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Video streaming

• One-third of all online activity is spent watching videos.

• Americans spend 3h and 9min a day streaming digital media.

Video streaming is popular
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Bandwidth demand
Source: Cisco Annual Internet Report, 2018–2023

• Significant demand for bandwidth of video.
• Bandwidth needs grow exponentially.

Video codecs are crucial!
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History of video codecs
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Learned video codecs are rising!



Can learned codecs replace traditional ones?
Pilot study
• Learned video codecs: DVC [1] and RLVC [2].
• Traditional video codecs: H.264 and H.265, with presets of very fast (f)/medium (m)/very slow (s).
• Hardware: Intel Core i9-8950HK CPU and NVIDIA GTX 1080 Ti GPU.

[1] Lu, Guo, et al. "Dvc: An end-to-end deep video compression framework." CVPR. 2019.
[2] Yang, Ren, et al. "Learning for video compression with recurrent auto-encoder and recurrent probability model." IEEE JSTSP. 2020.

Coding Efficiency Decoding Speed
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Not quite.



Cause of slow decoding

Tight frame referencing
• Problems
• Gap: slow deep neural network (DNN) v.s. real-time frame rate.

Coding pipeline adopted by most learned video codecs.
Independent Dependent (on adjacent frame)

DNN DNN DNN DNN DNN DNN
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Intuition

• Loose frame referencing (LFR)

• Coding efficiency: temporally-close frames are similar.

• Decoding speed: loose dependency allows parallelism.

Why not using non-adjacent frames as reference?
Non-adjacent
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Temporally-close



Challenges

• How do we schedule frame processing? 

• How do we design learned codec? 

• How do we adapt streaming infrastructure?
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Design space

How should frames be processed?
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Graph traversalHow about something in between? 
A binary tree!
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How should learned codecs be designed?

• Opportunity: Inter-frame correlation.
• What we do: Codec adaptation with the self-attention mechanism
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How should streaming infra be adapted?

Decoder

BufferEncoded video

Adaptive bitrate (ABR)
Algorithm

Downloader

240p

360p

480p

720p

Bitrate choice

Slow

• Opportunity: ABR algorithm
• Virtual buffer: captures content

üIn buffer (existing ABR algorithm)
üNot decoded yet
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Evaluation

• Dataset: 37 videos, 2k 
resolution, 30 fps. 

[1] Spiteri, Kevin, Rahul Urgaonkar, and Ramesh K. Sitaraman. "BOLA: Near-optimal bitrate adaptation for online videos." IEEE/ACM TON (2020).

• Ours v.s. Learned (↑4.5%-23.2%) 
• Ours v.s. Traditional (↑9.6%-19.7%)

Video Streaming Traces (3.9 Mbps) HTTP Get Traces (15.8 Mbps)
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• Client hardware: Linux 
desktop with NVIDIA 
GeForce GPUs.

• Network: 1000 traces collected 
under two network conditions.

• ABR: BOLA [1]; all baselines with 
learned codecs adopt virtual buffer. 

• QoE metric: weighted sum of video 
quality and negation of rebuffer rate.

Better HW

• Ours v.s. Learned (↑1.5%-23.8%) 
• Ours v.s. Traditional (↑5%-10.3%)



QoE breakdown
Video Quality in Normalized PSNR
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Hardware

• LiFteR does not always achieve the highest 
quality.

• Virtual buffer: Slower decoding=>higher quality.

• LiFteR improves rebuffer rates.
• LiFteR’s rebuffer rate becomes unstable: 

a downside from parallel processing.

Rebuffer rate (= 𝑡!"#$%&/𝑡'("%)*+&,)
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Lessons learned

1. Tight frame referencing may not be necessary. 

2. Codec should be co-designed with the frame processing pipeline. 

3. There is room to improve existing infrastructure for learned codecs.
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