APPROXIMATE CACHING FOR EFFICIENTLY SERVING TEXT-TO-IMAGE DIFFUSION MODELS

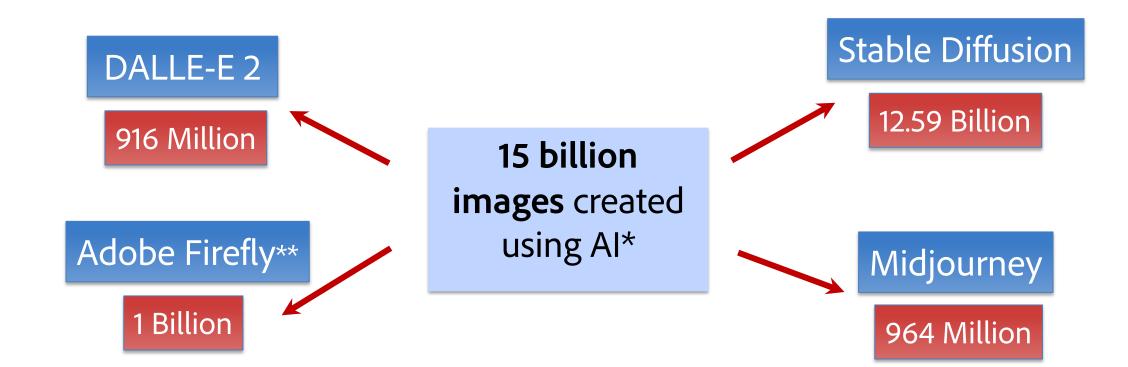
Shubham Agarwal¹, Subrata Mitra^{*,1}, Sarthak Chakraborty², Srikrishna Karanam¹, Koyel Mukherjee¹, Shiv K. Saini¹

Adobe Research¹, UIUC²

* corresponding author

Networked Systems Design and Implementation (NSDI 2024)

Popularity of Text-to-Image



Abstract Arts

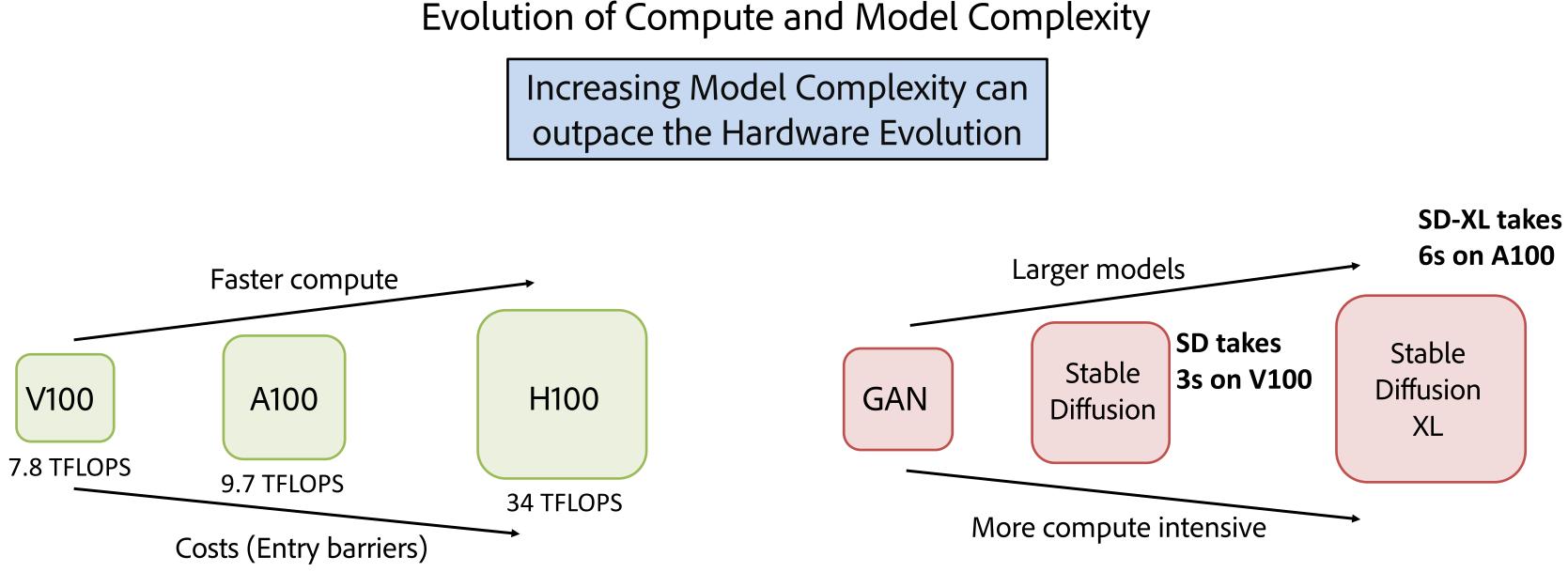
Text Art

Cartoons

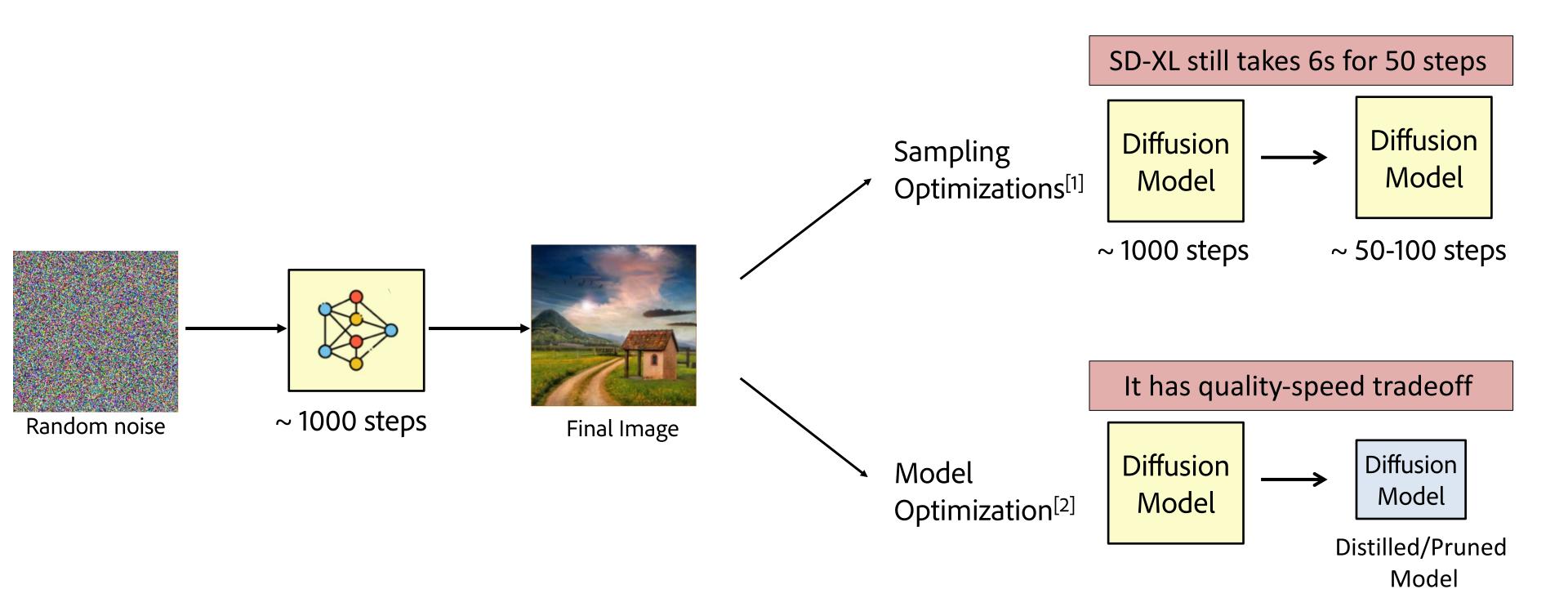
* As of Aug 2023, [https://journal.everypixel.com/ai-image-statistics] ** To date, **Firefly generated over 6.5 billion images and counting!**

Flyers and templates

Soaring Costs with Popularity



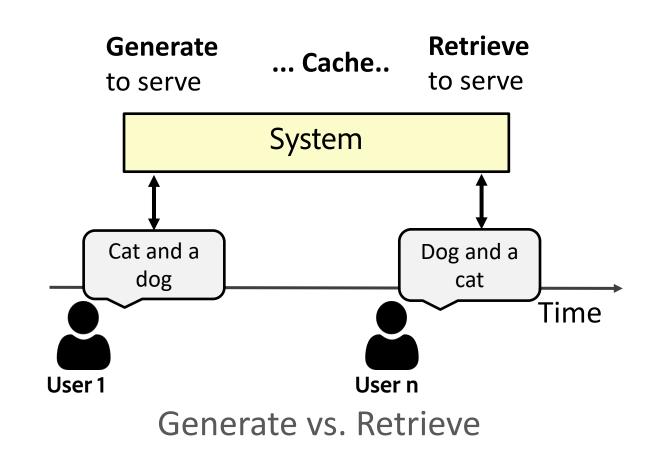
Efficiency of Diffusion models



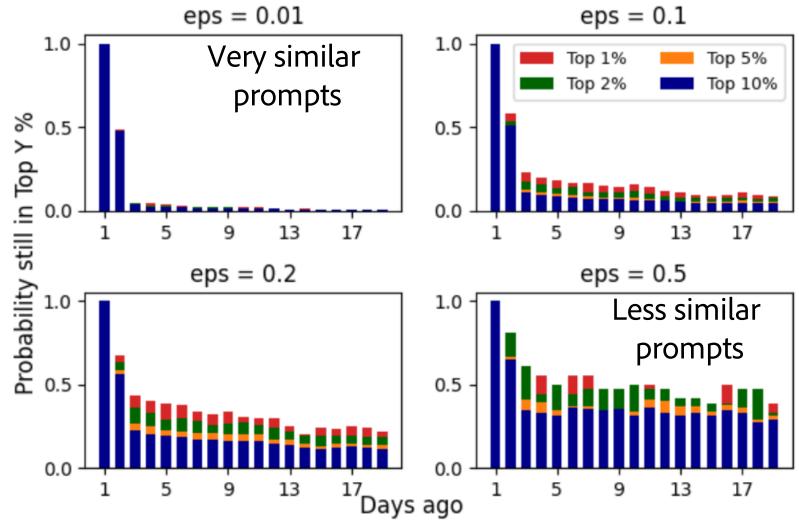
[1] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast sampling of diffusion models via operator learning. In ICML 2023. [2] Chenlin Meng, Robin Rombach, Ruigi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On distillation of guided diffusion models. In CVPR, 2023.

Proposed Caching Technique

Previous works have overlooked the use of text-to-image systems across multiple generations

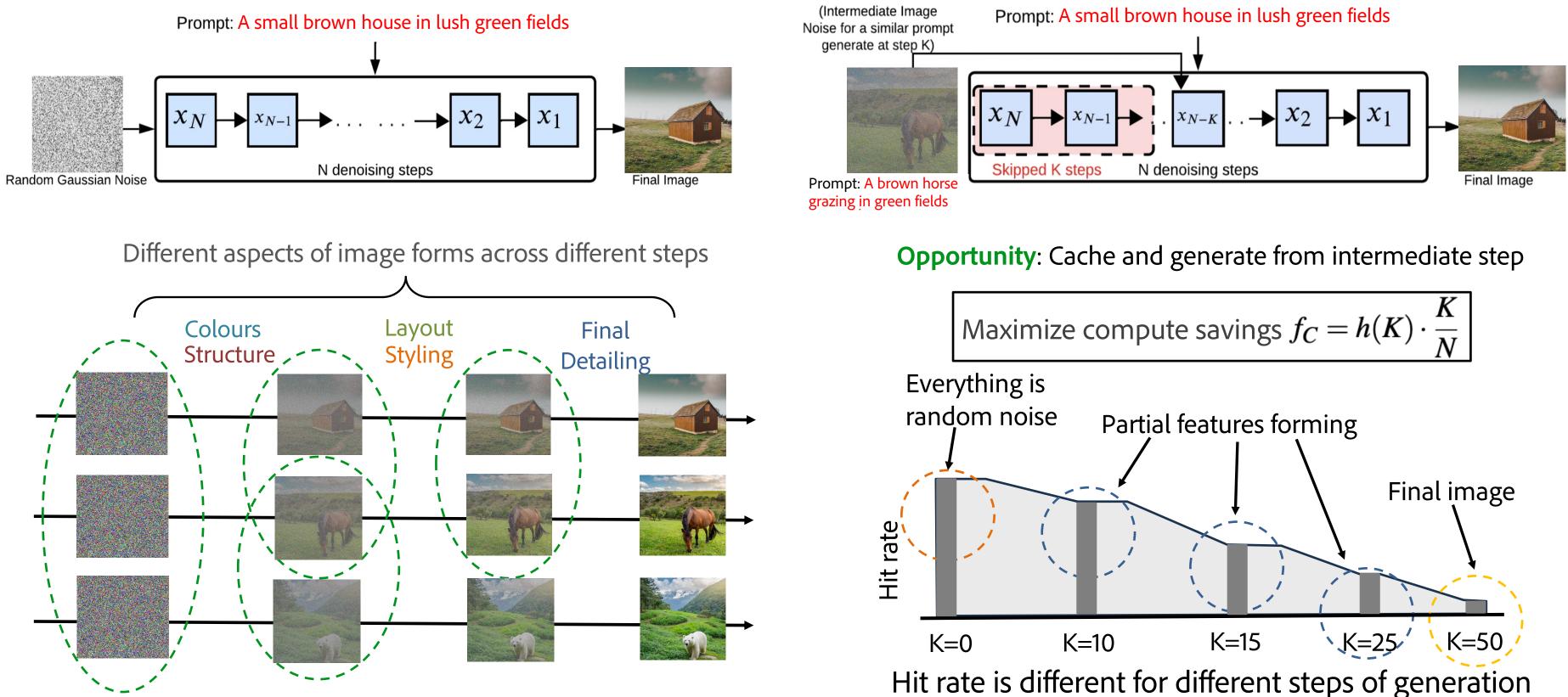


In this work, we reduce the generation time by using a simple-yet-novel approach of **caching**



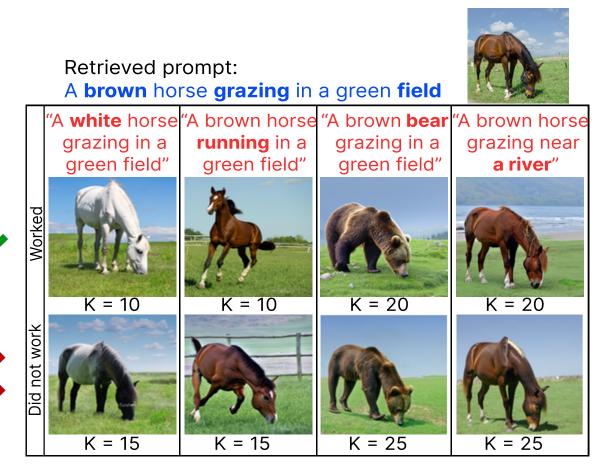
Top Prompt Clusters' Popularity Over Days

Proposed Approximate Caching



Cache Selection

Cache Selector Heuristic Hypothesis – More steps can be skipped for a prompt if its cache is more similar

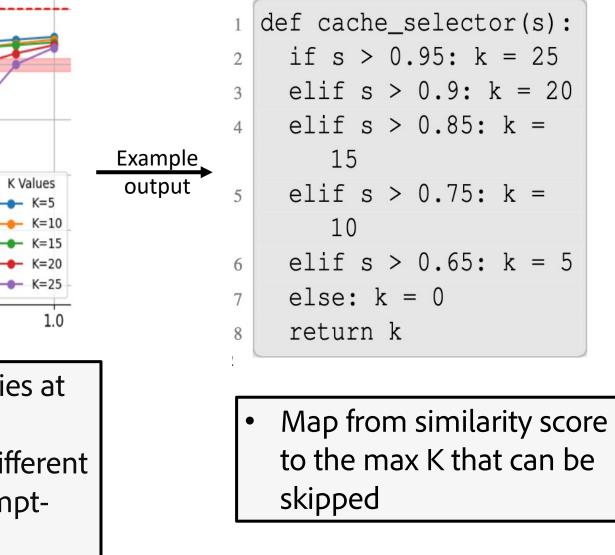


K is Determined by Prompt-Cache Similarity: Noise from a Brown Horse Transforms into Different Prompts, Limited by K

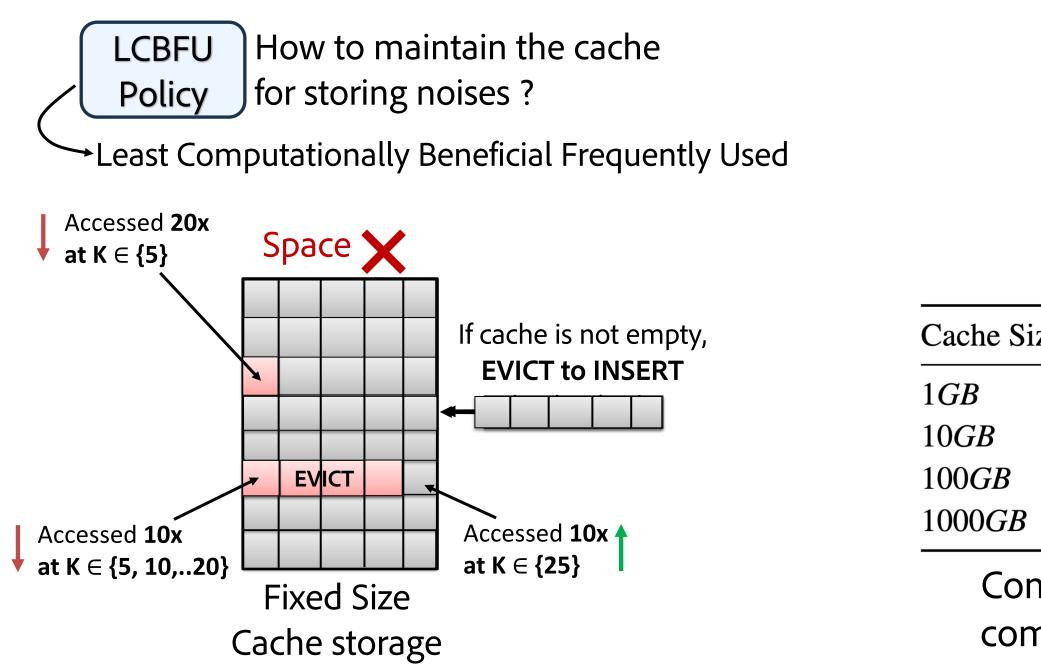
Determine K

- Generate Images for queries at different K values
- Profile Image Quality at different K values for different Prompt-Cache similarity levels

Determine K in terms of Similarity score



Cache Management



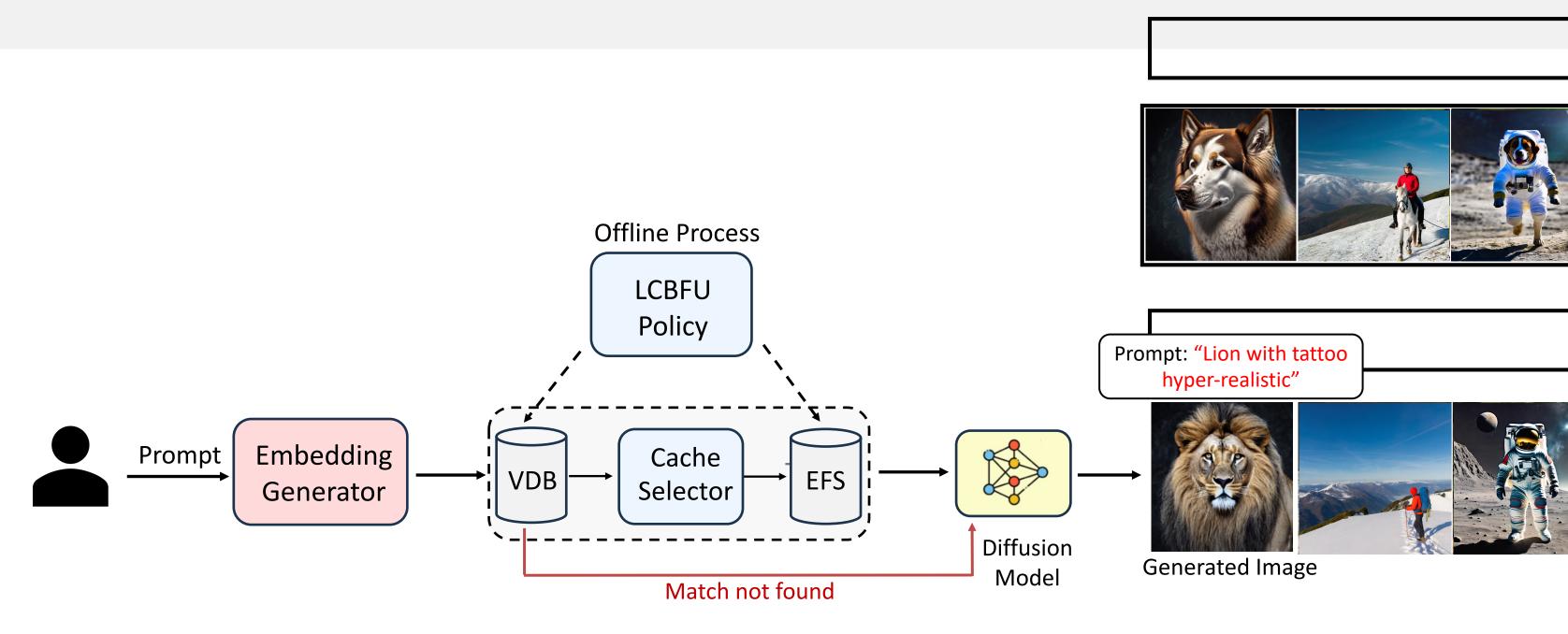
Least Computationally Beneficial Cache (*LCBFU*) Eviction Policy?

Score = K (potential savings) * f (frequency of use)

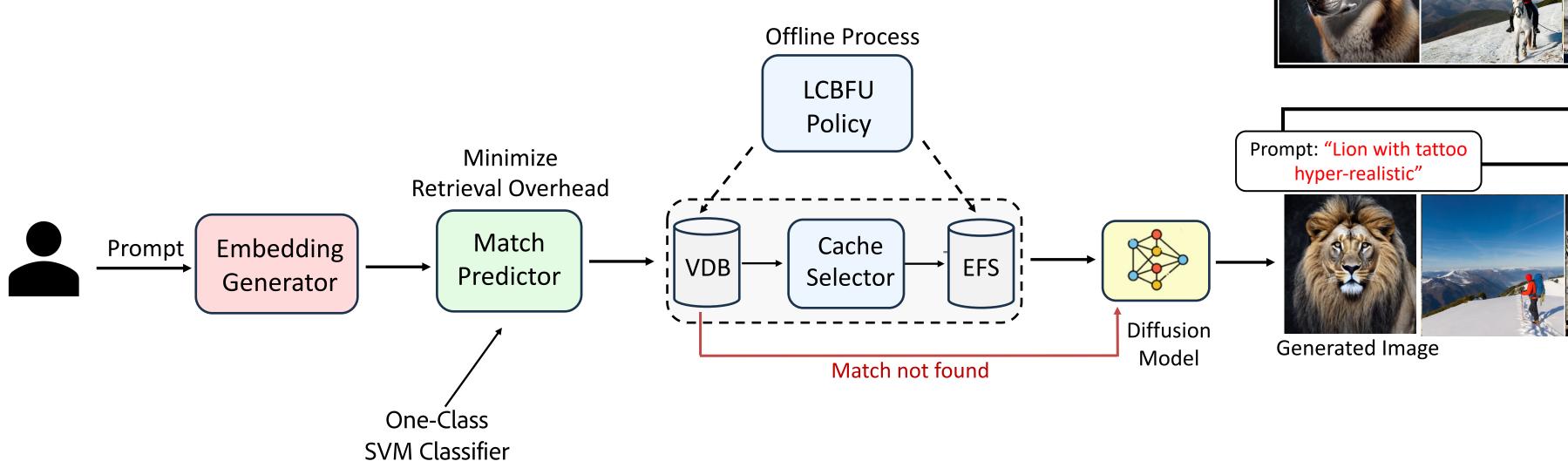
size(GB)	#noises in cache	FIFO	LRU	LFU	LCBFU
	1500	0.11	0.12	0.12	0.12
	15000				0.15
	150000				0.18
}	1500000	0.17	0.20	0.19	0.23

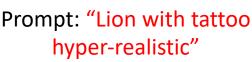
Compute Savings facilitated by LCBFU compared to other eviction techniques

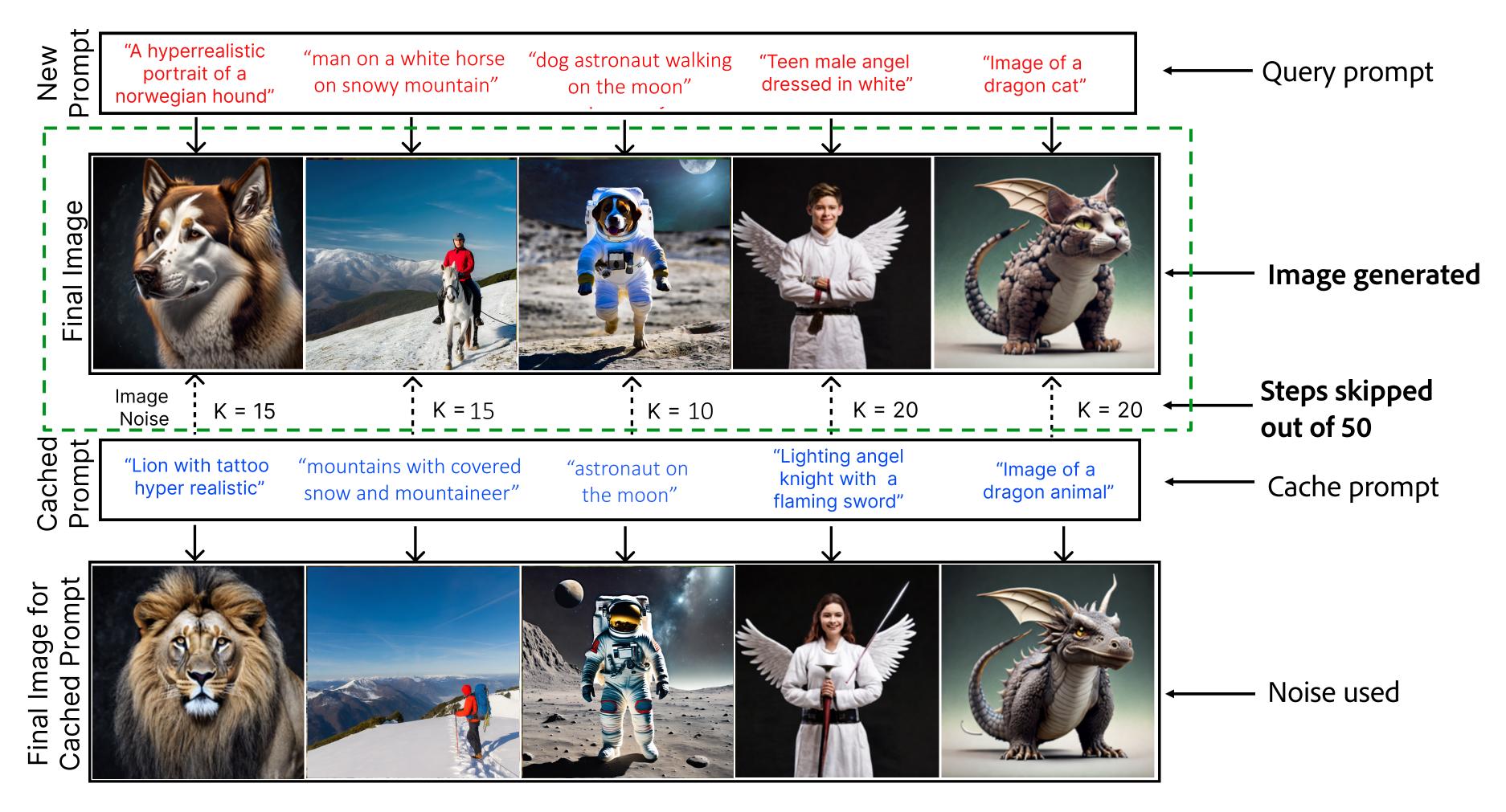
NIRVANA: Proposed pipeline



NIRVANA: Proposed pipeline



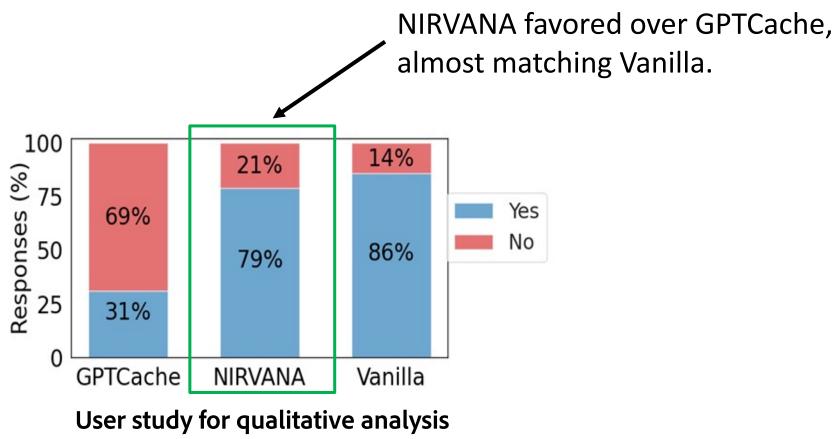




NIRVANA: Results

- We evaluate Nirvana quality using FID, CLIP and PickScore.
- We use real prompt traces from production.
- We conduct a user study with 60 participants.

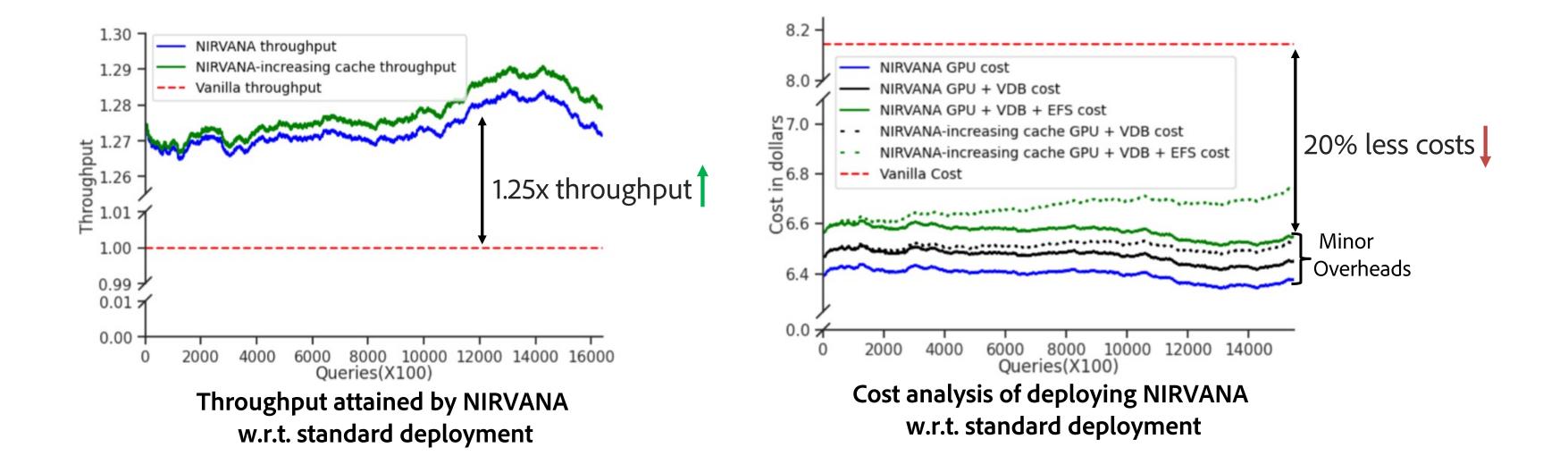
	Models	Quality			
Dataset		$FID\downarrow$	CLIP Score †	PickScore	
DiffusionDB	GPT-CACHE	7.98	25.84	19.04	
	PINECONE	10.92	24.83	18.92	
	CRS	8.43	24.05	18.84	
	SMALLMODEL	11.14	25.64	18.65	
	NIRVANA – w/oMP	4.94	28.65	20.35	
	NIRVANA	4.68	28.81	20.41	
	VANILLA	6.12-6.92	30.28	20.86	
System-X	GPT-CACHE	8.15	26.32	19.11	
	PINECONE	10.12	24.43	18.83	
	CRS	8.38	23.81	18.78	
	S MALL M ODEL	11.35	25.91	18.92	
	NIRVANA $-w/oMP$	4.48	28.94	20.31	
	NIRVANA	4.15	29.12	20.38	
	VANILLA	5.42-6.12	30.4	20.71	



Comparison of NIRVANA against retrieval-based baselines. We also compare against a small distilled model.

NIRVANA: Results

• We assess the end-to-end speedup and cost reductions realized by NIRVANA.



We introduce **NIRVA** Diffusion models.

The idea is to **cache a** text prompts.

Analysis and Conclusion

We introduces a **new** management.

We show the effective **logs***.

*Collected from Stable Diffusion public Discord server

We introduce NIRVANA: An Approximate Caching Technique for

The idea is to cache and reuse intermediate states from previous

We introduces a **new eviction technique** *LCBFU* for cache

We show the effectiveness of NIRVANA using two real prompt

Thank you

NSDI Paper link

Contact: shagarw@adobe.com

Adobe Research