
LiFteR: Unleash Learned Codecs 
in Video Streaming with Loose 

Frame Referencing

Bo Chen1, Zhisheng Yan2, Yinjie Zhang1, Zhe Yang1, Klara Nahrstedt1 
1University of Illinois at Urbana-Champaign, 2George Mason University

Contact: boc2@illinois.edu (https://bochen.info/)

mailto:boc2@illinois.edu
https://bochen.info/


Video streaming

• One-third of all online activity is spent watching videos.

• Americans spend 3h and 9min a day streaming digital media.

Video streaming is popular

2



Bandwidth demand
Source: Cisco Annual Internet Report, 2018–2023

• Significant demand for bandwidth of video.
• Bandwidth needs grow exponentially.

Video codecs are crucial!

3



History of video codecs
Bitrate Savings

Time

H.262

1996

H.264 (AVC)

2003

H.265 (HEVC)

2013

AV1

2017

H.266 (VVC)

2020

H.261

1988

Wu ECCV

2018

Lu CVPR

2019

Ren JSTSP

2021

Ho ECCV

2022

Qi CVPR

2023

Traditional video codecs Learned video codecs

4

Learned video codecs are rising!



Can learned codecs replace traditional ones?
Pilot study
• Learned video codecs: DVC [1] and RLVC [2].
• Traditional video codecs: H.264 and H.265, with presets of very fast (f)/medium (m)/very slow (s).
• Hardware: Intel Core i9-8950HK CPU and NVIDIA GTX 1080 Ti GPU.

[1] Lu, Guo, et al. "Dvc: An end-to-end deep video compression framework." CVPR. 2019.
[2] Yang, Ren, et al. "Learning for video compression with recurrent auto-encoder and recurrent probability model." IEEE JSTSP. 2020.

Coding Efficiency Decoding Speed

5

Not quite.



Cause of slow decoding

Tight frame referencing
• Problems
• Gap: slow deep neural network (DNN) v.s. real-time frame rate.

Coding pipeline adopted by most learned video codecs.
Independent Dependent (on adjacent frame)

DNN DNN DNN DNN DNN DNN

6



Intuition

• Loose frame referencing (LFR)

• Coding efficiency: temporally-close frames are similar.

• Decoding speed: loose dependency allows parallelism.

Why not using non-adjacent frames as reference?
Non-adjacent

7

Temporally-close



Challenges

• How do we schedule frame processing? 

• How do we design learned codec? 

• How do we adapt streaming infrastructure?

8



Design space

How should frames be processed?

0 1 2 3 4 5 6

Tight frame referencing

1 2 3 4 5 6

0
Aggressive loose 
frame referencing

1 1 1 1 1 1

Ref. cost=6

Ref. depth=6

1 2 3 4 5 6

Ref. depth=1

Ref. cost=21=1+2+…+6

Slow! Coding inefficient!

Input

Objectives

Frame processing

Video frame

Reference relation

Coding efficiency

Decoding speed

Vertex
Indexed by 0, 1,…

Directed edge
𝒄𝒐𝒔𝒕 = 𝚫𝐢𝐧𝐝𝐞𝐱
Reference cost

∑𝒄𝒐𝒔𝒕
Reference depth
#𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔

Graph traversal

9



Design space

How should frames be processed?

0 1 2 3 4 5 6

Tight frame referencing

1 2 3 4 5 6

0
Aggressive loose 
frame referencing

1 1 1 1 1 1

Ref. cost=6

Ref. depth=6

1 2 3 4 5 6

Ref. depth=1

Ref. cost=21=1+2+…+6

Slow! Coding inefficient!

Input

Objectives

Frame processing

Video frame

Reference relation

Coding efficiency

Decoding speed

Vertex
Indexed by 0, 1,…

Directed edge
𝒄𝒐𝒔𝒕 = 𝚫𝐢𝐧𝐝𝐞𝐱
Reference cost

∑𝒄𝒐𝒔𝒕
Reference depth
#𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔

Graph traversalHow about something in between? 
A binary tree!

Ref. cost from 
parents to children.

Re
f. 

de
pt

h 
in

cr
ea

se
s 

lo
ga

rit
hm

ic
al

ly
.

10



How should learned codecs be designed?

• Opportunity: Inter-frame correlation.
• What we do: Codec adaptation with the self-attention mechanism

Minimal Spanning 
Tree 1

0

4

2 3 5 6

11



How should streaming infra be adapted?

Decoder

BufferEncoded video

Adaptive bitrate (ABR)
Algorithm

Downloader

240p

360p

480p

720p

Bitrate choice

Slow

• Opportunity: ABR algorithm
• Virtual buffer: captures content

üIn buffer (existing ABR algorithm)
üNot decoded yet

12



Evaluation

• Dataset: 37 videos, 2k 
resolution, 30 fps. 

[1] Spiteri, Kevin, Rahul Urgaonkar, and Ramesh K. Sitaraman. "BOLA: Near-optimal bitrate adaptation for online videos." IEEE/ACM TON (2020).

• Ours v.s. Learned (↑4.5%-23.2%) 
• Ours v.s. Traditional (↑9.6%-19.7%)

Video Streaming Traces (3.9 Mbps) HTTP Get Traces (15.8 Mbps)

13

• Client hardware: Linux 
desktop with NVIDIA 
GeForce GPUs.

• Network: 1000 traces collected 
under two network conditions.

• ABR: BOLA [1]; all baselines with 
learned codecs adopt virtual buffer. 

• QoE metric: weighted sum of video 
quality and negation of rebuffer rate.

Better HW

• Ours v.s. Learned (↑1.5%-23.8%) 
• Ours v.s. Traditional (↑5%-10.3%)



QoE breakdown
Video Quality in Normalized PSNR

Hardware

Q
ua

lit
y 

(↑
)

Re
bu

ffe
r R

at
e 

(↓
)

Hardware

• LiFteR does not always achieve the highest 
quality.

• Virtual buffer: Slower decoding=>higher quality.

• LiFteR improves rebuffer rates.
• LiFteR’s rebuffer rate becomes unstable: 

a downside from parallel processing.

Rebuffer rate (= 𝑡!"#$%&/𝑡'("%)*+&,)

14



Lessons learned

1. Tight frame referencing may not be necessary. 

2. Codec should be co-designed with the frame processing pipeline. 

3. There is room to improve existing infrastructure for learned codecs.

15

Bo Chen1, Zhisheng Yan2, Yinjie Zhang1, Zhe Yang1, Klara Nahrstedt1 
1University of Illinois at Urbana-Champaign, 2George Mason University

Contact: boc2@illinois.edu (https://bochen.info/)

mailto:boc2@illinois.edu
https://bochen.info/

