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Video streaming

Video streaming is popular

£ YouTube NETFLIX m

* One-third of all online activity is spent watching videos.

* Americans spend 3h and 9min a day streaming digital media.



Bandwidth demand

Source: Cisco Annual Internet Report, 2018-2023
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Video codecs are crucial!
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Application requirements in Mbps

* Significant demand for bandwidth of video.
* Bandwidth needs grow exponentially.



History of video codecs

Bitrate Savings - Traditional video codecs - Learned video codecs
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Can learned codecs replace traditional ones?

Pilot study

e Learned video codecs: DVC [1] and RLVC [2].
* Traditional video codecs: H.264 and H.265, with presets of very fast (f)/medium (m)/very slow (s).
 Hardware: Intel Core i9-8950HK CPU and NVIDIA GTX 1080 Ti GPU.
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[1] Lu, Guo, et al. "Dvc: An end-to-end deep video compression framework." CVPR. 2019.

[2] Yang, Ren, et al. "Learning for video compression with recurrent auto-encoder and recurrent probability model." IEEE JSTSP. 2020.
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Cause of slow decoding

Coding pipeline adopted by most learned video codecs.
Independent Dependent (on adjacent frame) N
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Tight frame referencing

* Problems
* Gap: slow deep neural network (DNN) v.s. real-time frame rate.



Intultion

Why not using non-adjacent frames as reference?
Non-adjacent

Temporally-close
* Loose frame referencing (LFR)

* Coding efficiency: temporally-close frames are similar.

* Decoding speed: loose dependency allows parallelism.



Challenges

* How do we schedule frame processing?
* How do we design learned codec?

* How do we adapt streaming infrastructure?



ow should frames be processed?

Frame processing Graph traversal
] Vertex
Input Video frame Indexed by 0, 1,...
Design space Reference relation Directed edge

cost = Aindex

Coding efficiency
Y.cost

Reference depth
t#iterations

Objectives
Decoding speed

Aggressive loose
frame referencing
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° Ref. depth=6
Slow! Coding inefficient! -

Tight frame referencing Ref. depth=1




ow should frames be processed?

How about something in between? Graph traversal

A binary tree! Vertex
Indexed by 0, 1,...

Directed edge
cost = Aindex

Ref. cost from
parents to children.
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Tlght frame referencmg Ref cost=6

Reference cost
Y.cost

Reference depth
t#iterations

logarithmically. @

Ref. depth increases

Aggressive loose
frame referencing Ref. depth=1
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Ref. depth=6 Ref. cost=21=1+2+...+6
Slow! Coding inefficient!




How should learned codecs be designed?
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* Opportunity: Inter-frame correlation.

 What we do: Codec adaptation with the self-attention mechanism
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How should streaming infra be adapted?

| Slow
) yffa
[ DownloaderJ >, Decoder > -
Encoded video Buffer
Bitrate choice
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* Opportunity: ABR algorithm v | 480p |

* Virtual buffer: captures content Adaptive bitrate (ABR) -[ 720p ]
v'In buffer (existing ABR algorithm) Algorithm

v'Not decoded yet
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 ABR: BOLA [1]; all baselines with

Eva | u at| O n learned codecs adopt virtual buffer.
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resolution, 30 fps. _ . .
* Network: 1000 traces collected * QoE metric: weighted sum of video

under two network conditions. quality and negation of rebuffer rate.
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[1] Spiteri, Kevin, Rahul Urgaonkar, and Ramesh K. Sitaraman. "BOLA: Near-optimal bitrate adaptation for online videos." IEEE/ACM TON (2020).



QoE breakdown

Video Quality in Normalized PSNR Rebuffer rate (= tfrozen/tstreaming)
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* LiFteR does not always achieve the highest « LiFteR improves rebuffer rates.
quality.  LiFteR’s rebuffer rate becomes unstable:

e Virtual buffer: Slower decoding=>higher quality. a downside from parallel processing.
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Lessons learned

1. Tight frame referencing may not be necessary.

2. Codec should be co-designed with the frame processing pipeline.

3. There is room to improve existing infrastructure for learned codecs.

Thanks for listening!
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