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Swing

A novel allreduce/allgather/reduce-scatter algorithm

opfimized for multi-dimensional torus networks

(expected advantages on any
blocking network)



Why torus and why allreduce?

3D - Datq, Pipeline, and Operator Parallelism

Al & Machine Learning

Enabling next-generation Al workloads: Google’s TPU v5p Pod
Announcing TPU v5p and Al Hypercomputer | (> 9,000 chips on a 3D torus)
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Amazon EC2 Trn1 Instances

High-performance, cost-effective training of generative Al models

AWS Trainium Instances

(16 chips on a 2D torus)

GRAFHCORE

Graphcore IPU-POD

BLIILD: Wi (64 chips on a 2D torus)
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HammingMesh: A Network Topology for Large-Scale Deep Learning (2022)
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Allreduce Algorithms

Bucket [1] Recursive Doubling [2] Swing
.' Linear in the number of Logarithmic in the Logarithmic in the
.,_’,4 nodes per dimension number of nodes number of nodes
‘_f N Uses all the network Uses only one network Uses all the network
2 ports simultaneously port at a time ports simultaneously

Many flow

I No flow
collisions collisions

Y

State-of-the-art

[1 N. Jain and Y. Sabharwal. Optimal bucket algorithms for large MPI collectives on torus interconnects (2010)

[2] P. Sack and W. Gropp. Collective algorithms for multiported torus networks (2015)
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Swing Alireduce

Recursive Doubling Swing

Most congested links (2 flows)

Step 2

Most congested link (4 flows) Most conges ed links (2 flows)
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wing Allreduce

Details, generalization to D

dimensions, and correctness
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proof in the paper

I mod p= p— 1, whereas node 1 communicates with node
2. Thus, we can say that at step 1 the data sent from 0 reached
nodes {1.2.p — 1} (2 has been reached indirecily through
node 1).

Because the number of reached nodes doubles at each step,
and because we perform log, p steps, the data sent from any
given node would eventually reach p — 1 nodes. We need,
however, to prove that those p— 1 nodes are distinct (i.e., that
the data sent by each node reach every other node exactly
once and is thus never aggregated twice). To do so, we need
first to prove a few lemmas.

Lemma AL p(s) and 8(s) are odd ¥s € ML

Proof. (—2)" is odd for i = 0, and even for i > 0. The sum of
even numbers with an odd number is odd. O

Lemma A2, If r is even, n(r.5) is odd, and vice versa.

Proof. An even node r communicates at step s with node
n(r5) = r+pls) mod p. Because p is a power of two (thus
even), and p(s) is odd (Lemma A 1), w(r.5) is odd. Vice versa,
odd nodes communicate with even nodes. [m]

If @ node r communicates at step s with a node g = m(r, 5],
and 4 communicates with a node = = m(g. k) at step b > 5, we
say that  indirectly reached node :. Because even nodes only
communicate with odd nodes (and vice versa), if r is even,
WE Can rewrite:

g=n(r.5)

z=(r+p(s) mod p) —p(h) mod p=r+ p(s)—p(h) mod p

wiqh)

Le., the sign behind p(s) alternates between positive and neg-
ative, starting from positive. In general, an even node r can
reach through a sequence of k steps {5 < 5 <52 < ... <
Sp—1} a node g, with:

g=r+plso) —pls)+pls) .. mod p=
k-1
=(r+ Y ~Vpls;)) mod p

=0
The same applies if # is odd, by replacing —1° with —171.

Lemma A.3. Even nodes reach (directly or indirectly) odd
nodes through an odd number of steps k. Odd nodes reach
(directly or indirectly) even nodes through an odd number of
steps k.

Proof. This stems tmm Lemma A2, If ris even and & is odd,
then g = (r+ }_ n 1 p(:,]] mod p is odd because p(s) is
always odd. Similarly. if r is odd and & is odd, g iseven. O

Lemma A4, Given k integers {eu-f €1 ek 1}, with
ey < logyip) — 1, then —p < ¥'i

Proof. We have Y51 (~2) < y¥- 125 < 29051 < p. Simi-
lary, FiT(=2) 2 ~Eig 2% > —(29) 2 —p. O

Theorem A5. Ona 1D torus, if a node rat step s communi-
cates with node Tl r,s) (defined in Eq. 2), it will reach (directly
or indirectly) all the other p— 1 nodes in loga(p) steps (with
p power of two).

Proof. We need to prove that, a unigue sequence of k steps
{80 < 51 < ...5_ } exists by which a given node r reaches
a node g. We prove this by contradiction, and we will prove
it by assuming that r is even and g is odd (the proot for
the other cases is analogous and only requires changing the
signs before the p terms). Assume that there are two different
sequences of steps {sp < 5 < .. 51 < loga(p) — 1} and
{lo <t < ...y = logs(p)— 1} of k and h steps respectively
(both & and & are odd from Lemma A _3), so that:

g=r+plso) = plsi}+pls2) ..+ plsp—y) mod p=

. (4)
=r+plin) =pln)+pliz) = ...+ pla—1) mod p
By expanding the first of the two sequences we have:
E oA . -1
q:r}i{ 2 =¥ (=2f+ ..+ Y (~2) mod p
] = =
i
—r}[_{ 2 + ):[2‘.-' Y (-2 modp
i=s+1 i=gy_a+1

By expanding similarly the second assignment in Eq. 4. we
have that the two sequences exist if:

T . g .
Y=o+ + Y (-2)=
=0 i=ny_a+1
T L) . 2
=Y (=2 +...+ ¥ (~2) (mod p)
i=0 i=ty_a+1
From Lemma A 4, we know that both sides are in the range
(—p. p). Thus, the two sides are congruent only if: i) they have
the same sign and are equal, or; ii) they have different signs,
and by summing p on the negative side, we get the positive
side. Since each side is the sum of distinct powers of —2, case
i} is only possible if the two sequences of steps are equal.
To prove that case ii) is impossible, let us consider the case
where the left side is negative (the other case is analogous).
Because p = 2¢ for some a € [, and because 29 = (—2)7 (if
ais even”), Eq. 5 becomes:

5 1
)f( .+ L (-2 + (-2 =

=0 i=n_a+1
[ 1
=)f[ 2 o Y (=2)
i=0 i=ty_z+1
*faisodd, p =2 = [—2)**! +{—2)* and the same considerations still

hold.
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Allreduce Algorithms

Bucket [1] Recursive Doubling [2] Swing

L Uses all the network
“ > .
2 ports simulfaneously

Y

State-of-the-art
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Multiport Swing

Step O, port O Step O, port 1 Step O, port 2 Step O, port 3
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Setup

SST packet-level 400 Gb/s links 300 ns
network simulator 100 ns latency per-hop latency
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Results - Performance Gain
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Goodput Gain vs. Best Known Algo. for Allreduce <= 512MiB

Results Summary o
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Goodput Gain vs. Best Known Algo. for Allreduce <= 512MiB

Results Summary

4 Torus 8x8 |
- DY (100Gbit/s)

Torus 8x8 |
(200Gbit/s)

Varying Torus 8x8 |
Bandwidth (800Gbit/s)

Torus 8x8 |

At higher bandwidth, the ‘l-BTb‘S"j

number of steps has a higher L (3.2Tbitls)
relative impact on performance

"

_.8__
[]
o
o

-50% 0% 50% 100% 150% 200% 250%

SAPIENZA

UNIVERSITA DI ROMA




Goodput Gain vs. Best Known Algo. for Allreduce <= 512MiB

Results Summary

More dimensions imply more

communications with close
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Goodput Gain vs. Best Known Algo. for Allreduce <= 512MiB

Results Summary
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Goodput Gain vs. Best Known Algo. for Allreduce <= 512MiB

Results Summary
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Goodput Gain vs. Best Known Algo. for Allreduce <= 512MiB

T
RQSU"S SummCII ~ Torus. -
16x16 :
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Torus | ©! - o Median
Sq uare 32x32 1
I
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Torus Torus oo o Largest Gain: 209%
I
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5.3 Performance for 3D and 4D Torus creases because, as shown in Table 2 and discussed in Sec. 4, 1
e > the congestion deficiency drops to 3% on 3D torus and 1o Torus H
As discussed in See. | and summarized in Table % the perfor- g g6; on 4D torus. Consequently. for 3D and 4D torus net- 128x128 | 512MB o (:) @ o
L O o works, Swing outperforms by up 1o 2x all existing algorithms N X A"reduce
also depends on the number of dimensions. Thus, we evaluate - N REY 1
2 % 3 on allreduce ranging from 328 10 2GB. e
the performance of the different allreduce algorithms on 87, S Tc 1
3 4 : orus
8", and 8" torus networks. T (e] (¢ O
54 Performance on Torus-Like Topologies 64x16 1
. Aliraduce - 8x8 Torus {64 nodes) 1
Swing oo Gain ve Dt Kaders Some topologies like HammingMesh [26] and HyperX [3.20] Re Cta n g u Ia r Torus 1
extend torus by adding additional links, thus increasing the - O 1 '—_—' o] (o]
network bisection bandwidth. Seen from a different perspec- TO ru S 1 2 8 X 8 1
tive, those extra links allow distant nodes to communicate 1
crossing fewer hops. decreasing Swing congestion deficiency. TO rus
1 O |-|—-—| O
1
5.4.1 Performance on HammingMesh N 256x4 1
HammingMesh [26] groups nodes into square boards. Each e Torus 8x8 | o
board is 4 2D mesh, and nodes on the same column (or row) 1 O O Gb t/
located at the edge of the boards are connected together using ( | S)
fat trees. Due to its higher performance and flexibility com- I
pared to a torus a similar topology is used. for example, to TOI'U S 8X8 i ’_-_'l o)
interconnect TPUv4 devices [31]. Because of the extra links, H
the congestion deficiency of Swing on a8 HammingMesh is (2 00 Gb |t/S)
” Tower than that on a 2D torus. Moreover. for a fixed number H 1
é v of nodes, having smaller boards increases the number of extra Varylng TOrU S 8X8 4 d'_._' [e) o)
3 = (fat tree) links and, thus, decreases the congestion deficiency. H i 1
: ) Bandwidth it/s !
3 w
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- e T Torus 8x8 | @ . o
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w0z -
= Figure 12: Goodput on a 4.096 nodes Hx2Mesh TorU S 8 X 8 X 8 I
2 ES I
R R T R R KT E We show in Fig. ! 2 the performance of the different algo- Torus | 1 le)
Nirsduce siza rithms l'm.u H.\Z’M‘:1 ncl}smk ‘,“lh 4.096 m‘\dcs (2:\_’ boards \_ 8 X 8 X 8 X 8 |
arranged in a 32x32 configuration). For such configuration, 1
Swing outperforms the state-of-the-art algorithms at any size, a
Figure 11: Goodput on higher-dimensional torus networks:  up 102.5x foe 2MiB allreduce. Moreover, because of the lower Hx2Mesh | o o
2D 8x8. 3D (8x8x8), and 4D (8x8x8x8). congestion dcficmnc;. we observe how the peak Swing per- 4k nodes
formance is higher compared to a 2D torus with the same . 1
We report the evaluation resultin Fig. | |. Wedonotinclude  number of nodes (Fig. ©). Last, we also observe a runtime Torus-like Hx4Mesh
the Hamiltonian ring algorithm in the 3D and 4D torus results reduction for all the algorithms for small vectors, since nodes X esh | o]
since it only works for 2D torus networks. When increasing on the same board on HammingMesh are connected through Topolog 1es 4k nodes
the number of dimensions, the goodput gain of Swing in- PCB traces. with lower latency than optical network cables. 1
\_ 4k nodes h
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Conclusions

Why torus and why allreduce?
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