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Rich literature on packet scheduling algorithms optimizing for 
different performance objectives in various network settings

Packet Scheduling in the Wild

Fairness Traffic shaping

Minimizing FCT Attack Resilience

The key to deployment is programmable hardware packet scheduling
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Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

Programmable
Priority (Rank) 
Computation

Priority Queue

BCA

PIFO Abstraction

PIFO’s vision is hampered by throughput, scalability, and resource
overhead issues associated with existing priority queue designs

At the heart of PIFO is a 
hardware priority queue that 
provides, at minimum, enqueue 
and dequeue-max functionality



This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation



This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation



Minimum requirements for scheduling in switches and SmartNICs

Flow Count 
Scalability

Support flow counts 
representative of 

modern networks: 
O(100K)

Single-Instance 
Performance

Sustain packet rates 
corresponding to today’s line 

rates: 100Gbps+ (148.8 Mpps)

Logical 
Partitioning

Statistically multiplex a 
single, physical priority 
queue between many 
independent logical 

priority queues
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Existing designs are infeasible

PIFO [SIGCOMM ’16]

N comparators followed by priority decoding to decide 
where to insert the next entry → supports at most 4K flows

Poor Scalability
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Existing designs are infeasible

PIFO [SIGCOMM ’16] PIEO [SIGCOMM ’19] BMW-Tree [SIGCOMM ’23]

Poor Scalability Poor Performance No Logical Partitioning

4K flows 64K flows 100K+ flows

15 Mpps (10% of line 
rate at 100 Gbps) on 
an FPGA SmartNIC

1.5 – 6X chip area to 
implement on a 32-

port Switch ASIC



This Talk

• Minimum requirements for scheduling in switches and SmartNICs
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Key Idea
If the priority span is bounded, we can achieve all 3 
properties (scalability, performance, and logical 
partitioning) using non-comparison-based sorting.



Integer Priority Queueing (IPQ)

3 2 1 0

How to perform dequeue-max?
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• Augment with a bitmap encoding bucket occupancy, then use Find-First Set
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Integer Priority Queueing (IPQ)

3 2 1 0

Find-First Set (FFS)

BC

Priority buckets

Bitmap

…

0      …

32K

What if we need to support a huge number of priorities (e.g., 32K)?

• Can’t do FFS on a 32K-bit bitmap
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FFS

Bitmap Tree{

Data-structure is called a Hierarchical Find-First Set (HFFS) Queue



Bitmapped Bucket Queue (BBQ)

      

     

        

           

  

                  

  

  

  

              

 

    

    

   

      

    

   

 

   

   

     

   

    

    

   

Data-structure is called a Hierarchical Find-First Set (HFFS) Queue

Many software systems use FFS-based 
priority queueing (e.g., Linux scheduler 
for process scheduling, and Eiffel 
[NSDI ‘19] for packet scheduling).

Our insight is that this data-structure is 
amenable to a high-performance, fully-
pipelined hardware implementation.



BBQ uses an IPQ-based design, breaking the dependence between 
queue size and run-time complexity of operations.

Scalability “falls out” of this high-level design choice.

Scalability comes for free



(1) Need a high operating frequency (fmax)

BBQ achieves this by using a deep pipeline where individual stages are 
designed to do both little and roughly equal amounts of work.

(2) Need to maximize operations-per-cycle (OPC)

BBQ realizes a fully-pipelined architecture (OPC of 1) using a variety of 
architectural techniques (write-forwarding, speculation, and operation 
coloring).

BBQ is highly optimized for performance

Performance (ops/sec) = fmax (cycles/sec) × OPC (ops/cycle)
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Deep (11-stage) 
hardware pipeline 
for a 2-level BBQ}

BBQ is highly optimized for performance



(1) Need a high operating frequency (fmax)

BBQ achieves this by using a deep pipeline where individual stages are 
designed to do both little and roughly equal amounts of work

(2) Need to maximize operations-per-cycle (OPC)

BBQ realizes a fully-pipelined architecture (OPC of 1) agnostic of workload

BBQ is highly optimized for performance

Performance (ops/sec) = fmax (cycles/sec) × OPC (ops/cycle)



      

     

        

           

  

                  

  

  

  

              

 

    

    

   

      

    

   

 

   

   

     

   

    

    

   

BBQ is highly optimized for performance

Pipelining is hard!

Pipeline-wide 
control hazards

Non-atomic R/W 
access to bitmaps

Concurrent reads and
writes to linked lists

Counter bottlenecks

Intra-stage data 
hazards

Limited physical 
memory ports

Subtree occupancy 
counters (StOCs)

Waterlevel bit (WLb)

Write forwarding

Operation coloring
State decoupling

Speculation
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BBQ supports logical partitioning with zero 
fragmentation and performance overhead

Logical BBQs
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Steering

Priority buckets

OPOPOPOPOP

BBQ supports logical partitioning with zero 
fragmentation and performance overhead



How does BBQ meet our requirements?

Flow Count 
Scalability

Single-Instance 
Performance

Highly optimized, fully-pipelined 
design allows BBQ to support 150 

Mpps (100 Gbps) on FPGAs and 
1.5 Bpps (1 Tbps) on

switch ASICs

Logical 
Partitioning

BBQ’s unique priority 
index structure allows 
logical partitioning with 

no performance 
overhead

IPQ-based design allows 
scaling to O(100K) flows
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BBQ Evaluation (FPGA): Performance

On a Stratix 10 FPGA, BBQ sustains 100 Gbps line rate (148.8 Mpps) with 100K+ 
elements and 32K priorities, 3X the packet rate of state-of-the-art designs.



Conclusion

Existing hardware priority queues do not meet the stringent requirements 
imposed by modern schedulers. We design BBQ, an IPQ that – for the first 
time – makes it feasible to implement priority packet scheduling on line 
rate switches and SmartNICs.

BBQ supports 100K+ entries and 32K priorities at 100 Gbps line-rate 
(148.8 Mpps) on an FPGA, and 1 Tbps (1.5 Bpps) on an ASIC.

Open-source code:
https://github.com/cmu-snap/BBQ



BBQ Evaluation (FPGA): Resources

BBQ requires very few ALMs. Its SRAM usage is between PIEO and BMW-Tree 
(but requires fewer copies to meet the same performance target)



How does BBQ fit in the context of 
approximate priority queue designs?

1. BBQ is complementary to approaches that assume a small set of 
priority queues as a hardware primitive (SP-PIFO, PCQ, Sifter)
• Accuracy improves with more strict-priority queues
• BBQ’s priority index structure (bitmap tree) is an efficient priority 

decoder, which is how we can scale to larger priority spans

2. BBQ’s design shows that is possible to scale to a large number of 
queue elements without sacrificing accuracy



Accuracy

Want the execution output of BBQ to be identical to an “ideal” 
priority queue… unfortunately, pipelining breaks this property!
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BBQ Pipeline

DEQMax

(C, 50) (D, 60)

The highest-priority element in the system is not always in the 
BBQ, creating potential scheduling inaccuracies.

Accuracy

Want the execution output of BBQ to be identical to an “ideal” 
priority queue… unfortunately, pipelining breaks this property!



Accuracy

We prove that combining BBQ with a tiny PIFO recovers accuracy. The 
composite design has all the nice properties of BBQ, but without the 
pipeline latency.
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