
BBQ: A Fast and Scalable Integer
Priority Queue for Hardware

Packet Scheduling

Nirav Atre, Hugo Sadok, Justine Sherry

Carnegie Mellon University

Rich literature on packet scheduling algorithms optimizing for
different performance objectives in various network settings

Packet Scheduling in the Wild

Fairness Traffic shaping

Minimizing FCT Attack Resilience

The key to deployment is programmable hardware packet scheduling

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

Packet Scheduler

C

Incoming
Packet

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

A

B

C

Per-flow FIFO queues

Incoming
Packet

Packet Scheduler

C

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

A

B

C

Per-flow FIFO queues

Incoming
Packet

Packet Scheduler

C

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

C

A

B

C

Per-flow FIFO queues

Incoming
Packet

Packet Scheduler

Programmable
Priority (Rank)
Computation

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

C

A

B

C

Per-flow FIFO queues

Incoming
Packet Programmable

Priority (Rank)
Computation

Priority Queue

BCA

Increasing priority

B

Next flow to
schedule

Packet Scheduler

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

Programmable
Priority (Rank)
Computation

Priority Queue

BCA

PIFO Abstraction

Programmable Packet Scheduling at Line Rate [SIGCOMM ’16]
→ Push-In First-Out (PIFO)

Programmable Packet Scheduling

Programmable
Priority (Rank)
Computation

Priority Queue

BCA

PIFO Abstraction

PIFO’s vision is hampered by throughput, scalability, and resource
overhead issues associated with existing priority queue designs

At the heart of PIFO is a
hardware priority queue that
provides, at minimum, enqueue
and dequeue-max functionality

This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation

This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation

Minimum requirements for scheduling in switches and SmartNICs

Flow Count
Scalability

Support flow counts
representative of

modern networks:
O(100K)

Single-Instance
Performance

Sustain packet rates
corresponding to today’s line

rates: 100Gbps+ (148.8 Mpps)

Logical
Partitioning

Statistically multiplex a
single, physical priority
queue between many
independent logical

priority queues

This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation

Existing designs are infeasible

PIFO [SIGCOMM ’16]

N comparators followed by priority decoding to decide
where to insert the next entry → supports at most 4K flows

Poor Scalability

Existing designs are infeasible

PIFO [SIGCOMM ’16] PIEO [SIGCOMM ’19] BMW-Tree [SIGCOMM ’23]

Flow Count Scalability

4K flows 64K flows 100K+ flows

Poor Scalability

Existing designs are infeasible

PIFO [SIGCOMM ’16] PIEO [SIGCOMM ’19] BMW-Tree [SIGCOMM ’23]

Poor Scalability Poor Performance No Logical Partitioning

4K flows 64K flows 100K+ flows

15 Mpps (10% of line
rate at 100 Gbps) on
an FPGA SmartNIC

1.5 – 6X chip area to
implement on a 32-

port Switch ASIC

This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation

Key Idea
If the priority span is bounded, we can achieve all 3
properties (scalability, performance, and logical
partitioning) using non-comparison-based sorting.

Integer Priority Queueing (IPQ)

3 2 1 0

How to perform dequeue-max?

• Iteratively checking each bucket is slow!

BA

C

Priority buckets

Integer Priority Queueing (IPQ)

3 2 1 0Priority buckets

How to perform dequeue-max?

• Augment with a bitmap encoding bucket occupancy, then use Find-First Set

Bitmap

Find-First Set (FFS)

0 1 0 11

BA

C

…

0 …

32K

0 1 0 1

Integer Priority Queueing (IPQ)

3 2 1 0

1

Find-First Set (FFS)

BC

Priority buckets

Bitmap

…

0 …

32K

How to perform dequeue-max?

• Augment with a bitmap encoding bucket occupancy, then use Find-First Set

0 1 0 1

Integer Priority Queueing (IPQ)

3 2 1 0

Find-First Set (FFS)

BC

Priority buckets

Bitmap

…

0 …

32K

What if we need to support a huge number of priorities (e.g., 32K)?

• Can’t do FFS on a 32K-bit bitmap

7 6

0 0

Priority buckets 5 4 3 2 1 0

0 0 0 1 0 1

Integer Priority Queueing (IPQ)

A

C

B

Bit is set if priority
bucket is not empty

7 6

0 0

Priority buckets 5 4 3 2 1 0

0 0 0 1 0 1

0 0 1 1

0 1

Integer Priority Queueing (IPQ)

A

C

B

Bit is set if priority
bucket is not empty

Bitmap Tree{

7 6

0 0

Priority buckets 5 4 3 2 1 0

0 0 0 1 0 1

Integer Priority Queueing (IPQ)

A

C

B

Bit is set if any priority
bucket in this subtree
is not empty

Bit is set if priority
bucket is not empty

0 0 1 1

0 1

Bitmap Tree{

7 6

0 0

Priority buckets 5 4 3 2 1 0

0 0 0 1 0 1

0 0 1 1

0 1

Integer Priority Queueing (IPQ)

A

C

B

1

FFS

1

FFS

1

FFS

Bitmap Tree{

7 6

0 0

Priority buckets 5 4 3 2 1 0

0 0 0 1 0 1

0 0 1 1

0 1

Integer Priority Queueing (IPQ)

C B

1

FFS

1

FFS

1

FFS

Bitmap Tree{

Data-structure is called a Hierarchical Find-First Set (HFFS) Queue

Bitmapped Bucket Queue (BBQ)

Data-structure is called a Hierarchical Find-First Set (HFFS) Queue

Many software systems use FFS-based
priority queueing (e.g., Linux scheduler
for process scheduling, and Eiffel
[NSDI ‘19] for packet scheduling).

Our insight is that this data-structure is
amenable to a high-performance, fully-
pipelined hardware implementation.

BBQ uses an IPQ-based design, breaking the dependence between
queue size and run-time complexity of operations.

Scalability “falls out” of this high-level design choice.

Scalability comes for free

(1) Need a high operating frequency (fmax)

BBQ achieves this by using a deep pipeline where individual stages are
designed to do both little and roughly equal amounts of work.

(2) Need to maximize operations-per-cycle (OPC)

BBQ realizes a fully-pipelined architecture (OPC of 1) using a variety of
architectural techniques (write-forwarding, speculation, and operation
coloring).

BBQ is highly optimized for performance

Performance (ops/sec) = fmax (cycles/sec) × OPC (ops/cycle)

(1) Need a high operating frequency (fmax)

BBQ achieves this by using a deep pipeline where individual stages are
designed to do both little and roughly equal amounts of work.

(2) Need to maximize operations-per-cycle (OPC)

BBQ realizes a fully-pipelined architecture (OPC of 1) using a variety of
architectural techniques (write-forwarding, speculation, and operation
coloring).

BBQ is highly optimized for performance

Performance (ops/sec) = fmax (cycles/sec) × OPC (ops/cycle)

Deep (11-stage)
hardware pipeline
for a 2-level BBQ}

BBQ is highly optimized for performance

(1) Need a high operating frequency (fmax)

BBQ achieves this by using a deep pipeline where individual stages are
designed to do both little and roughly equal amounts of work

(2) Need to maximize operations-per-cycle (OPC)

BBQ realizes a fully-pipelined architecture (OPC of 1) agnostic of workload

BBQ is highly optimized for performance

Performance (ops/sec) = fmax (cycles/sec) × OPC (ops/cycle)

BBQ is highly optimized for performance

Pipelining is hard!

Pipeline-wide
control hazards

Non-atomic R/W
access to bitmaps

Concurrent reads and
writes to linked lists

Counter bottlenecks

Intra-stage data
hazards

Limited physical
memory ports

Subtree occupancy
counters (StOCs)

Waterlevel bit (WLb)

Write forwarding

Operation coloring
State decoupling

Speculation

7 6

0 0

Priority buckets 5 4 3 2 1 0

0 0 0 1 0 1

0 0 1 1

0 1

BBQ supports logical partitioning with zero
fragmentation and performance overhead

Logical BBQs

7 6

0 0

5 4 3 2 1 0

0 0 0 1 0 1

0 0 1 1

Steering

Priority buckets

OPOPOPOPOP

BBQ supports logical partitioning with zero
fragmentation and performance overhead

How does BBQ meet our requirements?

Flow Count
Scalability

Single-Instance
Performance

Highly optimized, fully-pipelined
design allows BBQ to support 150

Mpps (100 Gbps) on FPGAs and
1.5 Bpps (1 Tbps) on

switch ASICs

Logical
Partitioning

BBQ’s unique priority
index structure allows
logical partitioning with

no performance
overhead

IPQ-based design allows
scaling to O(100K) flows

This Talk

• Minimum requirements for scheduling in switches and SmartNICs

• State-of-the-art priority queue designs are infeasible

• How do we get there?

• Evaluation

BBQ Evaluation (FPGA): Performance

BBQ Evaluation (FPGA): Performance

BBQ Evaluation (FPGA): Performance

On a Stratix 10 FPGA, BBQ sustains 100 Gbps line rate (148.8 Mpps) with 100K+
elements and 32K priorities, 3X the packet rate of state-of-the-art designs.

Conclusion

Existing hardware priority queues do not meet the stringent requirements
imposed by modern schedulers. We design BBQ, an IPQ that – for the first
time – makes it feasible to implement priority packet scheduling on line
rate switches and SmartNICs.

BBQ supports 100K+ entries and 32K priorities at 100 Gbps line-rate
(148.8 Mpps) on an FPGA, and 1 Tbps (1.5 Bpps) on an ASIC.

Open-source code:
https://github.com/cmu-snap/BBQ

BBQ Evaluation (FPGA): Resources

BBQ requires very few ALMs. Its SRAM usage is between PIEO and BMW-Tree
(but requires fewer copies to meet the same performance target)

How does BBQ fit in the context of
approximate priority queue designs?

1. BBQ is complementary to approaches that assume a small set of
priority queues as a hardware primitive (SP-PIFO, PCQ, Sifter)
• Accuracy improves with more strict-priority queues
• BBQ’s priority index structure (bitmap tree) is an efficient priority

decoder, which is how we can scale to larger priority spans

2. BBQ’s design shows that is possible to scale to a large number of
queue elements without sacrificing accuracy

Accuracy

Want the execution output of BBQ to be identical to an “ideal”
priority queue… unfortunately, pipelining breaks this property!

(A, 5)

(C, 50)

(B, 20)

(D, 60)

Accuracy

Want the execution output of BBQ to be identical to an “ideal”
priority queue… unfortunately, pipelining breaks this property!

BBQ Pipeline

(A, 5)

(C, 50)

(B, 20)

DEQMax

(D, 60)

Accuracy

Want the execution output of BBQ to be identical to an “ideal”
priority queue… unfortunately, pipelining breaks this property!

BBQ Pipeline

(A, 5) (B, 20)

DEQMaxDEQMax

(C, 50) (D, 60)

Accuracy

Want the execution output of BBQ to be identical to an “ideal”
priority queue… unfortunately, pipelining breaks this property!

BBQ Pipeline

(A, 5) (B, 20)

DEQMax

BBQ Pipeline

DEQMax

(C, 50) (D, 60)

The highest-priority element in the system is not always in the
BBQ, creating potential scheduling inaccuracies.

Accuracy

Want the execution output of BBQ to be identical to an “ideal”
priority queue… unfortunately, pipelining breaks this property!

Accuracy

We prove that combining BBQ with a tiny PIFO recovers accuracy. The
composite design has all the nice properties of BBQ, but without the
pipeline latency.

	Slide 1: BBQ: A Fast and Scalable Integer Priority Queue for Hardware Packet Scheduling
	Slide 2: Packet Scheduling in the Wild
	Slide 3: Programmable Packet Scheduling
	Slide 4: Programmable Packet Scheduling
	Slide 5: Programmable Packet Scheduling
	Slide 6: Programmable Packet Scheduling
	Slide 7: Programmable Packet Scheduling
	Slide 8: Programmable Packet Scheduling
	Slide 9
	Slide 10: Programmable Packet Scheduling
	Slide 11: This Talk
	Slide 12: This Talk
	Slide 13: Minimum requirements for scheduling in switches and SmartNICs
	Slide 14: This Talk
	Slide 15: Existing designs are infeasible
	Slide 16: Existing designs are infeasible
	Slide 17: Existing designs are infeasible
	Slide 18: This Talk
	Slide 19: Key Idea
	Slide 20: Integer Priority Queueing (IPQ)
	Slide 21: Integer Priority Queueing (IPQ)
	Slide 22: Integer Priority Queueing (IPQ)
	Slide 23: Integer Priority Queueing (IPQ)
	Slide 24: Integer Priority Queueing (IPQ)
	Slide 25: Integer Priority Queueing (IPQ)
	Slide 26: Integer Priority Queueing (IPQ)
	Slide 27: Integer Priority Queueing (IPQ)
	Slide 28: Integer Priority Queueing (IPQ)
	Slide 29: Bitmapped Bucket Queue (BBQ)
	Slide 30: Scalability comes for free
	Slide 31: BBQ is highly optimized for performance
	Slide 32: BBQ is highly optimized for performance
	Slide 33: BBQ is highly optimized for performance
	Slide 34: BBQ is highly optimized for performance
	Slide 35: BBQ is highly optimized for performance
	Slide 36: BBQ supports logical partitioning with zero fragmentation and performance overhead
	Slide 37: BBQ supports logical partitioning with zero fragmentation and performance overhead
	Slide 38: How does BBQ meet our requirements?
	Slide 39: This Talk
	Slide 40: BBQ Evaluation (FPGA): Performance
	Slide 41: BBQ Evaluation (FPGA): Performance
	Slide 42: BBQ Evaluation (FPGA): Performance
	Slide 43: Conclusion
	Slide 44: BBQ Evaluation (FPGA): Resources
	Slide 45: How does BBQ fit in the context of approximate priority queue designs?
	Slide 46: Accuracy
	Slide 47: Accuracy
	Slide 48: Accuracy
	Slide 49: Accuracy
	Slide 50: Accuracy
	Slide 51: Accuracy

