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Emerging Laser-Based Mobile Applications

Enabled by alignment with a directional, narrow beam
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✔ Drone Communication ✔ Wireless Power Delivery✔ Laser VR



✗ Drone Communication ✗ Laser VR ✗ Wireless Power Delivery

Emerging Laser-Based Mobile Applications

Enabled by alignment with a directional, narrow beam
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How do we maintain a laser tether in mobile scenarios?




Optical module of NASA’s 

Laser Communications 
Relay Demonstration 
(LCRD)

• Long range applications 


• Bulky hardware


• Predetermined target trajectories

Prior Work
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Drone Communication Laser VR Wireless Power Delivery
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Emerging Laser-Based Mobile Applications

Requirements:

✔ Near range 
(meter-level) 

✔ Arbitrary target 
trajectories

✔ Portable 
hardware



Lasertag
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Challenges
Laser 

steering

2 cm

Small divergence 
(0.3°)

2. Low tolerance for localization error1
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Target

4 m



Challenges

3D position 
(x, y, z)

2. Integration of tracking and laser 
steering

2
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Laser 
steering

2. Low tolerance for localization error1

,  Θ Φ
2D Steering Angle

✗ Unknown steering and localization 
device origins

✗ Geometry changes from additional 
optics 



Challenges

3. Demanding angular tracking rates 
(e.g., 47°/s for a 6.5 m/s target 6 m 
away) 
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2. Integration of tracking and laser 
steering

2
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2. Low tolerance for localization error1

Laser 
steering

✗ Inevitable tracking and steering 
delays



Lasertag Design Components
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3. Demanding angular tracking rates 
(e.g., 47°/s for a 6.5 m/s target 6 m 
away) 
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2. Integration of tracking and laser 
steering

2

2. Low tolerance for localization error1

2.Optical design for streamlined 
tracking and laser steering

2.Predictive steering for high 
mobility



Lasertag Design Components
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Camera✔ Accurate (constrained by image sensor 
resolution)

Optical Design
Camera-Based Tracking

Cam View

Field of View
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Laser 
steering

✔ Ease of co-location with steering

Target



θ0
θ1

Laser 
steering Camera (x, y)

Optical Design

✔ Accurate (constrained by image sensor 
resolution)
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✔ Ease of co-location with steering

(X,Y,Z0)

(X,Y,Z1)

Camera-Based Tracking
Cam View

✗ EmptyOffset introduces depth ambiguity when 
translating position to angle

Offset



Shared 
Optical Path

θ0

Optical Design

= θ1

(X,Y,Z1)

✔ Accurate (constrained by image sensor 
resolution)
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✔ Ease of co-location with steering

(X,Y,Z0)

Camera-Based Tracking

(x, y)

Cam View

✔ Our design: eliminating offset with a 
shared optical path 

✗ EmptyOffset introduces depth ambiguity when 
translating position to angle



Beamsplitter

Polarization-dependent

Optical Design
#1 Efficient Optical Path Sharing
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Beamsplitter

Wavelength-dependent

Optical Design
#1 Efficient Optical Path Sharing
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Laser diode

Aspheric lens

MEMS mirror

Triplet lens

Fisheye lensBeamsplitter

Imaging lens

Image sensor
Laser beam

Imaged object

Optical Design
#1 Efficient Optical Path Sharing
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✔ 1:1 mapping 
between pixel 
and laser angles



Laser diode
MEMS mirror

Fisheye lensBeamsplitterImage sensor
Imaged object

Optical Design
#1 Efficient Optical Path Sharing
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✔ 1:1 mapping 
between pixel 
and laser angles

(x, y)

Laser beam

Pixel-to-Steer Mapping



Optical Design
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Laser diode
MEMS mirror

Fisheye lensImage sensor Beamsplitter

θ

y
x

Pixel-to-Steer Mapping

#2 Automated, Short, One-Time Calibration



Optical Design

Retroreflective 
Marker

#3 Fast Tracking with Retroreflective Imaging

24

Cutout + Photodiode Cutout



Optical Design
#3 Fast Tracking with Retroreflective Imaging
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✔ Simple and computationally efficient 

✔ Generic and application-agnostic

✔ Compatible with any computer vision-
based tracking technique



Lasertag Design Components
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3. Demanding angular tracking rates 
(e.g., 47°/s for a 6.5 m/s target 6 m 
away) 

3

2. Integration of tracking and laser 
steering

2

2. Low tolerance for localization error1

2.Optical design for streamlined 
tracking and laser steering

2.Predictive steering for high 
mobility



✗ Image processing (e.g., 8 ms for our 
retroreflective imaging)

Sources of Tracking and Steering Delays 
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✗ Image capture (e.g., 28 ms for a 35 FPS 
camera)

✗ Steering (e.g., 2 ms for our MEMS mirror)



Time
Frame capture


 28 ms ≈

MEMS mirror

Steer

 2 ms≈

Image processing

 8 ms ≈
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t0

✗ Significant tether downtime during tracking and steering delays.

Predictive Steering for High Mobility



Time
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t0
ti

Position 
Predictor

Forecasted target 

position

ti+1

Predictive Steering for High Mobility

Frame capture

Localization + 
Prediction



Time
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t0
ti

Position 
Predictor

Forecasted target 

position

ti+1

MEMS mirror

Predictive Steering for High Mobility

Frame capture

Localization + 
Prediction



Time
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t0
ti

Position 
Predictor

ti+1

Predictive Steering for High Mobility

Frame capture

Localization + 
Prediction

✔ Quadrupled steering rate

Forecasted target 

position



Time
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t0
ti

Position 
Predictor

ti+1

Predictive Steering for High Mobility

Frame capture

Localization + 
Prediction

✔ Quadrupled steering rate

Forecasted target 

position

Double 
Exponential 

Filter
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Lasertag Prototype
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Lasertag Prototype
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Lasertag Prototype



Lasertag PrototypeEvaluation
Setup
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Retroreflective 
Marker



Lasertag Prototype

Retroreflective 
Marker

Evaluation
Setup

Drone Communication

Laser VR

Wireless Power Delivery
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Photodiode

Evaluation

Dual-Camera Setup

Metrics
Normalized power 1

Offset between beam and marker2

Drone Communication

Laser VR

Wireless Power Delivery
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Evaluation
Aggregated Results
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→ 1 x 10-8 BER @ 1Gbps


26% lower offset w/ predictive 32% higher normalized power 
w/ predictive 

✔0.97 median normalized power ✔1.03 cm median offset



Evaluation
Application-Specific Results

Drone 
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Translational, predictable motions
VR

Angular, jittery, smaller motions
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  0.86≥

0.71
0.99 median power w/ predictive 

0.98 median power w/o predictive 

✔Predictive gain proportional to translational velocity 



Future Work

Gbps VR streaming 
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Wireless power delivery

MilliMobile 
Johnson, Englehardt, 

Arroyos et al. 
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Thank you!


