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Abstract
Data plane verification is designed to automatically verify net-
work correctness by directly analyzing the data plane. Recent
data plane verifiers have achieved sub-millisecond verification
for per rule update by partitioning packets into equivalence
classes (ECs). A large number of data plane updates can be
generated in a short interval, known as update storms, due
to network events such as end-to-end establishments, disrup-
tion or recovery. When it comes to update storms, however,
the verification speed of current EC-based methods is often
slowed down by the maintenance of their EC-based network
model (EC-model).

This paper presents EPVerifier, a fast, partitioned data plane
verification for update storms to further accelerate update
storms verification. EPVerifier uses a novel edge-predicate-
based (EP-based) local modeling approach to avoid drastic
oscillations of the EC-model caused by changes in the set of
equivalence classes. In addition, with local EPs, EPVerifier
can achieve a partition of verification tasks by switches that
EC-based methods cannot to get better parallel performance.
We implement EPVerifier as an easy-to-use tool, allowing
users to quickly get the appropriate verification results at any
moment by providing necessary input. Both dataset trace-
driven simulations and deployments in the wild show that
EPVerifier achieves robustly fast update storm verification and
superior parallel performance and these advantages expand
with the data plane’s complexity and storm size growth. The
verification time of EPVerifier for an update storm of size
1M is around 10s on average, a 2-10× improvement over the
state-of-the-art.

1 Introduction

Network faults such as forwarding loops, black holes, and
reachability issues caused by misconfigurations, hardware or
software problems can result in significant economic losses
and social impact [12, 16, 21]. Manual troubleshooting is
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Figure 1: For the state-of-the-art equivalence-class-based data
plane verifiers, the proportion of the Updating Network Model
to the overall verification time explodes as the storm size (the
number of updates in the update storm) expands.

inefficient and prone to introduce new errors due to over-
sight. Therefore, network verification is proposed to auto-
matically detect network correctness and avoid error-prone
manual analysis by inferring all possible network behav-
iors based on the network’s control plane configurations
[5, 10, 13, 14, 25, 26, 32, 34] or data plane forwarding state
[6, 15, 17–20, 23, 33, 37], which are known as control plane
verification and data plane verification, respectively.

In particular, this paper focuses on data plane verifica-
tion, which directly checks the data plane to detect whether
the network violates invariants (loop and blackhole) or other
user-defined specifications (e.g., reachability). A typical data
plane verification process usually consists of three steps: 1)
Identifying network changes, which identifies hop-by-hop for-
warding behavior changes when updates come by analyzing
rule dependency. 2) Updating network model, which updates
the network model that is consistent with the data plane for-
warding behavior 3) Checking network correctness, which
checks the correctness of the data plane on a forwarding graph
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extracted from the network model. To be useful in practice,
such data plane verifications need to be completed as rapidly
as possible. Otherwise, the verification results may be invalid
due to inconsistencies between the network state captured be-
fore verification and the actual network state that the updates
are delivered into.

On the one hand, recent tools like APKeep [37] achieve
sub-millisecond verification of each update when data plane
updates arrive relatively slowly. Still, on the other hand,
a large number of data plane updates can be arrived in a
short time frame due to network events such as end-to-end
establishments, disruption or recovery, etc., which is called
update storms [15]. In this case, although Flash [15] gets
substantial speed up on update storm verification by avoiding
redundant computations and applying a series of engineer-
ing optimizations, updating the network model still slows
down the verification speed. For example, as shown in Figure
1, in a synthetic wide-area backbone network containing 87
routers and 2308 links, the time consumption of updating
network model as a percentage of the overall verification time
increases with the size of the update storm and stays at a high
level (> 75%) regardless of whether the optimization is ap-
plied or not. This is because their network model is based on
global equivalence classes (ECs) and therefore cannot avoid
network model oscillations, i.e., redundantly modify the part
of the network model where no traffic change occurs. Besides,
Flash divides the header space into multiple subspaces and
distributes the verification of these subspaces to a cluster of
verifiers in parallel. This simple and straightforward partition
can be applied directly to all data plane verification systems.
However, this kind of partition is prone to bottlenecks in prac-
tice because the updates that arrive are most likely not evenly
distributed across subspaces.

To address the above problems and further accelerate up-
date storms verification, we present EPVerifier, a fast, par-
titioned data plane verifier for update storms. Instead of
partitioning packets into a set of ECs and maintaining an
EC-based network model (EC-model) to represent the data
plane forwarding state, EPVerifier maintains network packet
flow with edge predicates(EPs) to form an EP-based network
model, which we call EP-model. Each EP represents the local
packet flow of one specific unidirectional edge. Although the
time consumption of checking network correctness increases
compared to the EC-based methods, such cost is worth it for
update storms. This is because checking network correct-
ness consumes much less time than updating the network
model when there are a large number of updates, and the
EP-model fundamentally avoids modifying the part of the
network model where no packet flow changes, thus greatly
speeding up the network model updating. For parallelism,
EPVerifier can divide verification tasks in a switch-based way
that EC-based methods cannot. This is because EP has a
local nature that EC does not. Data plane updates that affect
only the forwarding behavior of a single switch will also only

affect edge predicates on that switch. However, using ECs
to represent network traffic makes the same EC appear on
different switches, meaning that traffic changes on one switch
may also affect other switches. This local nature allows the
EPVerifier to divide switches into clusters, which we call re-
gions. We divide the regions after the update storms arrive to
ensure that updates are evenly distributed among regions. We
fully implement EPVerifier as an easy-to-use tool, users can
quickly get the appropriate verification results at any moment
by providing necessary input. The evaluation results on both
datasets simulations and deployments in the wild show that
EPVerifier achieves robustly fast update storm verification
and superior parallel performance and these advantages ex-
pand with the data plane’s complexity and storm size growth.
Compared to the state-of-the-art, EPVerifier is up to more
than 10× faster.
Contributions. In summary, our main contributions are:

• We propose a novel network modeling approach based
on edge predicates (EPs), which can quickly load a large
number of data plane updates as they arrive. This ap-
proach fills the gap for fast update storm verification.

• A novel verification approach that can divide verification
tasks by switches to achieve fast update storms verifica-
tion in parallel.

• EPVerifier, an implementation of our approaches, eval-
uated on both datasets trace-driven simulations and de-
ployments in the wild. EPVerifier achieves substantial
gains compared to the state-of-the-art, and such advan-
tages expand with the complexity of the data plane and
the growth of the update storm size.

Roadmap. The problem definition for updating storm verifi-
cation (§ 2) and the architecture and workflow of EPVerifier
(§ 3) are given first, followed with examples to illustrate the
difference between our approach and the state-of-the-art (§
4). Then, the design details (§ 5) are presented and the exper-
imental results (§ 6) are shown. After disscussing future (§ 7)
and related work (§ 8), the conclusion is drawn (§ 9).

2 Problem Definition

Network model. On a data plane consists of N devices, the
forwarding behavior of each device i is controlled by its rout-
ing table Ti, where each item Ti[k] is a 3-tuple (m,a, p). Here
m denotes the packets matched by this item, a denotes where
the packets matched by this item will be forwarded to, and
p denotes the priority of a routing table item. Since the m
of different items in the same routing table may overlap, the
packets governed by each item are determined by both m and
p. When a packet arrives, device i iterates through each item
on Ti in decending order of priority to get the highest priority
item Ti[k] that matches the packet and forwards the packet to
Ti[k].a. The data plane forwarding behavior then can be mod-
eled using an edge-labeled directed graph G(V,E, l), where
the nodes V represent devices, and edges E represent simplex
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links. The function l : E → Label assigns to each edge a
label that represents the packet flow on this edge. Note that
different network models have different labels, for example,
for the EC-model, the label is a set of equivalence classes,
while for the EP-model it is an edge predicate.
Identifying network changes. Consider an update storm
S consisting of K data plane updates, where each update
is denoted as an insertion or deletion of a 4-tuple FIB rule
r(match, f rom, to, priority). And the installation process of
these updates in the data plane is the insertion or deletion
of the item (match, to, priority) from the routing table Tf rom.
However, the change of packet flow due to the entry insertions
or deletions is not straightforward because of the priority, i.e.,
we cannot directly modify the edge label based on r.match.
Therefore, to specify the set of packets that a rule actually af-
fects, we need a new field hit, introduced by [37], to represent
the set of packets that a rule actually affects in the network.
The hit is defined as follows:

r.hit = r.match∧¬(∨r′.prio>r.prior′.match) (1)

Here r′ denotes other FIB rules that share the routing table
with r. With hit field, the network change of S is defined as
follows:

S.change = (r1.hit, ...,rK .hit) (2)

Updating network model. The update process of the network
model G is actually the modification process of the edge label
l. For the insertion of rule r, there are two parts of the edge
label that need to be modified: 1) r.hit need to be merged into
the label on edge(r. f rom,r.to) and 2) deleted from the label
on edge(r. f rom,∗), here ∗ means any value that is not r.to.
The similar goes for rule deletion.
Checking network correctness. After updating the network
model, the verifier uses graph algorithms to check the cor-
rectness of the network on a forwarding graph G′(V,E, l′)
extracted from the network model. Similar to G, the forward-
ing graph G′ is also an edge-labeled directed graph, but l′ is
only a subset of l that affected by update storm S. Specifically,
l′ satisfies the following constraint:

l′[(v,v′)] = l[(v,v′)]∧ (∨i=K
i=1 ri.hit) ∀(v,v′) ∈ E (3)

Verification partition. There are two natural ways to decom-
pose complex verification tasks into smaller, parallel computa-
tions: subspace-based partition and switch-based partition, as
described in turn. First, the subspace-based partition achieves
parallelism by dividing the forwarding state of the overall
network into multiple subspaces. Namely, subspace-based
partitions build multiple network models, each representing
the forwarding behavior in a subspace, just like network slices.
Second, the purpose of the switch-based partition is to divide
the network model into different clusters of switches, which
we call regions, and manage the forwarding state of different
regions in parallel. In other words, switch-based partition only
constructs one network model but maintains different parts
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Figure 2: The architecture and workflow of EPVerifier, which
requires three inputs: 1) the data plane topology and configu-
ration provided by the controller for building the EP-model 2)
Controller-generated update storms that will be delivered into
the data plane 3) the user-defined specifications (reachability,
waypointing, etc.)

simultaneously to keep the overall network model consistent
with the data plane forwarding behavior.

3 Architecture and Workflow

As shown in Figure 2, the EPVerifier is composed of the
following three parts:
The Dispatcher aims to guarantee the data plane updates in
the update storms evenly across the different regions. When
an update storm arrives, it divides the EP-model into multiple
regions based on the distribution of data plane updates on
each switch, ensuring that the number of updates in each
region is as equal as possible.
The Updater corresponds to the identifying network change
and updating network model of the data plane verification
process. More specifically, it identifies the EP changes in each
region in parallel and applies these changes to the EP-model.
The Verifier is responsible for checking network correctness.
It first extracts the forwarding graph from the EP-model, and
then applies the corresponding algorithm on this graph to
verify the network invariants or user-defined specifications.
Workflow. A typical workflow of using the EPVerifier is as
illustrated in Figure 2. First, the controller * needs to pro-

*Note that the EPVerifier can run in any environment that can provide
data plane updates. For simplicity, we use "controller" to refer to the assisted
system that provides data plane updates to it.
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Figure 3: EPVerifier uses edge predicates to avoid the network model oscillations.

vide the data plane topology and configuration information
to EPVerifier for initializing an EP-based network model in
the bootstrap stage (①). Then, EPVerifier converts each up-
date storm obtained from the controller into a network update
sequence (②), where each item is a data plane update repre-
senting the insertion or deletion of a 4-tuple FIB rule (See
§ 5.2 for more details). The Dispatcher then divides the EP-
model into multiple regions according to the distribution of
updates (③). After that, the Updater identifies the EP changes
in each region in multiple threads (④) and updates the EP-
model to maintain its consistency with data plane forwarding
behavior in parallel (⑤). Finally, the Verifier extracts the for-
warding graph from the updated EP-model (⑥) and uses it
to verify different specifications (⑦), note that here EPVeri-
fier only verifies network invariants (loop and black-hole) by
default, but users also have the option to provide additional
user-define specfications such as reachability, waypointing,
etc. (See § 5.3 for more details.)

4 Example

In this section, we use examples to illustrate 1) the difference
between EP-model and EC-model (§ 4.1) and 2) the difference
between switch-based partition for EP-model and subspace-
based partition for EC-model (§ 4.2).

4.1 Network Model

As shown in Figure 3, our example is based on a small net-
work of six switches. We use a directed edge-labeled graph
to represent the forwarding state of the data plane, and the

label on each edge indicates the packet flow on that edge. For
simplicity, let us assume that an update storm consisting of
three rules arrives at some point. The details of the three rules
r1, r2 and r3 are shown in the top-middle of the Figure 3. The
three rules are delivered to switches A, W and B and the set
of matched packets are α2,α3,α4, respectively. For priority,
r1, r2 and r3 have increasing priority and are higher than all
existing rules in the network.

The initial state of the data plane is shown in the top-left
corner of the Figure 3, where the packets matched by α1 from
S are forwarded to D via A, W and C. We show how α1, α2,
α3 and α4 overlap with each other by parallel lines in the
top-right corner of the Figure 3.

We now discuss how the EC-based method maintains EC-
model. Since each equivalence class(EC) is a set of packets
that experience the same forwarding actions throughout the
network [20], thus, in our example, the network initially con-
tains only one equivalence class, EC1, which denotes the
identical group of packets represented by α1. However, EC1
is continuously split into the final 7 ECs after inserting all
three rules: First, with the insertion of r2, the action of all
packets matched by α2 on switch A changes from W to B
because the priority of r1 is greater than all the old rules on
switch A. This results in splitting the EC1 into EC2, EC3 and
EC4 in the EC-model. After this, with the insertion of rule
r2, EC4 is split into EC5, EC6 and EC7. Finally, after the
insertion of rule r3, EC3 and EC6 are split into EC8, EC9
and EC10, EC11 respectively.
Network model oscillations. Note that although each rule
insertion only affects the packet flow on 1-2 edges, each EC
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Figure 4: Two natural ways for the data plane verification partition.

split caused by rule insertions results in a large number of
modifications to the EC model (red label in the forwarding
graph). This is due to the fact that the equivalence classes of
the entire network appear on a large number of edges in the
EC-Model, i.e., the global nature of ECs. Although the EC-
based method can be improved in practice to avoid problems
such as the explosion of the number of equivalence classes
[37], redundant computation [15], the dramatic oscillation of
the EC-model caused by changes in the set of equivalence
classes are fundamentally unavoidable. Thus, we conclude
that the global nature of EC fundamentally limits the speed of
updating the network model and thus slows down the update
storms verification.

We then illustrate how EPVerifier avoids the above oscil-
lations of the network model and accelerates the verification
time of update storms. Unlike the EC-model that divides pack-
ets into a set of ECs and uses ECs to label each directed edge
in the network forwarding graph, the EP-model of EPVerifier
represents packet flow in the network by maintaining edge
predicates (EPs). An edge predicate is defined as follows.
Definition (Edge Predicate): An edge predicate(EP) is a
3-tuple( f rom, to,P), indicating that any packet p ∈ P will be
forwarded by device f rom to device to.

As the definition describes, each directed edge ( f rom, to)
in the EP-model corresponds to each EP individually, deter-
mining that each EP in the network model will only appear
once, i.e., the local nature of EP. When a rule update comes,
such local EPs allow EPVerifier to keep the network model
consistent with the data plane by only modifying those EPs
whose bound edges have packet flow changes. For example,
as shown in Figure 3, we use the packet flow on each edge to
represent the EPs in the network model. In this case, when
rule r1 arrives, EP-model only needs to modify the EP on
edge (A,W ) and (A,B) because there are packet flow changes
on them due to the installation of rule r1.

In summary, for the network model, the EC-based methods
cannot avoid the oscillations in the network model caused
by changes in the EC set due to the global nature of EC,
which slows down the verification time of update storms.
To further accelerate and achieve fast verification of update
storms, EPVerifier uses EPs to represent packet flow in the
network instead of global ECs to ensure that only the part of
the network model with packet flow changes is modified.

4.2 Partition
Suppose we want to divide the overall verification task into
two smaller tasks for parallel computation. As described in §
2, there are two natural ways to achieve parallelism: subspace-
based partition and switch-based partition. We now illustrate
the difference between them.

The subspace-based partition achieves parallelism by slic-
ing the forwarding state of the overall network into multiple
subspaces. Specifically, as shown in the left side of the Figure
4, The subspace-based partition creates two network models,
each accepting the updates from subspace1 and subspace2,
respectively. Ideally, when the updates are evenly distributed
among different subspaces, this simple and straightforward
partition can significantly reduce the number of updates a
single network model needs to handle. However, since the
subspaces and the corresponding network models are built
before the arrival of update storms, the subspace-based parti-
tion will easily encounter the following limitations in practice:
1) updates are biased towards one subspace, e.g., as shown
in Figure 4, r1,r2,r3 and r4 are generally biased towards
subspace2. 2) Some updates may affect multiple subspaces at
the same time, e.g., r3 affects both subspace1 and subspace2.

Unlike subspace-based partition, the purpose of the switch-
based partition is to divide the forwarding graph into different
clusters of switches, which we call regions, and manage the
forwarding state of different regions in parallel. The key
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Algorithm 1: Divide update storm R into N region
update sequences

1 for i ∈ Range(len(V )) do
2 v←the unvisited switch that has the maximum

number of updates;
3 r← the region sequence index that has the

minimum number of updates;
4 add all updates on v to the sequence Sr;

5 return S;

difference between switch-based partition and subspace-based
partition is that the regions are divided after the update storms
arrive. Therefore, switch-based partitioning can modify the
partition of regions according to the update storms to make
the number of updates in different regions as even as possible.
For example, as shown in the right side of Figure 4, the switch-
based partition first divides the network model in terms of
switches. Then it combines the switches into region1 and
region2 according to the rules distribution to ensure that the
four rules are evenly distributed among the two regions.

While switch-based partition performance is better than
subspace-based partition, EC-based methods are unable to
apply this partition. This is because the edge label of the
EC-model is a set of equivalence classes, which re-couples
the various regions that were intended to be isolated from
each other, and the synchronization costs associated with this
coupling are unacceptable. Hence the state-of-the-art EC-
based data plane verifier [15] only divides the network into
multiple subspaces to squeeze out the parallel potential of
the EC-model. In contrast, after employing edge predicates
in place of equivalence classes, we make a key observation
that EP’s inherently local properties make it highly conducive
for switch-based partition. This is because each update can
affect only the EP of those edges emanating from the switch
where the update is being installed, so EPVerifier can easily
divide the EP-model into isolated regions and maintain them
in parallel for fast verification of update storms.

5 Design Detail

In this section, we discuss the design detail of EPVerifier.
We first show how to divide the network model into multiple
regions by switches (§ 5.1). And then illustrate the EP-model
updating process (§ 5.2), followed with an introduction on
how to use the EP-model to check the correctness of the data
plane (§ 5.3).

5.1 Switch-based Partition
Representation of the packet set P. Considering a packet
with a match field of h bits, we can think of this packet as
a boolean formula consisting of h boolean variables. For
example, an IP match field of 128.0.0.0/16 can be represented

Algorithm 2: GetHit(r)

1 r.hit← r.match;
2 for r′ ∈ r. f rom.rules do
3 if r′.prio > r.prio && r′.hit ∧ r.hit ̸= False then
4 r.hit← r.hit ∧¬r′.hit;

5 if r.hit = BDD.False then break;

as x1 ∧ x2 ∧ ·· · ∧¬x16. Therefore, the EP, which represents
a set of packets that can traverse through an edge, can also
be represented as a Boolean formula. We adopt the methods
of [33], use binary decision diagram (BDD [9]) to encode
the packet matching field. This enables us to take advantage
of the efficient logical operations provided by BDD, such as
conjunction (∧), disjunction (∨), and negation (¬), in order
to compute and update EPs.
EPs that belong to different switches. The prerequisite for
efficient operations between different BDDs is to share the
same boolean variables, so existing BDD libraries usually use
BDD managers to organize BDDs that share the same boolean
variables, and only BDDs that belong to the same manager
can perform logical operations with each other. However, in
such cases, BDDs that belong to the same BDD manager incur
significant synchronization costs in multi-threaded situations.
Therefore, to accelerate update storms verification, EPVerifier
employs distinct BDD managers for EPs in different switches
to circumvent synchronization costs. With distinct switch
EPs, EPVerifier can then freely combine the switches in the
network into multiple regions.

According to the above description, for a certain update
storm R, in addition to the set of edges E and the set of
points V that represent the topological information of the data
plane, the EPVerifier uses three variables to maintain the EP
model with N regions: S, B and M, as described in turn. First,
S1−SN indicates the update sequences of each region, where
N indicates the maximum number of regions in the network.
Note that N should be smaller than the number of CPU cores
to avoid frequent context switching. Second, B is an array of
BDD managers. For each v ∈ V , B[v] is the BDD manager
of switch v. Namely, All EPs on switch v are encoded by
B[v]. Finally, M is a hash table, which takes the network
model edge as the key. For each edge e(v,v′), M[e] is a BDD
encoded by B[v], indicating the set of packets that can pass
on e. Note that each M[e] is initialized to BDD.False at the
beginning to indicate that there is no traffic on e.

The algorithm 1 shows a sample program for dividing the
update storm R into N region update sequences. It uses a
greedy algorithm to generate N update sequences as evenly
as possible. Specifically, the algorithm picks the switch with
the maximum number of updates in the update storm (Line
2) and adds all the updates to the sequence with the fewest
updates (Line 3-4). Finally, after all the switches have been
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Algorithm 3: UpdateEP(Si)

1 for (r, isInsert) ∈ Si do
2 if isInsert then RuleInsert(r, i) ;
3 else RuleRemove(r, i) ;

4 Function RuleInsert(r, i):
5 GetHit(r);
6 M[(r. f rom,r.to)]←M[(r. f rom,r.to)]∨ r.hit;
7 for r′ ∈ r. f rom.rules do

// sorted by decreasing priorities
8 if r′.prio≤ r.prio && r′.hit ∧ r.hit ̸=

BDD.False then
9 if r′.to ̸= r.to then

10 M[(r. f rom,r′.to)]←
M[(r. f rom,r′.to)]∧¬(r′.hit ∧ r.hit);

11 r′.hit← r′.hit ∧¬r.hit;

12 r. f rom.rules← r. f rom.rules∨ r;

13 Function RuleRemove(r, i):
14 M[(r. f rom,r.to)]←M[(r. f rom,r.to)]∧¬r.hit;
15 r. f rom.rules← r. f rom.rules\ r;
16 for r′ ∈ r. f rom.rules do

// sorted by decreasing priorities
17 if r′.prio≤ r.prio && r′.match∧ r.hit ̸=

BDD.False then
18 if r′.to ̸= r.to then
19 M[(r. f rom,r′.to)]←

M[(r. f rom,r′.to)]∨(r′.match∧r.hit);

20 r.hit← r.hit ∧¬r′.hit;
21 r′.hit← r′.hit ∨ (r.hit ∧¬r′.hit);

22 if r.hit = BDD.False then break;

visited, the final set of region update sequences S is returned
(Line 5).

5.2 Updating EP-model
As described in § 2, rules sharing a routing table may have
overlapping match fields, so the set of packets actually af-
fected by a rule’s insert or remove is determined by both
match and priority, i.e., the hit field.

As shown in Algorithm 2, we calculate the hit field of each
arriving rule update to obtain the impact of this update on the
forwarding behavior of the data plane. And this procedure
illustrates that a rule update may directly or indirectly affect
two types of EPs: 1) the EPs on edge(r. f rom,r.to), which
are directly affected by rule r, 2) and the EPs on other edges’
f rom = r. f rom which are indirectly affected by rule r, note
that these EPs are directly affected by other rules that share
the routing table with the rule r.

Each region rule sequence Si is an array of 2-

tuple(r, isInsert) items. Each item indicates an insertion
(isInsert = True) or deletion (isInsert = False) of a rule r in
the network model. Each rule r is specified as a 4-tuple
( f rom, to,match, priority), where match means the set of
packets matched by this rule, f rom and to means that this rule
will be installed to device f rom and its action is forwarded to
device to.

Algorithm 3 summarizes the update process of EPs in the
region i. For all rules that have an impact on region i, the
EPVerifier calls different methods for rule insertion and dele-
tion separately (Line1-3). For the insertion of rule r (Line
4-12), EPVerifier first calculates the hit field of r according to
the definition of hit (Line 5) and updates the EPs directly af-
fected by r (Line 6). After that, the algorithm iterates through
all the rules r′ that share a routing table with r in descend-
ing order of priority (Line 8) and updates the EPs indirectly
affected by r (Line 8-10), and maintains r′.hit (Line 11). Fi-
nally, EPVerifier adds rule r to the rule set rules of r. f rom to
complete the insertion of rule r (Line 12). For the deletion
of rule r (Line 13-22), since the hit field is already computed
during rule insertion, the EPs on edge(r. f rom,r.to) can be
updated directly at this point using r.hit (Line 14) and the
rule r deleted from r. f rom.rules (Line 15). Subsequently,
similar to rule insertion, EPVerifier updates the EPs directly
affected by those rules with lower priority than r (Line 16-22).
Besides, we find that a rule r affects or is affected by another
rule r′ when their match fields consisting of h bits overlap.
So we can use Trie [22] instead of BDD conjunction to speed
up the rule update installation. Such optimization is omitted
from Algorithm 3.

5.3 Verification
EP transfer algorithm. As described in § 5.1, EPVerifier
employs distinct BDD managers for EPs in different switches
to circumvent synchronization costs. However, BDDs that
belong to different BDD managers cannot operate logical
operations with each other. This is unacceptable for checking
network correctness, which requires the operation of EPs on
different switches. Therefore EPVerifier needs to use the
EP transfer algorithm to migrate the packet flow changes in
different regions to the same BDD manager and generate a
forwarding graph for checking network correctness.

The migration process of EP is the process of migrating
BDDs from a regional BDD manager to a network BDD man-
ager. Specifically, EPVerifier uses two steps to complete the
migration of BDDs: 1) In the region BDD manager, a BDD
is transformed into a set of formulas it represents. For in-
stance, a BDD representation of (x1∧x2∧x3)∨ (x1∧x2∧x3)
would yield a formula set: [x1∧x2∧x3,x1∧x2∧x3]. 2) In the
Network BDD Manager, the formulas are re-converted into bi-
nary decision diagrams (BDDs). While in the worst-case rule,
updates may affect all formulas in the formula set of EPs and
thus cause excessive EP transfer overhead, our experiments
(§ 6.4) show that most rule updates have little impact on EP
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Algorithm 4: TransferEP(e, old, i)

1 delta← old \ e;
2 for f ormula ∈ delta. f ormulas do
3 M′[e.edge]←

M′[e.edge]\B0.encoding( f ormula);
4 a f f ected← a f f ected∨B0.encoding( f ormula);

5 delta← e\old;
6 for f ormula ∈ delta. f ormulas do
7 M′[e.edge]←

M′[e.edge]∨B0.encoding( f ormula);
8 a f f ected← a f f ected∨B0.encoding( f ormula);

formulas, i.e. only 1-2 atomic formulas change. Therefore,
EPVerifier performs incremental migration of changed EPs
rather than starting from scratch to avoid redundant calcula-
tions. In other words, in addition to maintaining a hash table
M that stores network traffic managed by different BDD man-
agers, EPVerifier also maintains an M′ that stores network
traffic encoded by a same BDD manager. Meanwhile, the pro-
cess of maintaining M′ is incremental, i.e., after the updating
of M, the EP transfer algorithm is used to migrate the changes
in M into M′. We use B0 to represent the BDD manager of
M′. The algorithm 4 summarizes the incremental migration
of an EP change old→ e from M to the M′. Note that update
storms may have both rule insertions and deletions, so the
algorithm 4 migrates the decreases (Line 1-4) and increases
(Line 5-8) of e into M′ in two parts and records the set of
packets a f f ected by this update storm for verification.

Algorithm 5: CheckInvariants(G)

1 for s ∈V do
2 Traverse(n,a f f ected,{});
3 Function Traverse(s, p,history):
4 if p = B0.False then return;
5 if s ∈ history then Alert(′loop′);
6 for (s,s′) ∈ E do
7 if M′[(s,s′)] ̸= B0.False then
8 p← p\M′[(s,s′)];
9 history∨ s′;

10 Traverse(s′,M′[(s,s′)]∧ p,history);
11 history\ s′;
12 M′[(s,s′)]←M′[(s,s′)]\ (M′[(s,s′)]∧ p);

13 if p ̸= B0.False then Alert(′blackhole′);

Network invariants. With the forwarding graph G(V,E,M′),
operators can check network invariants, including loop and
blackhole, by traversing G. The algorithm 5 summarizes the
process by which EPVerifier verifies network invariants using
the network forwarding graph. The algorithm starts the depth-

first search (DFS) traversal from each node n ∈ V ( Line1).
In addition to the s representing the current node, the DFS
traversal process carries two parameters: p and history, as
described in turn. First, p represents the packets carried dur-
ing the current traversal, encoded by BDD. Second, history
stores the nodes that have been visited. p is initialized to the
set of packets a f f ected by this update storm at the beginning
of the traversal, while history is initialized to the empty set
(Line2). The traversal stops when p is empty (Line 4). When
the traversal reaches a previously traversed node, a forwarding
loop exists in the network (Line 5). Otherwise, the algorithm
starts with the neighbor node s′ of s in the G for DFS (Line
6). For every s′, the algorithm updates history and carries
M′(s,s′)∧ p for DFS (Line 8-11), and after the traversal of
s′, the algorithm avoids repeated traversals by updating M′

(Line 12). Finally, when all neighboring nodes are traversed,
a blackhole exists if packets remain in s (Line 13).

Algorithm 6: CheckOtherSpecification(G, l)

1 M′[l]← B0.False;
2 Reach←{};
3 Traverse(source,match,waypoints,dst);
4 for node ∈ (waypoints∨dst) do
5 if Reach[node] ̸= match then Alert(′Failure′);

6 Function Traverse(source, p,waypoints,dst):
7 if match = B0.False then return;
8 if source = dst then
9 Reach[source]← Reach[source]∨match;

10 return;

11 if source ∈ waypoints then
Reach[source]← Reach[source]∨match;

12 for (source,next) ∈ E do
13 p← p\M′[(source,next)];
14 Traverse(next,M′[(source,next)]∧

p,waypoints,dst);

Other specifications. In addition to network invariants, Oper-
ators may need to check other specifications, such as whether
certain packets can be forwarded from device a through de-
vice b to device c or whether network invariants are violated
when a link is broken, etc. We now explore how EPVerifier
verifies these specifications. Here, we define a specification
as a 4-tuple(match,source,waypoints,dst), i.e., all packets
matched by a match from device source must be forwarded
in the network via waypoints must be forwarded to device
dst. For such a policy, we carry the packets representing
all the matched packets from the source and traverse G to
simulate the packet forwarding process in the network. This
policy is not violated only when all packets can pass through
waypoints to dst intact. In the case of a change in network
state, such as a broken link, we modify the network forward-
ing graph before traversal.
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Table 1: Dataset Information.

Network Node Links FIB rules Storm Size
Airtel1 68 220 6.89×104 10K
Airtel2 68 260 9.84×104 10K

Berkeley 23 252 1.28×107 1M
INET 315 40770 2.49×108 1M

RF1755 87 2308 3.37×107 1M
RF3257 161 9432 7.45×107 1M
RF6461 138 8140 7.50×107 1M

The algorithm 6 summarizes how EPVerifier uses the net-
work forwarding graph G(V,E,M′) to verify that when the
link l fails, all packets from source that are matched by match
can are forwarded to device dst via waypoints. The algorithm
first sets the EP on l to False to simulate a link failure (Line 1),
and then initializes the variable Reach (Line 2), which records
the packets that can be reached on each waypoint. Unlike the
verification invariant, the algorithm directly carries the set of
packets match of interest to the user for DFS traversal (Line
3). During the subsequent traversal (Line 6-14), the algorithm
keeps track of the packet forwarding process by maintaining
the Reach variable. After the traversal is completed, the spec-
ification is verified by checking whether all packets in match
reach waypoints and dst (Line 4-5).

6 Evaluation

We fully implement EPVerifier as an easy-to-use tool and test
it exhaustively with trace-driven simulations and deployments
in the wild.

6.1 Setup
Implementation. We implemented EPVerifier as an easy-to-
use tool in ∼4000 lines of Java code. In particular, EPVerifier
exposes a init() function that accepts data plane topology and
configuration information for initializing the EP-model and a
verify() function that accepts update storms with user-defined
specifications (if any) for verifying data plane correctness.
For the parallelism part, we use the standard asynchronous
thread of OpenJDK. For BDD operations, we use JDD, a
BDD library for Java [30].
Dataset. Table 1 summarizes the information about the
dataset we use. They all come from the open source dataset
[1,17]. The Airtel1 and Airtel2 are generated using the ONOS
SDN-IP application [3, 11]. And the remaining five datasets
are synthetic datasets generated using the mechanism in [36].
Specifically, [17] collects IP prefixes from real-world BGP up-
dates collected by the Route Views project [4] and computes
the shortest paths in the network topology [27].
Methods to compare. We compare EPVerifier with two state-
of-the-art data plane verifiers, APKeep [37] and Flash [15],
because their evaluation identifies that they achieve the most
generic and fastest data plane verification. 1) APKeep∗: Since

we did not find an open-source implementation of APKeep,
we implement APkeep ourselves following the pseudocode
in [37], referred to as APKeep∗. 2) Flash: we use its open-
source implementation in Java [2]. Apart from the above
two methods, we also consider EPVerifier∗, standing for
EP-model with subspace-based partition instead of switch-
based partition to evaluate the performance gap between the
subspace-based partition and our switch-based partition.
Simulation objective. We use the above dataset traces to
discuss the following questions:

• what is the overall performance gap between EPVerifier
and the state-of-the-art data plane verifiers? (§ 6.2)

• what is the performance gap between the EP-based net-
work model and the EC-based network model? (§ 6.3)

• what is the performance gap between switch-based parti-
tion and subspace-based partition? (§ 6.4)

Simulation testbed. We run all our simulation experiments
on a Ubuntu 20.04(x64) LTS with a 3.4 GHz Intel 8-core CPU
and 32 GB of RAM. The OpenJDK v19.0.2 is installed for
Java support.
Deployment. Apart from simulations, We deploy EPVerifier
and Flash onto a network control plane of a commercial data
center backbone network for testing the real-world perfor-
mance of EPVerifier (§ 6.5). The placement and operations
are similar to those described in § 3, operators provide infor-
mation about the update storms they are interested in, as well
as a snapshot of the network before the update storms are
issued, to the verifiers, which then parse these information
and check whether the delivery of each update storm violates
network invariants or user-defined specifications.

6.2 Overall Performance
We now evaluate the overall performance of EPVerifier in
dealing with update storms. For network correctness, we
verify the presence of forwarding loops in the network be-
cause the verification of forwarding loops requires completely
traversing the entire forwarding graph while other specifica-
tions only need to traverse part of it. Since we use an 8-core
CPU, we divide the network into eight subspaces or eight
regions to make full use of the eight threads. As described in
Table 1, for each dataset, we randomly select 10K or 1M rule
insertions to form a update storm and deliver it to EPVerifier.
After this update storm is installed and the loop is verified, we
record the memory consumption and install another update
storm, which is composed of 10K or 1M rule deletions in the
same order.

The overall time, memory consumption and the number of
BDD operations for the above process under different scenar-
ios and datasets are summarized in Table 2.

In terms of time consumption, we can see that EPVeri-
fier achieves significant performance improvements on most
datasets, especially on the last four datasets where the network
topology is dense and prone to update storms; for example,
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Table 2: Time, memory cost and BDD operations of different methods

Network Time cost (s) Memory Usage (MB) BDD Operations
APKeep∗ (speedup) Flash (speedup) EPVerifier∗ (speedup) EPVerifier (speedup) APKeep∗ Flash EPVerifier∗ EPVerifier APKeep∗ Flash EPVerifier∗ EPVerifier

Airtel1 0.44 (4.9×) 0.10 (1.1×) 0.03 (0.3×) 0.09 (1×) 63.76 64.15 65.67 407.41 1×106 3×105 8×104 5×105

Airtel2 0.23 (2.6×) 0.08 (0.9×) 0.03 (0.3×) 0.09 (1×) 66.37 63.78 65.37 399.48 1×106 3×105 1×105 6×104

Berkeley 2262.15 (157×) 34.29 (2.4×) 41.57 (2.9×) 14.42 (1×) 1434.57 1312.56 1866.29 2829.26 7×109 1×107 3×106 4×106

INET 14458.69 (557×) 800.65 (31×) 38.60 (1.5×) 25.98(1×) 8178.28 6124.18 2149.38 5253.45 2×1010 3×109 7×107 7×107

RF1755 10196.17 (856×) 100.08 (8.4×) 48.03 (4×) 11.91 (1×) 2924.07 2419.23 2018.21 3364.27 2×1010 2×108 4×106 5×106

RF3257 10473.87 (785×) 208.95 (15.7×) 37.05 (2.8×) 13.34 (1×) 4947.75 3876.56 2191.80 3987.75 2×1010 7×108 1×107 1×107

RF6461 8736.91 (668×) 157.57 (12×) 34.51 (2.6×) 13.07 (1×) 4502.41 3567.80 2135.69 3987.23 2×1010 6×108 1×107 1×107

EPVerifier is 557× and 31× faster than APKeep and Flash
respectively on the INET dataset, and at least 10x faster on
the last three datasets. The overhead of the network model
oscillations (§ 4.1) depend mainly on the number of edges in
the network model, so for the Airtel1 and Airtel2 with fewer
edges and small storm sizes, the acceleration of update storm
verification by EPVerifier is insignificant because the advan-
tage gained by EPVerifier in the updating network model
phase is overshadowed by the subsequent EP transfer (§ 5.3).
In the meantime, the EPVerifier∗ using subspace-based parti-
tion does not require EP transfer and therefore performs best
in these two datasets.

In terms of memory usage, EPVerifier uses more memory
when the network is small because it uses a separate BDD
manager on each switch and each BDD manager needs to
allocate a certain size of cache when it is initialized. However,
this memory consumption does not explode as the complexity
of the network rises because the total number of updates as the
source of BDDs is the same regardless of the number of BDD
managers. It can be seen that in the last four dense networks,
EPVerifier’s memory consumption compares to that of Flash
and APKeep.

Finally, the number of BDD operations is good evidence
of the time performance improvement of EPVerifier. In all
datasets, the number of BDD operations of EPVerifier∗ and
EPVerifier is at least one magnitude less than that of Flash
and APKeep.

In summary, we can conclude that EPVerifier achieves
robustly fast update storm verification. In dense networks
that are prone to update storms, EPverifier is more than 10×
faster than state-of-the-art.

6.3 Performance of EP-model

We now consider the performance gap between the
equivalence-class-based network model (EC-model) and our
edge-predicate-based network model (EP-model). For all
datasets, we randomly select updates at different sizes (start-
ing from 1) to form update storms and use Flash and EPVer-
ifier to verify the forwarding loop, respectively. We do not
apply any partition to these verifiers to focus on the effects of
the network model.

The result is shown in Figure 5. We find that the advantage
of EP-model is not obvious when the storm size is small. This
is because when the storm size is small, the additional BDD

operations brought about by EP transfer and traversing the
forwarding graph are not negligible compared to the improve-
ment brought about by the model update. However, as the
storm size increases, the EP-model advantage starts to emerge
and this advantage increases with the size of the update storm.
Notice that the acceleration effect of EP-model is not the same
for different datasets. This is because the number of edges is
different in each dataset. When the number of edges is higher,
the number of labels that need to be modified for the network
oscillation (§ 4.1) of EC-model is also higher. Therefore, the
improvement brought by EP-model is more obvious at this
time. For example, for the INET dataset with tens of thou-
sands of edges, EP-model is much faster than EC-model even
when the storm size is very small. Thus, we can conclude that
the advantage of EP-model expands with the complexity of
the data plane and the growth of storm size.

6.4 Performance of Switch-based Partition

Compared to subspace-based partition. We evaluate the
performance gap between our switch-based partition and
subspace-based partition. Specifically, we divide the net-
work into two subspaces and manually place updates into the
two subspaces to achieve a different distribution of updates in
the subspaces. We then compare the performance of verifying
the update storm composed of these updates under the two
partitioning approaches with EP-model. The result is shown
in Figure 6. The x-axis is the ratio of the variance of the
number of updates in the two subspaces to the total number
of updates, which indicates the average distribution degree
of updates in the subspaces. Obviously, when the value of
x is between 0 and 1, when x is 0, it means that the updates
are evenly distributed in two subspaces, and when it is 1, it
means that all updates are in one subspaces. The y-axis is
the ratio of the verification time of the two partition methods.
Thus, the switch-based partition performs better when y is
greater than 1. We can see that the verification time of the
subspace-based partition rises as the variance of the rules in
the two subspaces increases. For the last five datasets in Table
1 with complex topology and large storm sizes, the switch-
based partition still outperforms the subspace-based partition
even if the updates are evenly distributed among the two sub-
spaces. This is because the subspace-based partition uses
only two BDD managers, one for each subspace, while the
switch-based partition assigns a BDD manager to each switch.
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Figure 5: Verification time for different storm sizes

Figure 6: Effects of updates
distribution on subspace-
based partition verification
time.

Figure 7: Each update only
affects a few formulas.

Figure 8: Per update BDD op-
erations decrease due to the
possible overlap of formulas
affected by each update.

Figure 9: The update storms
verification time in real-world
network.

Too many BDDs in the BDD manager will slow down the
BDD operations. In addition, for Airtel1 and Airtel2 datasets
with simple topology and small storm size, the performance
of the subspace-based partition is better because the number
of BDDs in the model is limited in this case and the switch-
based partition needs to go through a redundant EP transfer
process.

Cost of EP transfer. Since switch-based partitions have to
suffer additional EP transfer progress due to the limitation
of BDD (§ 5.3), we now discuss the overhead of it. First,
the complexity of the EP transfer algorithm depends mainly
on the number of formulas that need to be transferred to the
forwarding graph. Therefore, for each dataset, we select the
device with the highest number of updates and apply these
updates one by one to the EP-model and transfer them to the
forwarding graph. We record the number of formulas affected
by each update. Figure 7 shows the results. We can see that for
all datasets, most of the updates (more than 97%) affect only
one or two formulas, and the average number of transferred
formulas does not exceed 2. Second, the main time of the EP

transfer process is spent on the BDD operations. We generate
update storms of different sizes and calculate the per update
BDD operations during the EP transfer. As shown in Figure
8, for all datasets, with storm size increases, per update BDD
operations tend to decrease due to the possible overlap of
formulas affected by each update. Then, we can say that the
overhead of EP transfer is acceptable, i.e., it does not explode
with the complexity of the data plane and the storm size.

6.5 Deployment in the Wild

We evaluate the performance of EPVerifier by deploying it
and Flash onto network control plane of a commercial data
center backbone network with hundreds of switches and thou-
sands of links. We verify 50 update storms with EPVerifier
and Flash respectively and statistics the verification time of
the both. The results are shown in Figure 9. The x-axis is the
verification time and the y-axis is the Cumulative Distribution
Function (CDF). Similar to the simulation results, EPVeri-
fier still greatly accelerates update storm verification in real
deployments.
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7 Discussion and Future Work

The update storms. The concept of update storms is intro-
duced by Flash [15]. However, a similar phenomenon of net-
work update aggregation is prevalent in networks because the
source of network updates, a change in the user’s intent, gen-
erally affects a certain number of devices (virtual or physical),
resulting in a large number of network updates. For exam-
ple, in modern multi-tenant data centers, fast programming
interfaces in the forwarding plane may result in thousands of
updates per second [18].
Packet transformations. In addition to normal forwarding
rules, there may be rules in the real network that can modify
packet information, such as NAT. For these transformation
rules, we can extend our design to handle them just like the
fine-grained PPM network model of APKeep [37]. More
specifically, we can model each transformation rule as a node
in the network model to simulate the packet rewrite triggered
by the corresponding rule. We leave a full design and imple-
mentation to future work.
Distributed verification. Most data plane verification tools
use a centralized architecture where the server collects all
data plane information and verifies it. While this architecture
is inherently non-scalable, EPVerifier’s switch-based partition
is very suitable for implementing distributed, on-device data
plane verification. A preliminary idea is that we can maintain
the individual EP information of each switch and verify it
centrally. Detailed design is left as one of our future works.

8 Related Work

Data plane verification. There is a long line of research
on data plane verification. The early data plane verifiers
[6, 7, 19, 23] use different formal methods to analyze the data
plane snapshot. While useful, these verification tools are too
poor to detect network errors in a timely manner and cannot
handle real-time changes in the data plane to ensure that the
results are correct in real-time. To overcome the above limi-
tations, [17, 18, 20, 33] use novel algorithms and achieve per
rule update real-time verification. Veriflow [20] is the first
data plane verification tool that implements real-time verifica-
tion by dividing packets into equivalence classes to split the
verification task of the entire network into multiple indepen-
dent verification tasks for the equivalence classes. Concurrent
with Veriflow, Netplumber [18] implements incremental data
plane verification based on Header Space Analysis (HSA).
It is worth noting that Netplumber’s HSA-based scheme for
modeling network traffic information as a plumbing graph
has similar localization properties as EP-model, but when the
traffic in the network becomes progressively more complex,
the plumber graph’s node-by-node approach to the traffic
limits its speed of verification, as demonstrated by experi-
ments by [37]. Although these real-time data plane verifiers
can achieve millisecond or even sub-millisecond verification

speed, problems such as the exploding number of equivalence
classes, excessive redundant computations, and inability to
handle multiple match field still limit them. To further extend
data plane verification, APKeep [37] solves the equivalence
class explosion problem by merging equivalence classes, but
when there are plenty of rule updates, many redundant com-
putations in APKeep’s PPM model still slow down the verifi-
cation speed. Flash [15] avoids the redundant computations
in the equivalence class model through a series of improve-
ments and engineering optimizations. Inspired by [36], Flash
divides the verification task according to subspace to speed
up the verification of update storms. However, Flash still
cannot solve the network oscillation problem caused by the
equivalence class itself.
Control plane verification analyzes control plane informa-
tion, network topology, and environmental context to verify
the forwarding behavior of all packets and network intent
under the data plane, which is generated by combining this
information [5, 10, 13, 14, 25, 26, 32, 34]. They are comple-
mentary to EPVerifier and can use EPVerifier to accelerate
the verification of the generated data planes.
Stateful network verification. Compared to data plane ver-
ification, the progress of stateful network verification is at
a lower level and can only accomplish offline verification
tasks. [28, 29] model stateful middleware by adding state in-
formation to packet headers based on symbolic execution
techniques, and propose a modeling language SEFL to speed
up the symbolic execution process. [24] proposes a middle-
ware abstraction modeling method based on an SMT solver
for verifying reachability and improves the verification speed
by reducing the verification network size. [31] solves the ver-
ification problem of traffic isolation property by abstracting
the processing order of packets. [8] further abstracts the state
change of middleware based on [31] to achieve complexity
optimization. [35] is implemented based on a symbolic model
detection technique, which abstracts the network into individ-
ual packet forwarding models and achieves high scalability
with a customized symbolic model detection algorithm.

9 Conclusion
This paper presented EPVerifier, a fast, partitioned data plane
verification for update storms. EPVerifier achieves robustly
fast update storm verification compared to the state-of-the-art.
To achieve this, EPVerifier introduces an EP-based network
model to avoid the network model oscillation and a switch-
based Partitioning scheme to partition the update storm verifi-
cation task into smaller parts for parallel computation. Both
dataset trace-driven simulations and the deployments in the
wild show that EPVerifier achieves substantial gains compared
with the state-of-the-art. We believe the design of EP-model
and switch-based partition can help data plane verification
scale to large, complex data planes, which are prone to gener-
ate update storms.
Acknowledgements. We thank the anonymous NSDI review-

990    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



ers and our shepherd Brighten Godfrey for their valuable
feedback. We thank Bokun Li, Jinming Wu and Ruilong
Ma for their invaluable feedback on an early draft of this
paper. This work is supported in part by the National Nat-
ural Science Foundation of China under Grants (62101064,
62171057, 62201072, 62071067), in part by the Ministry of
Education and China Mobile Joint Fund (MCM20200202),
Beijing University of Posts and Telecommunications-China
Mobile Research Institute Joint Innovation Center.

References
[1] Delta-net. https://github.com/delta-net/datasets.

[2] Flash artifact for sigcomm22. https://github.com/snlab/flash.

[3] The onos project. https://opennetworking.org/onos/.

[4] Route views. http://www.routeviews.org/.

[5] ABHASHKUMAR, A., GEMBER-JACOBSON, A., AND AKELLA, A.
Tiramisu: Fast and general network verification. arXiv preprint
arXiv:1906.02043 (2019).

[6] AL-SHAER, E., AND AL-HAJ, S. Flowchecker: Configuration anal-
ysis and verification of federated openflow infrastructures. In Pro-
ceedings of the 3rd ACM workshop on Assurable and usable security
configuration (2010), pp. 37–44.

[7] AL-SHAER, E., MARRERO, W., EL-ATAWY, A., AND ELBADAWI,
K. Network configuration in a box: Towards end-to-end verification
of network reachability and security. In 2009 17th IEEE International
Conference on Network Protocols (2009), IEEE, pp. 123–132.

[8] ALPERNAS, K., MANEVICH, R., PANDA, A., SAGIV, M., SHENKER,
S., SHOHAM, S., AND VELNER, Y. Abstract interpretation of stateful
networks. In Static Analysis: 25th International Symposium, SAS
2018, Freiburg, Germany, August 29–31, 2018, Proceedings 25 (2018),
Springer, pp. 86–106.

[9] ANDERSEN, H. R. An introduction to binary decision diagrams.
Lecture notes, available online, IT University of Copenhagen (1997),
5.

[10] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D. A
general approach to network configuration verification. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication (2017), pp. 155–168.

[11] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y., KOBAYASHI, M.,
KOIDE, T., LANTZ, B., O’CONNOR, B., RADOSLAVOV, P., SNOW,
W., ET AL. Onos: towards an open, distributed sdn os. In Proceedings
of the third workshop on Hot topics in software defined networking
(2014), pp. 1–6.

[12] DONNELLY, C. Microsoft 365 outage affecting teams, outlook and
azure users blamed on ‘networking fault’. Website, 2023. https:
//www.computerweekly.com/news/252529561/Microsoft-365-
outage-affecting-Teams-Outlook-and-Azure-users-blamed-
on-networking-fault.

[13] FAYAZ, S. K., SHARMA, T., FOGEL, A., MAHAJAN, R., MILLSTEIN,
T. D., SEKAR, V., AND VARGHESE, G. Efficient network reachability
analysis using a succinct control plane representation. In OSDI (2016),
vol. 16, pp. 217–232.

[14] GEMBER-JACOBSON, A., VISWANATHAN, R., AKELLA, A., AND
MAHAJAN, R. Fast control plane analysis using an abstract representa-
tion. In Proceedings of the 2016 ACM SIGCOMM Conference (2016),
pp. 300–313.

[15] GUO, D., CHEN, S., GAO, K., XIANG, Q., ZHANG, Y., AND YANG,
Y. R. Flash: fast, consistent data plane verification for large-scale net-
work settings. In Proceedings of the ACM SIGCOMM 2022 Conference
(2022), pp. 314–335.

[16] HERN, A. Google suffers global outage with gmail, youtube and major-
ity of services affected. Website, 2020. https://www.theguardian.
com/technology/2020/dec/14/google-suffers-worldwide-
outage-with-gmail-youtube-and-other-services-down.

[17] HORN, A., KHERADMAND, A., AND PRASAD, M. R. Delta-net:
Real-time network verification using atoms. In NSDI (2017), vol. 17,
pp. 735–749.

[18] KAZEMIAN, P., CHAN, M., ZENG, H., VARGHESE, G., MCKEOWN,
N., AND WHYTE, S. Real time network policy checking using header
space analysis. In NSDI (2013), pp. 99–111.

[19] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 12) (2012), pp. 113–126.

[20] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GODFREY,
P. B. VeriFlow: Verifying Network-Wide invariants in real time. In
10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13) (Lombard, IL, Apr. 2013), USENIX Association,
pp. 15–27.

[21] LABUSCHAGNE, H. Big rsaweb outage. Website,
2023. https://mybroadband.co.za/news/fibre/478521-big-
rsaweb-outage.html.

[22] MAABAR, M. Trie data structure. https://bioinformatics.cvr.
ac.uk/trie-data-structure/, 2014.

[23] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY,
P. B., AND KING, S. T. Debugging the data plane with anteater. ACM
SIGCOMM Computer Communication Review 41, 4 (2011), 290–301.

[24] PANDA, A., LAHAV, O., ARGYRAKI, K. J., SAGIV, M., AND
SHENKER, S. Verifying reachability in networks with mutable datap-
aths. In NSDI (2017), vol. 17, pp. 699–718.

[25] PEDROSA, A. F. S. F. L., WALRAED-SULLIVAN, M., AND MILL-
STEIN, R. G. R. M. T. A general approach to network configuration
analysis. In 12th USENIX symposium on networked systems design
and implementation (NSDI 15) (2015), pp. 469–483.

[26] PRABHU, S., CHOU, K. Y., KHERADMAND, A., GODFREY, B., AND
CAESAR, M. Plankton: Scalable network configuration verification
through model checking. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (2020), pp. 953–967.

[27] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring isp
topologies with rocketfuel. ACM SIGCOMM Computer Communica-
tion Review 32, 4 (2002), 133–145.

[28] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Symnet: static checking for stateful networks. In Proceedings of the
2013 workshop on Hot topics in middleboxes and network function
virtualization (2013), pp. 31–36.

[29] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU,
C. Symnet: Scalable symbolic execution for modern networks. In
Proceedings of the 2016 ACM SIGCOMM Conference (2016), pp. 314–
327.

[30] VAHIDI, A. Jdd: a pure java bdd and z-bdd library. https://
bitbucket.org/vahidi/jdd, 2003.

[31] VELNER, Y., ALPERNAS, K., PANDA, A., RABINOVICH, A., SAGIV,
M., SHENKER, S., AND SHOHAM, S. Some complexity results
for stateful network verification. In Tools and Algorithms for the
Construction and Analysis of Systems: 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings 22 (2016), Springer, pp. 811–830.

[32] WEITZ, K., WOOS, D., TORLAK, E., ERNST, M. D., KRISHNA-
MURTHY, A., AND TATLOCK, Z. Scalable verification of border
gateway protocol configurations with an smt solver. In Proceedings of
the 2016 acm sigplan international conference on object-oriented pro-
gramming, systems, languages, and applications (2016), pp. 765–780.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    991

https://github.com/delta-net/datasets
https://github.com/snlab/flash
https://opennetworking.org/onos/
http://www.routeviews.org/
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.computerweekly.com/news/252529561/Microsoft-365-outage-affecting-Teams-Outlook-and-Azure-users-blamed-on-networking-fault
https://www.theguardian.com/technology/2020/dec/14/google-suffers-worldwide-outage-with-gmail-youtube-and-other-services-down
https://www.theguardian.com/technology/2020/dec/14/google-suffers-worldwide-outage-with-gmail-youtube-and-other-services-down
https://www.theguardian.com/technology/2020/dec/14/google-suffers-worldwide-outage-with-gmail-youtube-and-other-services-down
https://mybroadband.co.za/news/fibre/478521-big-rsaweb-outage.html
https://mybroadband.co.za/news/fibre/478521-big-rsaweb-outage.html
https://bioinformatics.cvr.ac.uk/trie-data-structure/
https://bioinformatics.cvr.ac.uk/trie-data-structure/
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd


[33] YANG, H., AND LAM, S. S. Real-time verification of network proper-
ties using atomic predicates. IEEE/ACM Transactions on Networking
24, 2 (2015), 887–900.

[34] YE, F., YU, D., ZHAI, E., LIU, H. H., TIAN, B., YE, Q., WANG, C.,
WU, X., GUO, T., JIN, C., ET AL. Accuracy, scalability, coverage:
A practical configuration verifier on a global wan. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication (2020), pp. 599–614.

[35] YUAN, Y., MOON, S.-J., UPPAL, S., JIA, L., AND SEKAR, V.
Netsmc: A custom symbolic model checker for stateful network verifi-
cation. In NSDI (2020), pp. 181–200.

[36] ZENG, H., ZHANG, S., YE, F., JEYAKUMAR, V., JU, M., LIU, J.,
MCKEOWN, N., AND VAHDAT, A. Libra: Divide and conquer to verify
forwarding tables in huge networks. In 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14) (2014),
pp. 87–99.

[37] ZHANG, P., LIU, X., YANG, H., KANG, N., GU, Z., AND LI, H.
Apkeep: Realtime verification for real networks. In NSDI (2020),
pp. 241–255.

992    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	Problem Definition
	Architecture and Workflow
	Example
	Network Model
	Partition

	Design Detail
	Switch-based Partition
	Updating EP-model
	Verification

	Evaluation
	Setup
	Overall Performance
	Performance of EP-model
	Performance of Switch-based Partition
	Deployment in the Wild

	Discussion and Future Work
	Related Work
	Conclusion

