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How does a traffic engineering (TE) system work?

" TE control loop: demand collection - solving - implementation
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How does a traffic engineering (TE) system work?

" TE control loop: demand collection - solving - implementation
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How does a traffic engineering (TE) system work?

* TE control loop: demand collection = solving - implementation
= Repeatedly runs every other minute (e.g., Google’s Orion TE controller)
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How does a traffic engineering (TE) system work?

* TE control loop: demand collection - solving - implementation
" Repeatedly runs every other minute (e.g., Google’s Orion TE controller)

Our focus:
implementing the TEsolution """ """ """~ =7"777777 \

TE controller

optimization TE solution
algorithm
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Precision loss is inherent in TE.

Switch T1 internal memory
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Precision loss is inherent in TE.

Switch T1 internal memory

_ID | Egress port.
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Precision loss is inherent in TE.

Switch T1 internal memory

" ID |Egress port
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Precision loss is inherent in TE.

Switch T1 internal memory
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Precision loss is inherent in TE.

Switch T1 internal memory
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Precision loss is inherent in TE.

Switch T1 internal memory

1D | Egress port.

pl _ID | Egress port.
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Precision loss is inherent in TE.

Switch T1 internal memory

' ID |Egress port
e pl ] 1D | Egress port.

" Precision loss is the diff between TE solution and implementation.

" |t's caused by limited hardware resources.

2 G1 T
\ p2 J - = pl J
G2 p2 p2 x1

# ®
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Group reduction
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Precision loss accumulates in hierarchical networks.
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Real world precision loss can be severe.
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" Flow completion time @p99 up by 40% if link utilization higher by 10%.
* Above numbers change with different baseline link utilizations.
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Real world precision loss can be severe.

" Flow completion time @p99 up by 40% if link utilization higher by 10%.
* Above numbers change with different baseline link utilizations.
* Congested links cause packet loss and retransmission, delay transfer.

" Lower link utilization hugely benefits flow completion time.
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O
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" Flow completion time @p99 up by 40% if link utilization higher by 10%.
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Real world precision loss can be severe.

" Flow completion time @p99 up by 40% if link utilization higher by 10%.
* Above numbers change with different baseline link utilizations.
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Real world precision loss can be severe.

" Flow completion time @p99 up by 40% if link utilization higher by 10%.

* Above numbers change with different baseline link utilizations.
* Congested links cause packet loss and retransmission, delay transfer.

" Lower link utilization hugely benefits flow completion time.
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Real world precision loss can be severe.

" Flow completion time @p99 up by 40% if link utilization higher by 10%.

* Above numbers change with different baseline link utilizations.
* Congested links cause packet loss and retransmission, delay transfer.

" Lower link utilization hugely benefits flow completion time.
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Real world precision loss can be severe.

" Flow completion time @p99 up by 40% if link utilization higher by 10%.
* Above numbers change with different baseline link utilizations.
* Congested links cause packet loss and retransmission, delay transfer.

" Lower link utilization hugely benefits flow completion time.
" Actual link utilization up to 5x higher than ideal.
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Real world precision loss can be severe.

" Flow completion time @p99 up by 40% if link utilization higher by 10%.
* Above numbers change with different baseline link utilizations.
* Congested links cause packet loss and retransmission, delay transfer.

" Lower link utilization hugely benefits flow completion time.
" Actual link utilization up to 5x higher than ideal.

~ Congestion loss.
;ﬁ H’F%HEM/' -
1.0 «if
0.8 .
~ TE solution
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~ 0.4
' ~ TE implementation
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5 root causes that exacerbate precision loss.

= Group space usage depends on (# groups, # ports/group, port weights).
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).
" Cause 1: scale

* # groups scales with network size.
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).

= Cause 1: scale
* # groups scales with network size.

= Cause 2: path diversity IEI
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).
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= Cause 2: path diversity 1D | Egress port.
 TE uses many ports/group. p;
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).

" Cause 1: scale
* # groups scales with network size.

= Cause 2: path diversity M ID | Egress port i
e TE uses many ports/group. 5 pl
= Cause 3: skewed weights : —
« Skewed weights are hard to reduce. p64
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).

" Cause 1: scale
* # groups scales with network size.

" Cause 2: path diversity
* TE uses many ports/group.

" Cause 3: skewed weights
* Skewed weights are hard to reduce.

" Cause 4: heterogeneity

* Old gen. switches have small memory space.

Memory 4096 32768
Space entries entries

Speed 40Gbps 200Gbps
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).

" Cause 1: scale
* # groups scales with network size. 4 Bt a

= Cause 2: path diversity ) ID | Egress port B
* TE uses many ports/group. : E; :
= Cause 3: skewed weights N
« Skewed weights are hard to reduce. p64
" Cause 4: heterogeneity : G2 g;
* Old gen. switches have small memory space.
* Mixed speed leads to larger weights. pl
= Cause 5: cascading effect . GN
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5 root causes that exacerbate precision loss.

" Group space usage depends on (# groups, # ports/group, port weights).

" Cause 1: scale
* # groups scales with network size.

» Cause 2: path diversity
* TE uses many ports/group.

" Cause 3: skewed weights
* Skewed weights are hard to reduce.

" Cause 4: heterogeneity

* Old gen. switches have small memory space.

 Mixed speed leads to larger weights. pl
= Cause 5: cascading effect . GN
* Precision loss multiplies in multi-tier networks. D2

Carnegie
Mellon

University



3 new heuristics for group reduction algorithms

" Recap: need to optimize both per-group size & total group size per switch.
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3 new heuristics for group reduction algorithms

Group Sharing: de-duplicate & reuse identical groups.

Opportunities Our heuristics

Groups can become identical post reduction. Group Sharing

Different groups contribute to the overall
precision loss differently.

Not all ports in a group need to be preserved.
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3 new heuristics for group reduction algorithms

Table Carving: allocate space to each group proportional to its traffic volume.

Opportunities Our heuristics

Groups can become identical post reduction. Group Sharing
Different gro'ups contrlb-ute to the overall Table Carving
precision loss differently.

Not all ports in a group need to be preserved.
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3 new heuristics for group reduction algorithms

Group Pruning: prune select ports from a group to enable size reduction.

Opportunities Our heuristics

Groups can become identical post reduction. Group Sharing

Different groups contribute to the overall

Tabl i
precision loss differently. able Carving

Not all ports in a group need to be preserved. Group Pruning
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3 new heuristics for group reduction algorithms

" Recap: need to optimize both per-group size & total group size per switch.
" Opportunities lie in where the current approach (TableFitting [EuroSys’14]) falls short.

Opportunities Our heuristics Root causes

- ' _ scale '
Groups can become identical post reduction. Group Sharing
| _ heterogeneity

Different groups contribute to the overall
precision loss differently.

Not all ports in a group need to be preserved.
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3 new heuristics for group reduction algorithms

" Recap: need to optimize both per-group size & total group size per switch.
" Opportunities lie in where the current approach (TableFitting [EuroSys’14]) falls short.

Opportunities Our heuristics Root causes

Groups can become identical post reduction.

Different gro_u!:)s contrlb-ute to the overall Table Carving oath diversity
precision loss differently. :
skewed weights
Not all ports in a group need to be preserved. Group Pruning
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3 new heuristics for group reduction algorithms

" Recap: need to optimize both per-group size & total group size per switch.
" Opportunities lie in where the current approach (TableFitting [EuroSys’14]) falls short.

Opportunities Our heuristics Root causes

Groups can become identical post reduction. Group Sharing

Different groups contribute to the overall

Tabl '
precision loss differently. able Carving

Not all ports in a group need to be preserved. Group Pruning

cascading effect
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New group reduction algorithms: DMIR & IGR

Direct Mixed-Integer Reduction | Iterative Greedy Reduction
(DMIR) (IGR)
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New group reduction algorithms: DMIR & IGR

Direct Mixed-Integer Reduction | Iterative Greedy Reduction
(DMIR) (IGR)
Core algorithm  mixed-integer programming greedy search
Optimality optimal less optimal
Execution speed slow fast
=)
Step 1: Table Carving available
E> @ Space
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New group reduction algorithms: DMIR & IGR

Direct Mixed-Integer Reduction | Iterative Greedy Reduction
(DMIR) (IGR)
Core algorithm  mixed-integer programming greedy search
Optimality optimal less optimal
Execution speed slow fast
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New group reduction algorithms: DMIR & IGR

Direct Mixed-Integer Reduction | Iterative Greedy Reduction
(DMIR) (IGR)

Core algorithm  mixed-integer programming greedy search
Optimality optimal less optimal
Execution speed slow fast

=

Step 2: parallel single-group reduction
(MIP or greedy)
invokes Group Pruning
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New group reduction algorithms: DMIR & IGR

Direct Mixed-Integer Reduction | Iterative Greedy Reduction
(DMIR) (IGR)

Core algorithm  mixed-integer programming greedy search
Optimality optimal less optimal
Execution speed slow fast

Step 3: Group Sharing : @
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New group reduction algorithms: DMIR & IGR

Direct Mixed-Integer Reduction | Iterative Greedy Reduction
(DMIR) (IGR)

Core algorithm  mixed-integer programming greedy search
Optimality optimal less optimal
Execution speed slow fast

—>

Step 3: Group Sharing |:>
=
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DMIR & IGR are more precise than current work.
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DMIR & IGR are more precise than current work.

= Network-level metric: link utilization

" Application-level metric: flow completion time (FCT)

0.8| M Ideal ® DMIR
2 0.6 72, IGR B TableFitting
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DMIR & IGR are more precise than current work.

= Network-level metric: link utilization

" Application-level metric: flow completion time (FCT)

~ 0.8/ M Ideal ® DMIR

© 2 IGR M TableFitting
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DMIR & IGR are more precise than current work.

= Network-level metric: link utilization

" Application-level metric: flow completion time (FCT)
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DMIR & IGR are more precise than current work.

= Network-level metric: link utilization
* [worst case] DMIR & IGR 7% error vs. TableFitting 67% error

= Application-level metric: flow completion time (FCT)

— 0.8/ M Ideal ® DMIR

O 7, IGR M TableFitting
= 0.6

= I 67%
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DMIR & IGR are more precise than current work.

= Network-level metric: link utilization

* [worst case] DMIR & IGR 7% error vs. TableFitting 67% error

= Application-level metric: flow completion time (FCT)
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DMIR & IGR are more precise than current work.

= Network-level metric: link utilization

* [worst case] DMIR & IGR 7% error vs. TableFitting 67% error
= Application-level metric: flow completion time (FCT)

0.8
S 0.6
0.4
0.2
0.0

tion

Link Utiliz

Carnegie

Mellon

University

™ |deal & DMIR

72, IGR B TableFitting

] 67%

FCT (sec)

1.5

1.0

0.5

0.0

N BN I

p50

P99 max



DMIR & IGR are more precise than current work.

= Network-level metric: link utilization
* [worst case] DMIR & IGR 7% error vs. TableFitting 67% error

= Application-level metric: flow completion time (FCT)

— 0.3/ M |deal ® DMIR 1.5
O 7, IGR M TableFitting
= (0.6 E 1.0
= 0.4 I - 2
5 . — 2 —
R ?i T 0.5|
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DMIR & IGR are more precise than current work.

" Network-level metric: link utilization
* [worst case] DMIR & IGR 7% error vs. TableFitting 67% error

= Application-level metric: flow completion time (FCT)
* [worst case] DMIR & IGR 1.2x longer vs. TableFitting 1.6x longer

- 0.8/ M Ideal ® DMIR 1.5
L 0.6 7, IGR M TableFitting .
[\ @ 1.0
£ 04 505
< 0.2 e
—

0.0
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DMIR & IGR are more precise than current work.

DMIR outperforms IGR in certain challenging scenarios, see our paper for details.
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IGR runs faster than current work & DMIR.
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" Metric: average time to reduce a batch of groups on a switch
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IGR runs faster than current work & DMIR.

" Metric: average time to reduce a batch of groups on a switch

‘é’ :gﬂ 100! “ |GR B DMIR H TableFitting

=2 1o

28

=F

28 1

S .01

o No.1l No.2 No. 3 No.4  No.5
5570 common ¢«— network scenarios — rare
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IGR runs faster than current work & DMIR.

" Metric: average time to reduce a batch of groups on a switch

CU'"E e . .

€ 2100]” IGR & DMIR B TableFitting
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IGR runs faster than current work & DMIR.

" Metric: average time to reduce a batch of groups on a switch
" |GR outperforms TableFitting by 1-2 orders of magnitude.

a "E e . .

€ 2100]” IGR & DMIR ® TableFitting
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IGR runs faster than current work & DMIR.

" Metric: average time to reduce a batch of groups on a switch
" |GR outperforms TableFitting by 1-2 orders of magnitude.
= DMIR is on par with TableFitting.
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Summary

" Precision loss is inherent in TE with limited
hardware resources.

e |t leads to load imbalance & traffic loss.

= We design 2 group reduction algorithms that
when compared to the current approach

* reduce precision loss by 10x.
* reduce FCT by 26%.
* run up to 10x faster.

= Use IGR for responsiveness, DMIR for
challenging scenarios.

Check out this
project online!

Contact us for questions:
shuoshuc@cs.cmu.edu
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