 0.52 m/s for the position-based approach
- 0.43 m/s for direct integral method
- 0.31 m/s for DeMo


Lesson

• Detect special road surfaces can improve the accuracy of speed estimation

Small-Scale Evaluation

- Positioning accuracy (mean error)
 - 3.22 m for logarithmic model
 - 2.86 m for DeMo: BLE only
 - 2.17 m for DeMo (BLE + IMU)
 - 1.70 m for BLE + Ground-Truth Velocity (GTV)

Lesson

• Without labor-intensive fingerprinting, a customized RSSI-distance model also can achieve accurate localization

Summary

DeMo: Indoor Delivery Monitoring System

- Fusion of BLE and IMU to achieve violation detection
- RSSI-distance model for positioning
- Deployed in 12 subway stations in Hong Kong since 2020
- Covered 200+ shops with 40k+ deliveries
- Diverse application scenarios like malls and warehouse

Data & Code Release

• Available at: https://github.com/Starry102/DeMo