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Abstract
Vector query processing powers a wide range of AI applica-
tions. While GPUs are optimized for massive vector opera-
tions, today’s practice relies on CPUs to process queries for
large vector datasets, due to limited GPU memory.

We present RUMMY, the first GPU-accelerated vector query
processing system that achieves high performance and sup-
ports large vector datasets beyond GPU memory. The core
of RUMMY is a novel reordered pipelining technique that
exploits the characteristics of vector query processing to effi-
ciently pipeline data transmission from host memory to GPU
memory and query processing in GPU. Specifically, it lever-
ages three ideas: (i) cluster-based retrofitting to eliminate
redundant data transmission across queries in a batch, (ii)
dynamic kernel padding with cluster balancing to maximize
spatial and temporal GPU utilization for GPU computation,
and (iii) query-aware reordering and grouping to optimally
overlap transmission and computation. We also tailor GPU
memory management for vector queries to reduce GPU mem-
ory fragmentation and cache misses. We evaluate RUMMY
with a variety of billion-scale benchmarking datasets. The
experimental results show that RUMMY outperforms IVF-
GPU with CUDA unified memory by up to 135×. Compared
to the CPU-based solution (with 64 vCPUs), RUMMY (with
one NVIDIA A100 GPU) achieves up to 23.1× better perfor-
mance and is up to 37.7× more cost-effective.

1 Introduction
The breakthroughs in Deep Learning (DL) [1] enable un-
structured data (e.g., images, videos, and audios) [2, 3] to be
represented as high-dimensional feature vectors for serving
a wide range of AI applications [4–12]. In particular, recent
advancements in Large Language Models (LLMs) [13, 14]
have catalyzed the emergence of a new generation of AI appli-
cations. However, LLMs only support a short-term memory
(32k tokens limit for GPT-4 [15]). Vector databases [16–20]
can provide persistence and long-term memory for LLMs.
Consequently, Retrieval Augmented Generation (RAG) is ap-
plied to augment LLMs by dynamically retrieving relevant
documents from a database during the generation process,
thereby expanding LLMs’ knowledge base and contextual
understanding. Specifically, RAG first converts personal or or-

ganizational documents into vectors to build a vector database.
When users post a question, it first issues a vector query to
identify a set of documents that may contain the answer (i.e.,
find the most similar vectors from a vector database for a given
vector). These documents, along with the original question,
are then fed into an LLM, which analyzes the text information
and returns the final answer. Additionally, vector query pro-
cessing is also adopted in a wide range of applications, such
as recommendation systems [4–6, 21], recognition [7–9, 22],
and information retrieval [10–12].

With the explosive growth of the dataset scale, vector query
becomes a performance bottleneck for AI applications. To
reduce query overhead, GPUs, optimized for massive vector
operations, are a natural choice to process vector queries. This
is exemplified by early GPU-based vector query processing
systems that load vector datasets into GPU memory [23]. A
key problem is that they cannot support large datasets due to
limited GPU memory. The explosion of unstructured data [3]
and the increasing adoption of DL in production [4–9, 21, 22]
make this problem particularly acute. Even high-end GPUs
like NVIDIA H100 and A100, with tens of GB of memory,
fall short of today’s large vector datasets [24, 25] containing
billions of items with a memory footprint of hundreds of GB.
Thus, CPU-based solutions [16, 19, 23] are still the de facto
choice for billion-scale datasets in production.

Conceivably, GPU memory can be augmented with host
memory to support large datasets. A straightforward solution
is to divide the dataset into multiple parts in host memory.
Each part can be transmitted into GPU memory in rotation to
process vector queries. This solution performs transmission
and computation sequentially and cannot well utilize GPU re-
sources. Another possible solution is to integrate a GPU-based
solution with CUDA unified memory [26], which automati-
cally handles GPU memory swapping and supports parallel
transmission and computation. As CUDA unified memory is
unaware of vector queries, this solution would incur massive
GPU memory page faults, leading to low performance.

We present RUMMY, the first GPU-accelerated vector query
processing system that (i) supports large vector datasets be-
yond GPU memory, and (ii) achieves higher performance and
is more cost-effective than CPU-based solutions. The core
of RUMMY is a novel reordered pipelining technique that
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exploits the characteristics of vector query processing to effi-
ciently pipeline data transmission from host memory to GPU
memory and query processing in GPU.

Three primary technical challenges must be overcome to
realize RUMMY, each pertaining to a different aspect: trans-
mission, computation, and pipelining. First, redundant trans-
mission occurs when processing vector queries in a batch.
Due to limited GPU memory, the same data subset is trans-
mitted and evicted repeatedly for different queries in the same
batch. Leveraging the fact that each subset’s processing is in-
dependent, we design cluster-based retrofitting to restructure
the query plan for each vector query and completely eliminate
redundant transmission.

Second, the Streaming Multiprocessors (SMs) in the GPU
suffer from low utilization due to pipelining-caused load im-
balance. Specifically, pipelining segregates the query process-
ing into groups, each corresponding to a GPU kernel. A kernel
comprises a grid of thread blocks, and each block is executed
within an SM. A kernel for a small group is launched with a
small grid of thread blocks, resulting in idle SMs (i.e., spatial
underutilization). Besides, the discrepancy between the size
of different data parts causes stragglers—some thread blocks
execute longer than others (i.e., temporal underutilization). To
maximize utilization, we introduce dynamic kernel padding
with cluster balancing. Cluster balancing equalizes data part
sizes offline. Dynamic kernel padding fills idle SMs with
padding thread blocks online to enhance GPU occupancy.

Third and most importantly, directly applying pipelining
suffers from limited overlapping between transmission and
computation, and has high pipelining overhead due to fre-
quent API invocations and synchronizations. The problem is
exacerbated by that the pipelining plan can only be decided
at runtime when queries arrive, as the quality of a particular
plan is query-dependent. We design query-aware reordering
and grouping, which dynamically reorders the query plan and
divides the plan into groups with two algorithms. The reorder-
ing algorithm hides small transmission operations with large
computation operations as many as possible to maximize
the overlapping. The grouping algorithm finds the best trade-
off between pipelining efficiency and pipelining overhead.
The two algorithms are lightweight with negligible runtime
overhead. We prove that the two algorithms achieve optimal
pipelining performance, respectively.

In addition, we also tailor the GPU memory management
for vector query processing. RUMMY pre-allocates GPU mem-
ory and re-allocates the memory to each transmission task,
without involving the general-purpose but costly GPU mem-
ory manager. We also exploit the vector query processing to
reduce GPU memory fragmentation and cache misses.

We remark that the runtime reordered pipelining technique
in RUMMY is distinct from canonical pipelining techniques
adopted in microprocessor architectures [27, 28], DL sys-
tems [29, 30], and task schedulers [31, 32]. Those techniques
rely on dependent and deterministic execution flows. For

instance, DL models have a pre-defined layer-by-layer com-
putation graph, which enables solutions like PipeDream [30]
and PipeSwitch [29] to compute a pipelining plan offline.
Besides, to ensure correctness, the deterministic computa-
tion graph cannot be reordered. In contrast, a vector query
plan is non-deterministic and can be executed in any order
since the processing of each subset is independent. The key
novelty of RUMMY is that it leverages the independent and
non-deterministic nature of vector query processing to dynam-
ically decide the pipelining plan with reordering at runtime,
and achieves optimal parallelism between transmission and
computation.

In summary, we make the following contributions.
• We present RUMMY, to the best of our knowledge, the

first GPU-accelerated vector query processing system that
achieves high performance and supports large vector
datasets beyond GPU memory.

• We introduce a new runtime reordered pipelining technique,
which leverages cluster-based retrofitting, dynamic kernel
padding with cluster balancing, and query-aware reorder-
ing and grouping to efficiently pipeline data transmission
and query processing.

• We implement a RUMMY prototype. The evaluation shows
that RUMMY outperforms IVF-GPU with CUDA unified
memory by up to 135×. Compared to the state-of-the-art
CPU solution (with 64 vCPUs), RUMMY (with one NVIDIA
A100 GPU) achieves up to 23.1× better performance and
is up to 37.7× more cost-effective.

2 Background and Motivation
In this section, we first introduce the background of vector
query processing. We then describe GPU-based solutions to
accelerate vector query processing. Finally, we summarize the
challenges to support billion-scale datasets for GPU-based
vector queries, which motivate the design of RUMMY.

2.1 Vector Query Processing

DL models convert unstructured data into high-dimensional
feature vectors to serve applications [4–12, 21, 22]. These
vector datasets [24, 25] are utilized to construct a vector
database [16–20] as the persistence and long-term mem-
ory. Specifically, RAG leverages these datasets to enhance
the quality of LLM-based AI applications. For instance,
TEXT1B [24] contains one billion data entries from both
textual and visual modalities, which can be used to enhance
multimodal LLMs. Vector queries are referred to as the mem-
ory retrieval part in RAG and are widely used in emerging
LLM-based AI applications [33–35].

Specifically, a vector query is to find the top-k nearest neigh-
bors (KNN) in a vector dataset that are most similar to the
given vector. KNN returns the exact top-k results and requires
searching on the entire dataset. KNN becomes impractical
for large datasets due to high query latency. Approximate
top-k nearest neighbor (ANN) search trades query accuracy
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Query-1 (𝐐𝟏) : 𝐂𝟏 𝐂𝟒 𝐂𝟑
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Query-2 (𝐐𝟐) :

Query-3 (𝐐𝟑) :

Figure 1: Query plan for a batch of three queries.

for query latency. Previous works [36] show that ANN can
achieve 99% accuracy while only searching on 1% of the
dataset. Even for accuracy-sensitive scenarios, ANN can meet
the requirements of applications and outperform KNN by
hundreds of times. Since DL models inherently introduce er-
rors when generating vectors, ANN is widely used in existing
vector databases for large datasets [16, 18, 19, 37–40].

The basic idea of ANN search is to build an index struc-
ture [41–44] to sample a subset of the dataset for answering a
vector query. There are two representative ANN indexes, in-
verted file index (IVF) [41,45,46] and graph index [42,47,48].
While graph index is more accurate, it is more expensive to
build and maintain due to its large memory footprint and
building time. When confronting billion-scale datasets, IVF
is proved to be more efficient and accurate than the state-of-
the-art graph index [48] with the same memory consumption
according to recent work [46]. Thus, IVF is more suitable for
very large datasets. While IVF has many variants, their gen-
eral workflow is similar. At offline, IVF trains a list of clusters
({C1,C2, ...Cl}) by k-means clustering [49], and each vector
is assigned to the closest cluster. Online, it performs pairwise
comparison between the query vector and each vector in the
top-n closest clusters to produce the approximate top-k near-
est neighbor vectors. The number of sampled clusters n is a
configurable parameter to make a tradeoff between accuracy
and latency.

For example, Figure 1 shows a query plan of the batch
of three queries ({Q1,Q2,Q3}). IVF selects top-3 nearest
clusters (i.e., n = 3) for each query, e.g., {C1,C4,C3} for Q1.
Q1 is compared with each vector in the three clusters, in which
the top-k nearest vectors are returned as the result.

2.2 GPU Acceleration

Vector query processing is compute-intensive and involves
massive vector operations. GPUs are a natural choice to ac-
celerate vector processing [23]. The pairwise distance com-
putation between high-dimensional vectors is a good fit for
the GPU architecture. A detailed comparison between CPUs
and GPUs on IVF and graph index in terms of performance
and cost is listed in Appendix A.2, which demonstrates the
benefits of GPU-based vector query processing systems.

Vector query processing in GPUs. A GPU consists of many
SMs, each including numerous CUDA cores for extensive
vector operations. Such hardware architecture involves a hier-
archical parallel computation model [50]: each computation
consists of multiple CUDA kernels; each CUDA kernel in-

cludes a grid of thread blocks; and each block comprises a
number of threads. A block of threads can be executed simul-
taneously within one SM, where each thread is executed on a
CUDA core. To process a vector query in a GPU, the computa-
tion of the query on one cluster (e.g., Q1→C1 in Figure 1) is
a thread block. The computations of different queries on their
corresponding clusters (e.g., {Q1→C1,Q2→C2,Q3→C3})
form a grid of thread blocks, i.e., a CUDA kernel.

Limitation: GPU memory capacity. Existing GPU-based
vector query systems [23] load the entire dataset in the GPU.
Today’s large vector datasets [24, 25] contain billions of vec-
tors, which have a memory footprint of hundreds of GB. GPU
memory is too limited compared to large datasets. For ex-
ample, NVIDIA A100 GPUs are equipped with up to 80GB
of memory, while the size of the TEXT1B dataset [24] is
750GB. It requires at least ten NVIDIA A100 GPUs to store
the TEXT1B dataset. Using multiple GPUs causes a mis-
match between GPU compute resources and GPU memory
resources. In particular, as we have explained in §2.1 and
Figure 1, ANN search only performs vector operations on a
small subset of the dataset, which exacerbates this mismatch
and causes low utilization of expensive GPU resources.

The natural idea is to expand GPU memory with host mem-
ory. For example, the dataset is stored in host memory and is
divided into multiple parts, each of which can fit GPU mem-
ory. To process a query, each part is transmitted from host
memory to GPU memory in rotation. After iterating over all
parts, the intermediate results of each part are aggregated to
produce the final result. This solution has a long transmission
time, and because it performs transmission and computation
sequentially, it has low GPU utilization.

Another strawman solution is to integrate existing GPU-
based query systems with CUDA unified memory [26].
CUDA unified memory automatically handles data transmis-
sion at runtime, and performs parallel transmission and com-
putation to fully utilize the GPU copy engine and kernel
engine. However, it is a general memory swapping technique
that is unaware of vector queries. It incurs massive GPU mem-
ory page faults for data transmission. Besides, the overlapping
between transmission and computation is also limited as it is
agnostic of vector queries. Therefore, applying CUDA unified
memory introduces a large gap from the ideal performance.

2.3 Challenges

Opportunity: pipelining transmission and computation.
We can pipeline transmission and computation to increase
GPU utilization and improve performance. Specifically, we
divide the query processing into groups, e.g., {G1,G2,G3}
in Figure 1. The transmission of one group can be pipelined
with the computation of the preceding group. Figure 2(a)
shows how to pipeline the three groups in Figure 1, where
PCIe represents data transmission from host to GPU memory
over PCIe, and GPU represents computation in GPU. The
transmission of G2 is pipelined with the computation of the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    25



PCIe

GPU
(a)

(b)

PCIe

GPU
(c)

PCIe

GPU

𝐆𝟑𝟏

𝐆𝟏 𝐆𝟐 𝐆𝟑
𝐆𝟏 𝐆𝟐 𝐆𝟑

𝐆𝟏

𝐆𝟏

𝐆𝟑
𝐆𝟑

𝐆𝟐
𝐆𝟐

𝐆𝟑𝟐
𝐆𝟑𝟏 𝐆𝟑𝟐𝐆𝟏

𝐆𝟏

𝐆𝟐
𝐆𝟐

Figure 2: Examples for the pipelining plans (ignore data reuse).

preceding group G1, partly hiding the transmission overhead.
We summarize three challenges to exploit this opportunity and
achieve optimal pipelining efficiency, which focus on three
system aspects: transmission, computation, and pipelining.

Challenge 1: cross-query redundant transmission. The
first challenge is that processing a batch of vector queries
introduces redundant transmission. As Figure 1 shows, if the
GPU memory capacity equals three clusters and the execu-
tion order is [G1,G2,G3]. Initially, the GPU is empty. The
system transmits G1 = {C1,C2,C3} to the GPU, which fills
up the GPU memory. Next, to transmit {C4,C5,C6} for G2,
it first evicts {C1,C2,C3} and then starts the transmission.
As for G3, it clears the GPU memory again and then trans-
mits {C1,C2,C3} back to GPU memory. In total, the order
[G1,G2,G3] transmits nine clusters, among which C1, C2 and
C3 are transmitted twice each. Alternatively, swapping the
order between G2 and G3 only needs to transmit six clusters.
In this case, the system reuses the data {C1,C2,C3} for G3
after processing G1. Reordering G2 and G3 eliminates the
redundant transmission.

Challenge 2: spatial and temporal GPU underutilization.
The second challenge is the SMs in the GPU have low utiliza-
tion due to the load imbalance of thread blocks. The compu-
tation of G1 in Figure 1 corresponds to a kernel that contains
three thread blocks (i.e., {Q1 → C1, Q2 → C2, Q3 → C3}).
Qi → C j represents the thread block of the computation of
query Qi on cluster C j. Each thread block is executed within
one SM and cannot be migrated to other SMs [50]. As shown
in Figure 3, when processing G1, there are only three thread
blocks to run, if the GPU has four SMs, then one SM (i.e.,
SM4) is idle, causing spatial underutilization. Besides, be-
cause the clusters have different sizes, the thread blocks for
larger clusters take a longer time to run, i.e., stragglers. As
shown in Figure 3, SM2 and SM3 are idle after completing
their thread blocks, leading to temporal underutilization as
they wait for SM1 to finish. In summary, spatial underutiliza-
tion stems from a mismatch between the number of SMs and
thread blocks, while temporal underutilization is caused by
cluster heterogeneity.

Challenge 3: transmission and computation overlapping.
The third challenge is to maximize the overlapping between
transmission and computation in the pipeline. The overlap-
ping is affected by both the ordering and granularity of the

G
PU

Spatial 
underutilization

Time
Temporary 

underutilization

𝐐𝟏 → 𝐂𝟏𝐒𝐌𝟏

𝐒𝐌𝟐

𝐒𝐌𝟑

𝐒𝐌𝟒

Idle

Idle

Idle

𝐐𝟐 → 𝐂𝟐

𝐐𝟑 → 𝐂𝟑

Figure 3: Spatial and temporal GPU underutilization.

groups in the pipeline. We illustrate each of them in Figure 2,
and we do not consider data reuse in this example. Figure 2(a)
shows a primitive pipelining plan based on the execution or-
der [G1,G2,G3]. First, as shown in Figure 2(b), if we reorder
G2 and G3, then the transmission of G2 is completely hidden
by the computation of G3, which increases the overlapping.
Second, as shown in Figure 2(c), dividing G3 into two smaller
groups, G1

3 and G2
3, also improves the overlapping, because

finer-grained grouping can hide more transmission operations
with computation operations. However, finer-grained group-
ing also introduces more system overhead due to frequent
API invocations and synchronizations.

The challenge is exacerbated by the runtime nature of the
problem. The pipelining plan depends on the input vector
queries, as different queries process different clusters, which
affects the ordering and grouping decisions of the pipeline.
Let N be the number of thread blocks. The search space of
exhaustive search contains O(N!×2N) choices, as there are
O(N!) ordering cases and O(2N) grouping cases. It is chal-
lenging to find the best plan among these choices. In addition,
the system also needs an accurate profiler to precisely esti-
mate the transmission and computation time for a given group
at runtime.

3 RUMMY Overview
We present RUMMY, a GPU-accelerated vector query process-
ing system to support large vector datasets beyond GPU mem-
ory. RUMMY exploits the characteristics of vector queries to
achieve fast and cost-effective query processing. RUMMY
achieves so by pipelining transmission and computation
through a novel reordered pipelining technique. This tech-
nique eliminates redundant data transmission (§4.1), maxi-
mizes GPU utilization (§4.2), and finds out optimal pipelining
plans with negligible runtime overhead (§4.3). Here we pro-
vide a brief overview of RUMMY as Figure 4 shows. RUMMY
consists of an offline part and an online part.

Offline. RUMMY first builds a primitive IVF index for the
dataset, which can be extended into many variants of IVF. IVF
divides the vectors into a few clusters. RUMMY extends the
index building with cluster balancing to alleviate the strag-
gler problem (§4.2). The dataset is stored in host memory and
is transmitted to the GPU memory over PCIe online under
the control of the GPU memory management system (§4.4).
RUMMY also builds a profiler offline to measure the com-
putation and transmission time (§4.3.1) for online decision
making.
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Figure 4: RUMMY overview.

Online. At runtime, RUMMY processes vector queries that
arrive at the system. RUMMY has the following three major
components in the query runtime.

Query plan. After the top-n closest clusters of each query are
determined through IVF, RUMMY retrofits the query plan (i.e.,
queries to clusters as shown in Figure 1) of each query, which
eliminates the redundant data transmission (§4.1).

Pipelining scheduler. The runtime pipelining scheduler re-
ceives the retrofitted query plan. Based on the prediction time
provided by the profiler, the scheduler reorders the plan with
a greedy algorithm, which finds the optimal order that mini-
mizes the total time on per-cluster granularity (§4.3.2). After
the order is determined, the scheduler groups the query plan
with a dynamic programming algorithm, which finds the best
tradeoff between pipelining efficiency and pipelining over-
head (§4.3.3). Each group is pushed into a global group queue
for transmission and computation.

GPU Runtime. The GPU runtime of RUMMY consists of two
components: kernel controller (KC) and GPU memory man-
agement system (MM). The two components maintain two
local group queues respectively. They pull tasks from the
global group queue. MM starts transmission immediately as
long as its local group queue is not empty (§4.4). When fin-
ishing the transmission of a group Gi (i.e., T(Gi)), it notifies
KC to set the computation of Gi (i.e., E(Gi)) executable and
pops the next task for transmission. KC pops the task E(Gi)
and executes it if the kernel engine is idle and E(Gi) is ex-
ecutable. Besides, when launching E(Gi), KC will estimate
whether E(Gi) is able to saturate all SMs in the GPU. If not,
KC dynamically pads the kernel with more thread blocks to
utilize idle SMs (§4.2). After finishing the computation of all
groups in a batch, KC returns the final result to the user.

4 RUMMY Design
In this section, we present the design of RUMMY, i.e., re-
ordered pipelining that includes three main techniques. The
first is cluster-based retrofitting to eliminate redundant trans-
mission (§4.1). The second is dynamic kernel padding with
cluster balancing to maximize GPU utilization (§4.2). The

Symbol Description

Ci The ith cluster
Qi The ith query vector
Gi The ith group
{C1,C2...} A set of original clusters
[C1,C2...] The execution order of original clusters
{B1,B2...} A set of balanced clusters
[B1,B2...] The execution order of balanced clusters
ρ The fixed size of balanced clusters (the number of vectors)
T (G) The transmission (time) of group G
E(G) The computation (time) of group G
Qi→ B j The computation (thread block) of Qi on B j

Table 1: Key notations in the design.

third is query-aware reordering and grouping to overlap trans-
mission and computation (§4.3). Besides, we describe how
to tailor GPU memory management for vector query pro-
cessing (§4.4) based on IVF. The key notations are listed in
Table 1.

4.1 Cluster-based Retrofitting

The key observation behind our idea, namely cluster-based
retrofitting, is that the processing of each subset is independent
of vector query processing. This observation allows us to
retrofit the query plan of each query without changing its
correctness. We retrofit the query plan from two aspects, intra-
batch and inter-batch, to completely eliminate the cross-query
redundant transmission.

Intra-batch. Figure 1 shows an original vector query plan.
The order, [G2,G1,G3], eliminates the three redundant trans-
mission (§2.3). A strawman approach might attempt to find
the optimal order by enumerating all possibilities. It is imprac-
tical at runtime due to the problem’s combinatorial nature.

RUMMY’s solution, namely cluster-based retrofitting, is
based on the key insight: the optimal number of cluster trans-
missions is no smaller than the number of involved clusters.
In Figure 1, six clusters {C1,C2...C6} necessitate a minimum
of six transmissions, where each cluster is transmitted at least
once. As such, our goal is to transmit each involved clus-
ter only once. Figure 5(a) depicts a retrofitted query plan
based on Figure 1. We represent this process by a matrix
M. M[i, j] = 1 means that C j is involved in the i-th query
Qi, otherwise M[i, j] = 0. When transmitting a cluster C j, the
retrofitted plan instantly processes the corresponding queries
{Qi...} for i∈{1,2...BS} and M[i, j] = 1, with BS as the batch
size. For instance, it processes Q1 and Q2 immediately after
transmitting C1. In this way, cluster-based retrofitting com-
pletely eliminates the redundant transmission. Besides, the
retrofitting only traverses the original query plan once, result-
ing in a negligible linear time complexity.

Inter-batch. In intra-batch retrofitting, the cluster order is
irrelevant, and every permutation of [C1,C2...C6] transmits
six clusters. Conversely, inter-batch considers order. Let
GPU memory accommodate two clusters C5 and C6 initially.
Then it additionally eliminates two redundant transmissions
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Figure 5: Retrofit the vector query plan.

by moving C5 and C6 to the front, i.e., [C5,C6,C1...,C4] as
shown in Figure 5(b). To maximize data reuse from preced-
ing batches, RUMMY prioritizes moving the clusters already
present in the GPU to the forefront of the execution order.
Moreover, this mechanism works together with the reordering
algorithm, which will be described in §4.3.2.

4.2 Dynamic Kernel Padding with Cluster Balancing

Cluster balancing. The straggler causes temporal GPU under-
utilization by delaying the entire kernel. To address this issue,
we design a cluster balancing technique that equilibrates the
sizes of various clusters offline. Specifically, a cluster Ci is
divided into a set of balanced clusters {Bi1 ,Bi2 ...}. Each bal-
anced cluster B j is in equal size, denoted by ρ. The detailed
balancing algorithm is summarized in Appendix A.3. We
emphasize that this technique balances the clusters in host
memory offline, and the balanced cluster is transmitted into
the GPU at runtime to answer the queries. After eliminat-
ing the discrepancy between different clusters, the straggler
thread block is split into multiple balanced blocks, which
maximizes temporal GPU utilization. For instance, suppose
that the group G consists of two clusters, C5 and C6, in Fig-
ure 5(b). C5 is split into {B5}, and C6 is split into {B6,B7}.
The computation of G comprises three balanced thread blocks:
{Q2→ B5,Q3→ B6,Q3→ B7}. Each thread block completes
in the same time as illustrated by Figure 6(a). However, the
spatial GPU underutilization still exists (SM4 is always idle).

Dynamic kernel padding. Runtime kernel padding is a tech-
nique to address spatial GPU underutilization. An intuitive
solution is to process different groups simultaneously through
GPU space sharing and provision idle SMs to the subsequent
group of computation. This principle resembles the kernel
padding technique [51] in DNN schedulers, which shares the
GPU with various jobs. However, it is infeasible in the context
of pipelining, as the subsequent group remains unprepared
until its transmission is finalized. Two groups cannot be exe-
cuted simultaneously. We design a dynamic kernel padding
technique to pad one individual group of kernel execution.

The thread block, Qi → B j, receives Qi and a pointer Pj
to B j as inputs and returns the top-k nearest vectors as the
intermediate result. The inputs and outputs are both resident
in GPU memory. Suppose the size of each balanced cluster is
ρ and the dimension of each vector is d. The balanced cluster
is divided into two parts with two pointers: Pj and Pj +ρ×
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Figure 6: Dynamic kernel padding with cluster balancing.

d/2. Thus, Qi→ B j is divided into two smaller thread blocks,
namely kernel padding. The split number is decided by Kernel
Controller according to the number of SMs and the query plan
to achieve 100% SM utilization and high GPU occupancy [52].
As shown in Figure 6(b), the split number is 8 and the number
of padded blocks is 24. Every SM is utilized to achieve 100%
spatial utilization. As for GPU occupancy [52], two blocks run
on each SM concurrently to further improve the computation
efficiency. Since dynamic kernel padding only operates the
data pointers, its runtime overhead is negligible.

A natural question is why not solve the straggler problem
through kernel padding online only, given that straggler blocks
can easily be split at runtime. The reason is that computing
the split strategy incurs extra runtime overhead, as different
clusters need different split numbers. Thus, our design shifts
some work offline to simplify the online decision.

4.3 Pipelining Scheduler

As we describe in §2.3, it is impossible to enumerate every
pipelining plan to find out the optimal solution at runtime.
We break the entire problem into two individual tractable sub-
problems and design query-aware reordering and grouping
algorithms that reorder the retrofitted query plan and divide
the plan into groups. The algorithms compute optimal so-
lutions for each sub-problem, and the combination of them
achieves near-optimal results empirically (§6).

4.3.1 Profiler

Transmission profiler. The goal of the transmission profiler
is to measure T (Gi) for a given group Gi. The transmission
time from host memory to GPU memory can be divided into
two components: the propagation time and the overhead of
API invocation. Let Gi consist of m balanced clusters. The
propagation time is directly proportional to m. The overhead
of API invocation can be estimated as a fixed value. Therefore,
T (Gi) is estimated by the following formula: T (Gi) = a×ρ×
m+b, where a and b are parameters fitted offline, and ρ is the
size of balanced clusters (§4.2). Querying the transmission
profiler for T (Gi) only costs constant time.

Computation profiler. The goal of the computation profiler
is to measure E(Gi). We define the computation quantity as
Com = ρ×SIZE(Gi), where ρ is the size of balanced clusters
and SIZE(Gi) is the number of elements, whose value is 1, in
the retrofitted and balanced query plan of Gi (i.e., the matrix
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Figure 7: Two cases of the recurrence formula in formulation.

in Figure 5 with balanced clusters). Apparently, the degree
of parallelism (i.e., the number of thread blocks) and Com
dominate the computation time. Therefore, we map Com with
different block numbers to computation time offline. For the
intermediate point between the map keys, we use percentile-
wise linear interpolation to estimate its value. Similarly to
the transmission profiler, querying the unordered map of the
computation profiler online also only costs constant time.

4.3.2 Reordering

Problem formulation. The first sub-problem is to reorder
the clusters to maximize the overlapping between transmis-
sion and computation (i.e., minimize the total time). Let the
set of the involved balanced clusters be {B1,B2...Bm}, and
[B1,B2...Bm] represents an execution order. [o1,o2...om] is a
permutation of [1,2...m]. Due to cluster balancing, each Bi is
in equal size and introduces the same T (Bi) = η, unless Bi is
already in the GPU from the preceding batch (i.e., T (Bi) = 0).
The order [Bo1 ,Bo2 ...Bom ] is represented as O, and O[i : j] is
a slice of O and is also a new order. ϒ(O) is the total time
based on the order O, where O = [Bo1 ,Bo2 ...Bom ].

Based on these definitions, we have the following recur-
rence formula to calculate ϒ(O):

ϒ(O[1 : i]) = max( ϒ(O[1 : i−1])+E(Boi),

i

∑
k=1

T (Bok)+E(Boi) ). (1)

The entire computation of an arbitrary order is always later
than its transmission, which introduces a delay. Figure 7
shows the delay of three clusters (i.e., i = 3). The first formula
in the max function introduces that T (Boi) (i.e., the transmis-
sion of the last cluster in O[1 : i]) is not able to compensate
for the delay of O[1 : i−1] in Figure 7(a). Figure 7(b) demon-
strates T (Boi) is able to compensate for the delay, causing
the second formula in the max function. Consequently, the
maximal case is the final result, i.e., ϒ(O[1 : i]).

In summary, the reordering problem is formulated as the
following optimization problem, where the objective is to

PCIe

GPU
(a)

PCIe

GPU
(b)

PCIe

GPU
(c)

𝐁𝟏 𝐁𝟐 𝐁𝟑
𝐁𝟏 𝐁𝟐 𝐁𝟑 𝐁𝟒

𝐁𝟒

𝐁𝟏
𝐁𝟏

𝐁𝟐
𝐁𝟐

𝐁𝟑
𝐁𝟑

𝐁𝟏𝐁𝟒

𝐁𝟏 𝐁𝟐
𝐁𝟐

𝐁𝟑
𝐁𝟑

Figure 8: Examples for the reordering algorithm.

minimize the total time ϒ(O) based on Formula 1.

Min. ϒ(O).

s.t. O = [Bo1 ,Bo2 ...Bom ],

[o1,o2...om] = permutation([1,2...m]). (2)

To solve this optimization problem, one can use a search
algorithm with pruning or leverage existing solvers for opti-
mization problems. However, such solutions are complex and
infeasible due to the vast search space (m! possibilities), the
recursive nature of the objective function, and the discrete con-
straint (a permutation array). Designing an algorithm capable
of rapidly finding the optimal order during runtime poses a
substantial challenge.

Insights. We leverage two insights to address the challenge.
As described in the problem formulation, the transmission
time of each balanced cluster is either a fixed value, η, or
zero. However, the computation time of each balanced cluster
E(Bi) varies since each cluster relates to a different number
of queries. Such characteristics provide an opportunity to
simplify the problem with two insights. To demonstrate the
insights, we give an example of four balanced clusters in
Figure 8(a), and the execution order is [B1,B2...B4] where B4
is already in the GPU (i.e., T (B4) = 0).

The first insight is that moving a cluster with a transmission
time of zero to the front increases the overlapping. In the
example of Figure 8, T (B4) = 0. When moving B4 to the
front, i.e., [B4,B1,B2,B3], the overlapping increases as T (B1)
is hidden by E(B4) as shown in Figure 8(b).

The second insight is that moving a cluster with a large
computation time forward increases the overlapping. In the ex-
ample of Figure 8, B3 has the largest computation time. Mov-
ing B3 to the second, i.e., [B4,B3,B1,B2], further increases
the overlapping as shown in Figure 8(c). The intuition is that
E(B3) compensates the non-overlapping area between E(Bi)
and T (Bi) for i ∈ {1,2}.

Algorithm. Based on the two insights, we design a greedy
algorithm that reorders the clusters to maximize the over-
lapping and minimize the total time, and we prove that the
greedy algorithm is optimal. Algorithm 1 shows the pseudo-
code. The function FindOptOrder finds the optimal execution
order based on the greedy policy: moving the balanced clus-
ters with zero transmission time and large computation time
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Algorithm 1 Optimal greedy reordering algorithm
1: function FINDOPTORDER({B1, ...,Bm})
2: opt_order← /0

3: for i = 1→ m do
4: if T [Bi] == 0 then
5: Bi.priority←+∞

6: else
7: Bi.priority← E[Bi]

8: opt_order.append(Bi)

9: Sort opt_order in descending order based on Bi.priority
10: return opt_order

to the front. It takes the m balanced clusters. It uses opt_order
to store the execution order and initializes this variable with
none (line 2). It iterates over the balanced clusters, and as-
signs a priority to each cluster based on the greedy policy
(line 3-8). It then sorts opt_order in descending order based
on the priority of each cluster (line 9). Given m balanced
clusters, the critical path is the sort operation. Therefore, the
time complexity of Algorithm 1 is O(m log m), which enables
RUMMY to quickly find the optimal order at runtime. We have
the following theorem for the reordering algorithm.

Theorem 4.1 Algorithm 1 finds the optimal execution order
of balanced clusters that minimizes the total time for the
pipelining on per-cluster granularity.

The main idea of the proof is to show that any transformation
of the optimal execution order does not decrease the total time.
The proof is in Appendix A.1. Since the reordering algorithm
moves the clusters with zero transmission time to the front, it
solves the inter-batch retrofitting problem described in §4.1.

4.3.3 Grouping

The second sub-problem is to group the balanced clusters af-
ter the order is determined. The basic way for pipelining is to
pipeline on per-cluster granularity, i.e., transmitting and com-
putes cluster by cluster. However, such fine-grain pipelining
introduces two sources of pipelining overheads: the overhead
of the frequent invocations and the synchronization overhead
between each group of transmission and computation. An-
other way for pipelining is to group all clusters together. It
eliminates the pipelining overhead, but there would be no
overlapping between transmission and computation at all.

We employ a dynamic programming algorithm, similar to
previous works [29, 30], to find the optimal grouping plan in
the context of pipelining. To further reduce the search space,
we use a heuristic pruning method, maintaining a global vari-
able to record the best time in the current search space. During
the search tree traversal, the lower bound of a node’s subtree
is calculated by completely overlapping leftover transmission
and computation while ignoring the pipelining overhead. If
such lower bound is greater than the best time, the subtree is
pruned. The time complexity of the dynamic programming
algorithm is polynomial, and the algorithm with the pruning

heuristic enables RUMMY to quickly find the optimal group-
ing plan at runtime.

4.4 GPU Memory Management

Existing GPU-based vector query processing systems lack
support for runtime GPU memory management and load the
entire dataset into the GPU offline. RUMMY provides runtime
GPU memory management tailored for vector query process-
ing. It leverages GPU’s native interfaces, like cudaMalloc
and cudaFree in NVIDIA GPUs, to pre-allocate the entire
GPU memory to RUMMY at system startup and manage the
memory internally. This avoids frequent invocations to GPU’s
native interfaces. RUMMY handles data transmission tasks
from its local task queue (§3), and notifies the kernel controller
upon completion. Below, we describe the GPU memory lay-
out and page replacement policy to reconcile vector query
processing with the limited GPU memory capacity. RUMMY
pins host memory to further reduce the transmission time.

GPU memory layout. The entire GPU memory is treated as
a consecutive memory space in RUMMY. RUMMY’s memory
layout is able to eradicate both internal memory fragmenta-
tion and external memory fragmentation. RUMMY allocates
GPU memory on page granularity for transmission tasks, en-
abling clusters to be stored in discontinuous space. RUMMY
returns several discontinuous pages for the allocation of a
transmission task. Thus, each free memory fragment (i.e., a
free page) can be allocated for any task, which minimizes the
external fragmentation issue. Besides, a large page size intro-
duces internal memory fragmentation while a small page size
introduces extra overhead of massive paging operations. Due
to cluster balancing (§4.2), the cluster size is fixed. Setting
the page size to the cluster size ensures that each page is fully
utilized and the overhead of paging is minimized, thereby
easily solving internal fragmentation issues.

GPU page replacement policy. When the GPU memory is
full, RUMMY has to evict a page (balanced cluster) for the
subsequent allocation. RUMMY’s GPU page replacement pol-
icy accounts for both intra-batch and inter-batch to minimize
the miss rate. For intra-batch, RUMMY traverses the local task
queue of the current batch, and pins the intersection clusters
between the future involvement in the current batch and those
already in the GPU, without evicting pinned clusters. As for
inter-batch, we observe that certain clusters (hot) are referred
to frequently, while others (cold) are occasionally referred to.
RUMMY records the referred count of each cluster. At runtime,
RUMMY evicts the cluster with the smallest counter if it is
not pinned, which is akin to LFU [53]. There are some canon-
ical page replacement policies, e.g., LRU. However, they are
not well-suited to vector query processing. Specifically, LRU
evicts the cluster that is least recently used. A vector query
with a large batch size uses every cluster. LRU may replace
the hot clusters, those accessed early in the batch, with cold
clusters, those accessed late in the batch. This leads to a high
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miss rate in the subsequent batch that predominantly relies on
hot clusters (i.e., small batch size).

Host memory pinning. The operating system swaps host
memory pages to the disk if this page is inactive for a cer-
tain time. This mechanism causes severe page faults during
GPU runtime data transmission, as GPU can’t directly transfer
pages from the disk. To mitigate the problem, RUMMY uses
page-locked host memory (i.e., pin memory) to store the clus-
ters through cudaMallocHost in NVIDIA GPUs. The pinned
memory, accessible directly by GPU, allows read/write oper-
ations with higher bandwidth compared to pageable memory
allocated by standard malloc.

5 Implementation
We implement a system prototype of RUMMY with 12K lines
of codes in CUDA and C++, and integrate it with Faiss [23],
a state-of-the-art vector query processing system adopted
by many vector databases, like Milvus [16], Zilliz [17] and
AnalyticDB-V [19]. RUMMY can be integrated with any
vector query system. We choose Faiss as it is the most
widely used GPU-based vector query processing system, and
is adopted in production like Meta. RUMMY is built on top
of IVF index rather than graph index, because the former
is proved to be more efficient on billion-scale datasets [46]
with limited memory capacity. Moreover, graph index (e.g.,
HNSW) cannot be easily integrated into GPU due to its ran-
dom access pattern. The code of RUMMY is open-source and
is publicly available at https://github.com/pkusys/Rummy.

Kernel controller. The kernel controller executes GPU ker-
nels. It learns the GPU hardware information (e.g., the number
of SMs) by reading CUDA macros. We extend CUDA kernels
in Faiss to dynamically pad the thread blocks according to
the split number. A larger split number means a larger block
number to saturate the GPU (SMs).

Memory management. RUMMY divides GPU memory into
two areas: auxiliary and primary memory. The auxiliary mem-
ory stores the query vectors, the query plan, and the intermedi-
ate results. The primary memory holds the clusters of vector
datasets. The auxiliary memory is managed as a stack, which
orchestrates memory for temporary data created and deleted
in order during query processing. The primary memory is or-
ganized as a heap to cache the clusters. Each page in the heap
is either free or allocated to a cluster. RUMMY uses an AVL
tree to manage these pages to quickly retrieve an allocated
page or allocate a free page.

System optimizations. Faiss spawns one CUDA stream to
process a vector query and synchronizes all operations by de-
fault. In contrast, RUMMY uses three CUDA streams: one for
launching CUDA kernel, another for GPU-to-host memory
transmission, and the third for host-to-GPU memory trans-
mission. This trio of streams allows RUMMY to parallelize
computation and two types of transmission in the pipeline.

Dataset Dimensions Database Query Distance Memory
Vectors Vectors Footprint

SIFT1B [25] 128 1B 10K Euclidean 480 GB
DEEP1B [24] 96 1B 10K Euclidean 361 GB
TEXT1B [24] 200 1B 100K Angular 748 GB
SIFT40M [25] 128 40M 10K Euclidean 31 GB
DEEP50M [24] 96 50M 10K Euclidean 29 GB
TEXT30M [24] 200 30M 100K Angular 32 GB
SIFT10M [25] 128 10M 10K Euclidean 9 GB

Table 2: Datasets used in the evaluation.

RUMMY wraps up each stream with a host thread to simplify
function invocations and metadata (e.g., AVL tree) changes.
RUMMY groups concurrent requests into one batch. The con-
current requests (i.e., one batch) are primarily processed on
the GPU. The host thread is responsible for generating the
query plan and directing the GPU to process the batch.

6 Evaluation
In this section, we first use end-to-end experiments to demon-
strate the overall performance improvements of RUMMY over
existing GPU-based and CPU-based solutions on billion-scale
datasets. Next, we use microbenchmarks to deep dive into
RUMMY and show the effectiveness of each component in
RUMMY under a variety of settings. As we discuss in §2.2,
IVF is more suitable for billion-scale datasets than graph in-
dex schemes (e.g., HNSW). Thus, we focus on the IVF index
in the evaluation. The baselines are also implemented based
on Faiss.

6.1 End-to-End Experiments

Setup. All experiments are conducted on AWS. The end-to-
end experiments use two types of AWS EC2 instances. One
is p4d.24xlarge configured with eight NVIDIA A100 GPUs
with 40 GB GPU memory each, 1152 GB host memory and
PCIe 4.0×16. The GPU instance is used to compare RUMMY
with existing GPU-based solutions (§2.2). While we only use
one GPU, we use p4d.24xlarge because it is the only type of
instance on AWS that has high-end GPU, A100. The other is
x1.16xlarge configured with 64 vCPUs (Intel Xeon E7-8880)
and 976 GB of host memory. The CPU instance is used to
compare RUMMY with the existing CPU-based solution.

Workloads. Table 2 summarizes the benchmarking datasets,
and the top three are used in end-to-end experiments.
The datasets include SIFT1B [25], DEEP1B [24], and
TEXT1B [24]. They consist of one billion database vectors
and some query vectors. These datasets are standard bench-
marks for vector database retrieval used by both academic and
industry. They can also be integrated with LLMs to support
retrieval augmented generation, e.g., TEXT1B (a cross-model
dataset) can be used to enhance multimodal LLMs. The mem-
ory footprint of the 1B datasets is in the hundreds of GB
range, which oversubscribes the 40 GB GPU memory, but
these datasets can be held in the host memory. Query vectors
are divided into two batch sizes, 2048 (large) and 8 (small),
representing offline and online workloads, respectively.
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Figure 9: Overall performance on GPUs.

Metrics. We use the average end-to-end time per query as
the main metric. In addition, when comparing GPU-based
solutions to CPU-based solutions, we also use per-dollar per-
formance, to evaluate the cost-effectiveness. Specifically, per-
dollar performance is calculated as Price

Time per Query , where Price
is the AWS EC2 On-Demand hourly rate [54].

Baselines. IVF is a state-of-the-art ANN index and has been
widely deployed in production for billion-scale datasets. It is
supported on both GPUs and CPUs in Faiss [23]. Its GPU ver-
sion requires the dataset to be fully loaded into GPU memory.
There are no existing GPU-based systems that support large
datasets beyond GPU memory. We extend the GPU version
of IVF to implement two baseline systems to compare with
RUMMY. Specifically, we compare RUMMY to the following
three baselines while keeping the same searching parameters
under two different batch sizes.
• IVF-Rotation. It extends the GPU version of IVF with

the strawman rotation method described in §2.2 to support
large datasets beyond GPU memory.

• IVF-CUM. It extends the GPU version of IVF with CUDA
unified memory [26] to expand GPU with host memory.

• IVF-CPU. It is the CPU version of IVF, which exploits
Intel AVX [55] to speed up vector operations.

Overall performance. We first compare the time per query
of RUMMY to the GPU-based baselines, IVF-Rotation and
IVF-CUM, and keep the same searching parameters. The
experiments are conducted on p4d.24xlarge with three billion-
scale datasets. We only use one GPU in p4d.24xlarge since
one GPU is enough for RUMMY and p4d.24xlarge is the only
instance configured with A100 GPUs on AWS. RUMMY out-
performs the baselines by hundreds of times and achieves
near-optimal performance with reordered pipelining. The re-
sults are shown in Figure 9. We summarize as follows.
• The lower bound is calculated by the larger value of trans-

mission and computation time per query. It represents an
ideal case that has the maximum overlapping between trans-
mission and computation without any pipelining overhead.
Figure 9 shows that RUMMY processes a query within a
few milliseconds and is close to the lower bound, i.e., it
achieves near-optimal performance.

• RUMMY outperforms IVF-Rotation by 10.7-11.7× under
large BS and hundreds of times under small BS. The per-
formance gap is larger on small BS, as IVF-Rotation iter-
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Figure 10: Comparison between RUMMY and IVF-CPU.
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Figure 11: Comparison under different accuracy.

ates over all data parts and introduces a fixed transmission
time under any batch sizes. When confronting small BS,
the query time is dominated by the fixed transmission time,
which introduces a large performance gap between RUMMY
and IVF-Rotation.

• RUMMY outperforms IVF-CUM by 121-135× under large
BS and by 2.1-3.7× under small BS. RUMMY outperforms
IVF-CUM by a large margin under large BS, since large
BS introduces heavier computation and more interference
between GPU SMs. This interference causes severe GPU
memory page faults.

Comparison to CPU. We then compare RUMMY and IVF-
CPU. The results are shown in Figure 10. RUMMY (with
one A100 GPU) achieves 2.4-23.1× higher performance than
IVF-CPU (with 64 vCPUs). Besides time per query, RUMMY
also achieves better per-dollar performance (26.7-37.7× un-
der large BS), i.e., RUMMY is more cost-effective. As the
batch size grows, the performance gap becomes larger. This
is because large BS introduces high computation parallelism
for RUMMY with GPUs but high computation interference
for CPU solutions. It is notable that the performance of two
GPU baselines (IVF-CUM and IVF-Rotation) falls short of
IVF-CPU. This is because the datasets exceed the GPU mem-
ory and existing GPU solutions are not optimized for such
scenario (§2.2). This emphasizes the necessity for RUMMY
on large datasets.

Moreover, Figure 11 demonstrates the performance im-
provement of RUMMY over IVF-CPU under different accu-
racy on SIFT1B. RUMMY constantly outperforms IVF-CPU
under any configuration.

6.2 Deep Dive of RUMMY

Setup & workloads. We use two AWS EC2 GPU instances to
deep dive into RUMMY and evaluate the effectiveness of each
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Figure 12: Effectiveness of RUMMY’s dynamic kernel padding with cluster balancing.
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Figure 13: Effectiveness of RUMMY’s profiler.

component in RUMMY. One is p3.2xlarge configured with
one NVIDIA V100 GPU with 16 GB GPU memory. The other
is g4dn.2xlarge configured with one NVIDIA T4 GPU with
16 GB GPU memory. In addition, we reduce large BS to 256
and the scale of the datasets since the computing power and
memory of T4 and V100 is not a patch on that of A100. The
four micro-datasets are listed at the bottom of Table 2, and
the top three all oversubscribe the 16 GB GPU memory. The
reason to use small GPUs and datasets is to reduce evaluation
costs due to our limited budget. Besides, the experiments
on million-scale datasets show that RUMMY maintains its
effectiveness even with moderately sized datasets.

6.2.1 Dynamic Kernel Padding with Cluster Balancing

We measure the computation performance with SIFT10M,
which can be held in GPU memory, and do not consider trans-
mission in this experiment. We run the vector queries under
various top-n. The baseline is IVF-GPU without the two tech-
niques. The two both operate the memory pointers. Thus,
the negligible overhead of index building and query is not
included in the evaluation.

As shown in Figure 12, the x-axis represents the ratio of
top-n to the number of all clusters. As the ratio grows, the
performance decreases. Meanwhile, large BS introduces high
computation density causing high time per query. As Fig-
ure 12(c) and Figure 12(d) show, RUMMY outperforms IVF-
GPU by up to 15.5× under small BS. The performance im-
provement is mainly from the dynamic kernel padding since
IVF-GPU cannot utilize the SMs under small BS. The perfor-
mance gap becomes smaller under small BS as illustrated by
Figure 12(a) and Figure 12(b). Both RUMMY and IVF-GPU
fully utilize the SMs, but RUMMY still has a better perfor-
mance (1.1-2.3×) due to the cluster balancing that mitigates
the straggler block in the entire kernel.

6.2.2 Profiler

We use SIFT40M, DEEP50M, and TEXT30M to evaluate
the effectiveness of RUMMY’s profiler, and run the vector
queries on V100 and T4 GPUs with two batch sizes. We
record the profiler’s estimated time of each group and mea-
sure the group’s actual transmission or computation time.
Figure 13 shows the results. The colored lines represent the
actual time, and the black lines represent the estimated time.
We plot the points of two batch sizes in one line. The x-axis
represents the transmission quantity or the computation quan-
tity (defined in §4.3.1). The results confirm that the profiler
closely tracks the actual time, thereby demonstrating the ef-
fectiveness of the simple yet practical formulas in §4.3.1.

6.2.3 Pipelining Scheduler & Cluster-based Retrofitting

We use SIFT40M, DEEP50M, and TEXT30M in this experi-
ment. We compare the following techniques discussed in §4.1
and §4.3, while keeping other components the same.
• Lower bound. It is the theoretical lower bound of time.
• RUMMY. It is RUMMY with all the techniques.
• No retrofitting. It does not use retrofitting.
• No reordering. It does not use Algorithm 1 for reordering.
• Per-cluster pipeline. It groups the clusters on per-cluster

granularity and processes the query cluster by cluster.
• One-group pipeline. It groups all clusters into one group.
Figure 14 shows the performance of the above techniques
under two batch sizes and two GPU instances. RUMMY’s
cluster-based retrofitting improves the performance by 1.1-
5.7× through eliminating the redundant transmission. The
reordering algorithm improves the performance by 1.5-2.4×
under large BS while only having a slight improvement under
small BS. This is because a larger batch size leads to a com-
plex query plan (allowing the reordering algorithm to identify
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Figure 14: Effectiveness of RUMMY’s reordering and grouping with cluster-based retrofitting.
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Figure 15: Effectiveness of RUMMY’s GPU memory management.

Workload Reorder Group Total
Overhead Overhead Time

SIFT40M (BS=256, V100) 7.4 µs (0.31%) 10 µs (0.44%) 2.4 ms
SIFT40M (BS=256, T4) 6.3 µs (0.12%) 7.4 µs (0.15%) 5.1 ms
SIFT40M (BS=8, V100) 57 µs (0.45%) 47 µs (0.37%) 12 ms

SIFT40M (BS=8, T4) 55 µs (0.2%) 42 µs (0.16%) 27.3 ms

Table 3: Runtime overhead of reordering and grouping.

a greater scope for optimization), while a smaller batch size
only has a few clusters for computation and the reordering
algorithm has little room for optimization. The per-cluster and
one-group pipelining are two extreme grouping plans, which
lead to the maximum pipelining overhead and the minimum
overlapping, respectively. RUMMY’s grouping plan achieves
the optimal tradeoff between them (1.1-13.8× performance
improvement). The one-group pipelining fails to process vec-
tor queries under large BS since it requires a large amount of
data transmission for one group, and thereby oversubscribing
the GPU memory. The lower bound is the theoretical lowest
time per query. RUMMY achieves the closest performance to
the lower bound with the aforementioned techniques.

The runtime scheduling overheads of the reordering and
grouping are listed in Table 3 on SIFT40M. The overhead
per query is within tens of microseconds, which is relatively
small compared to the total time per query (≤ 0.5%).

6.2.4 Memory Management

The setup is the same as §6.2.3. We do not compare RUMMY’s
memory management to CUDA unified memory, since the
comparison is already included in §6.1. We compare the fol-
lowing memory management mechanisms discussed in §4.3,
while keeping other components the same.
• Lower bound. The same with the lower bound in §6.2.3.
• RUMMY. It is RUMMY with all the techniques.

• No memory management. It allocates and frees GPU mem-
ory at runtime through cudaMalloc and cudaFree.

• No replacement policy. It evicts a random page (cluster).
• No pin memory. It uses pageable host memory.
As shown in Figure 15, the replacement policy improves the
performance by 1.2-1.6× under small BS while having little
effect under large BS. This is because large BS transmits most
of the clusters, including cold clusters. The differentiation be-
tween cold and hot clusters becomes meaningless. As for the
pin memory and the memory layout with pre-allocated mem-
ory techniques, they improve the performance by 1.3-1.6×
and 2.8-8.6×, respectively. This is because the pin memory
improves the overall memory transmission bandwidth, and
the memory layout reduces memory fragmentation and fre-
quent invocations to CUDA native interfaces. This experi-
ment demonstrates that all memory management techniques
of RUMMY are effective and the combination of them achieves
the closest performance to the ideal case.

7 Discussion

System, not index. We emphasize that RUMMY is not a new
ANN index, but a new vector query processing system (with
new techniques on query pipelining) to support billion-scale
datasets beyond GPU memory. RUMMY is built on the vector
query processing system, Faiss and ANN index, primitive IVF.
Many works (e.g., SPANN [46] and Auncel [56]) propose
variations of IVF to improve query efficiency. We do not
compare these works to RUMMY, as the underlying hardware-
backends and index algorithms differ significantly. However,
RUMMY is orthogonal to these algorithmic works and can
be integrated into these variations of IVF to support GPU
acceleration. We do not directly compare RUMMY to vector
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databases, since RUMMY focuses on the query processing
part.

Vector quantization. Vector quantization [57] is proposed to
reduce the memory footprint of large datasets. It compresses
high-dimensional vectors into low-dimensional space, thereby
reducing the memory usage. RUMMY supports vector queries
beyond GPU memory through system techniques and is or-
thogonal to vector quantization. Besides, vector quantization
can be integrated into RUMMY’s primitive IVF index to fur-
ther reduce memory usage and improve query efficiency.

Reordered pipelining. Pipelining, a common technique to
enhance computer system performance, is uniquely imple-
mented in RUMMY, which differs from traditional methods.
RUMMY leverages the independent and non-deterministic na-
ture of computational units in vector query processing on IVF.
RUMMY’s reordered pipelining is also applicable to other
domains, such as batch request processing in LLM inference.
Specifically, when using host memory to store the key-value
tensors, it offers a strategy to decide the group (i.e., batch)
and order of requests, which can efficiently parallelize the
computation and key-value tensor transmission between host
memory and GPU memory.

8 Related Work
A variety of ANN algorithms (e.g., inverted file [41, 45,
46], locality-sensitive hashing [44, 58–60], and graph algo-
rithms [42, 47, 48]) are proposed for vector query processing.
IVF and graph index are among the most popular ANN al-
gorithms. They have different system characteristics. There
are several reasons why we choose IVF to build RUMMY
to support billion-scale datasets beyond GPU memory. First,
IVF is proved to be more efficient than graph index on billion-
scale datasets with the same memory footprint according to
the recent work [46]. This work demonstrates the benefits of
IVF and the limitations of graph index, which applies IVF
and significantly outperforms the state-of-the-art graph index,
DiskANN [48]. Second, graph index maintains a huge graph
which introduces 4× memory usage [61] than IVF. As a re-
sult, graph index is not suitable for billion-scale datasets with
limited GPU memory. Last, graph index (e.g., HNSW) cannot
be easily integrated into GPU due to its random access pattern.
This paper focuses on IVF-GPU, and we leave the support of
different ANN algorithms in RUMMY as future work.

A set of works [56, 62, 63] focuses on parameter tuning
to improve the accuracy and query latency. For example,
LAET [63] leverages a decision tree model to early terminate
a query when it is hard to improve query accuracy. These
optimizations can be integrated into RUMMY since RUMMY
focuses on system techniques and does not change any index
characteristics. ANN algorithms can be accelerated by hard-
ware accelerators, such as GPUs [23] and FPGAs [6]. How-
ever, prior solutions are not suitable for large vector datasets
and require the datasets to be preloaded into the global mem-

ory of the accelerators. We can exploit RUMMY’s core idea
(i.e., reordered pipelining) to expand the accelerator memory
with host memory as well.

With the proliferation of unstructured data and deep learn-
ing, ANN algorithms on embedding vectors become a key
component (long-term memory retrieval) in many AI appli-
cations, such as recommendation systems [4, 5, 21], recogni-
tion [7–9, 22], information retrieval [10–12] and LLM-based
AI applications [33–35]. RUMMY benefits these applications
by accelerating vector query processing and reducing cost. Re-
cent industrial vector databases [16,17,19,64] adopt Faiss [23]
as their query engine. RUMMY, based on Faiss, can be inte-
grated into these systems. Big data processing [65–67] is
prevalent in cloud services. RUMMY can be integrated into
these services with GPUs to manage large unstructured data
and accelerate vector query processing.

9 Conclusion
We present RUMMY, the first GPU-based system for billion-
scale vector query processing beyond GPU memory. RUMMY
expands GPU memory with host memory to achieve high
performance and low cost by leveraging a novel reordered
pipelining technique. We evaluate RUMMY on various bench-
marking datasets with billions of items and show that it outper-
forms GPU-based baselines by up to 135× with near-optimal
performance. Our experiments also show that RUMMY is
capable of achieving better performance and cost than the
state-of-the-art CPU-based solution.
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A Appendix
A.1 Proof of Theorem§ 4.1

Proo f . To further elaborate the problem formulation in §4.3.2,
let the final result of Algorithm 1 be O = [Bo1 ,Bo2 ...Bom ], and
there are m∗ balanced clusters that are already in the GPU
(i.e., T (Boi) = 0, 0 < i≤ m∗). η is the constant transmission
time of the leftover balanced clusters since these clusters have
the same size (i.e., T (Boi) = η, m∗ < i≤ m).

Based on Formula 1 and Formula 2, we employ greedy
exchange to show that FindOptOrder outputs the optimal
order. The original order is denoted by O. The exchanged
order is denoted by O∗. The general exchange can be trans-
ferred into the adjacent exchange. Our target is to prove that
ϒ(O)≤ ϒ(O∗) is always true if we exchange Boi and Boi+1 in
O, 1≤ i≤m−1. Boi has a higher priority than Boi+1 , and the
priority is shown in Algorithm 1. We classify the exchange
paradigm into the following three cases.

Case 1: T (Boi) = T (Boi+1) = 0. The balanced clusters, Boi

and Boi+1 , are already in the GPU and their transmission time
is both zero. Because of the delay, we have ϒ(O[1 : j]) ≥
∑

j
k=1 T (Bok)≥ ∑

j−1
k=1 T (Bok) where 1≤ j ≤ m. As such,

ϒ(O[1 : i+1]) = max(ϒ(O[1 : i]),
i−1

∑
k=1

T (Bok))+E(Boi+1)

= ϒ(O[1 : i])+E(Boi+1)

= max(ϒ(O[1 : i−1]),
i−1

∑
k=1

T (Bok))+E(Boi)+E(Boi+1)

= ϒ(O[1 : i−1])+E(Boi)+E(Boi+1) (3)

Similarly, we have:

ϒ(O∗[1 : i+1]) = ϒ(O∗[1 : i−1])+E(Boi)+E(Boi+1) (4)

Since O∗ is the exchanged order of O which only swaps Boi

and Boi+1 , we get O∗[1 : i−1] = O[1 : i−1] and O∗[i+1 : m]
= O[i+ 1 : m] (m is the number of input balance clusters).
Based on Formula 3 and Formula 4, we conclude that ϒ(O[1 :
i+1]) = ϒ(O∗[1 : i+1]). Besides, O∗[i+1 : m] = O[i+1 : m],
and ∑

j
k=1 T (Bok) is the same in the recurrence formula of O

and O∗ when j ≥ i+1. Therefore, ϒ(O) = ϒ(O∗).

Case 2: T (Boi) = 0 and T (Boi+1) = η. First, Boi is already
in the GPU and its transmission time is zero. η represents
the constant time to transmit a balanced cluster. According to
Formula 1,

ϒ(O[1 : i+1]) = max(ϒ(O[1 : i]),n×η)+E(Boi+1)

ϒ(O∗[1 : i+1]) = max(ϒ(O∗[1 : i]),n×η)+E(Boi) (5)

where n×η = ∑
i+1
k=1 T (Bok). Also, we have ϒ(O∗[1 : i]) =

max(ϒ(O∗[1 : i− 1]),n× η) + E(Boi+1) and ϒ(O[1 : i]) =
max(ϒ(O[1 : i−1]),(n−1)×η)+E(Boi) = ϒ(O[1 : i−1])+

E(Boi) because ϒ(O[1 : i− 1]) ≥ (n− 1)×η. As ϒ(O∗[1 :
i]) = max(ϒ(O∗[1 : i−1]),n×η)+E(Boi+1), we derive that

ϒ(O∗[1 : i])≥ n×η+E(Boi+1) (6)

As O[1 : i−1] =O∗[1 : i−1], we get ϒ(O[1 : i−1]) =ϒ(O∗[1 :
i−1])≤max(ϒ(O∗[1 : i−1]),n×η). Therefore, we conclude
that

ϒ(O[1 : i−1])≤ max(ϒ(O∗[1 : i−1]),n×η)

=⇒ ϒ(O[1 : i])−E(Boi)≤ ϒ(O∗[1 : i])−E(Boi+1)

=⇒ ϒ(O[1 : i])+E(Boi+1)≤ ϒ(O∗[1 : i])+E(Boi) (7)

Besides, we have the following formula based on Formula 5.

ϒ(O[1 : i+1])=

{
n×η+E(Boi+1), n×η≥ ϒ(O[1 : i])

ϒ(O[1 : i])+E(Boi+1), n×η < ϒ(O[1 : i])

No matter which case is true, we have ϒ(O[1 : i + 1]) ≤
ϒ(O∗[1 : i])+E(Boi) ≤ max(ϒ(O∗[1 : i]),n×η)+E(Boi) =
ϒ(O∗[1 : i + 1]) according to Formula 6 and Formula 7.
∑

j
k=1 T (Bok) is the same in the recurrence formula of O and

O∗ when j ≥ i+1. Therefore, ϒ(O)≤ ϒ(O∗).

Case 3: T (Boi) = T (Boi+1) = η and E(Boi) ≥ E(Boi+1). In
this case, we have a similar formula to Formula 5:

ϒ(O[1 : i+1]) = max(ϒ(O[1 : i])+E(Boi+1),

i+1

∑
k=1

T (Bok)+E(Boi+1))

ϒ(O∗[1 : i+1]) = max(ϒ(O∗[1 : i])+E(Boi),

i+1

∑
k=1

T (Bok)+E(Boi)) (8)

Also, we have ϒ(O∗[1 : i]) = max(ϒ(O∗[1 : i −
1]),∑i−1

k=1 T (Bok) + η) + E(Boi+1) and ϒ(O[1 : i]) =

max(ϒ(O[1 : i − 1]),∑i−1
k=1 T (Bok) + η) + E(Boi). As

O[1 : i−1] = O∗[1 : i−1], we have

ϒ(O[1 : i])−E(Boi) = ϒ(O∗[1 : i])−E(Boi+1)

=⇒ ϒ(O[1 : i])+E(Boi+1) = ϒ(O∗[1 : i])+E(Boi) (9)

Since Boi has a higher priority than Boi+1 , we get

E(Boi)≥ E(Boi+1)

=⇒
i+1

∑
k=1

T (Bok)+E(Boi+1)≤
i+1

∑
k=1

T (Bok)+E(Boi) (10)

Combining Formula 8, Formula 9 and Formula 10, we con-
clude

ϒ(O[1 : i+1])≤ ϒ(O∗[1 : i+1])

Because ∑
j
k=1 T (Bok) is the same in the recurrence formula

of O and O∗ when j ≥ i+1, we derive ϒ(O)≤ ϒ(O∗).
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Batch Size IVF-GPU (T4) IVF-GPU (T4) IVF-CPU (r5.2xlarge) IVF-CPU (r5.2xlarge) HNSW-CPU (r5.2xlarge) HNSW-CPU (r5.2xlarge)
Time per Query (ms) Per-Dollar Performance Time per Query (ms) Per-Dollar Performance Time per Query (ms) Per-Dollar Performance

8 0.394 3370.81 20.62 96.2 11.37 174.42
32 0.366 3631.12 18.34 108.163 10.5 188.96

128 0.356 3729.54 17.07 116.23 9.79 202.52
512 0.354 3755.30 16.29 121.77 9.47 209.37
2048 0.355 3740.74 16.25 122.05 9.51 208.55

Table 4: Comparison between GPU and CPU on different ANN indexes.

It’s easy to extend the three adjacent exchange cases to
a general exchange paradigm, i.e., exchanging two arbitrary
balanced clusters rather than an adjacent pair. We prove that
exchanging will reduce the overlapping and Algorithm 1 is
able to find the optimal order on per-cluster granularity.

A.2 Comparison between GPU and CPU

We perform a measurement to compare the performance and
the price of GPU-based and CPU-based (IVF and the state-of-
the-art graph index, HNSW) vector query processing systems.
The current GPU vector query processing systems are based
on IVF since the graph index requires random vector access
and is not suitable for the continuous memory access pattern
on GPUs. The setup is described as follows.

Setup. This measurement is conducted on AWS. We use three
EC2 instance types, including two GPU instances (p3.2xlarge
and g4dn.2xlarge) and one CPU instance (r5.2xlarge).
p3.2xlarge is configured with one NVIDIA V100 GPU
while g4dn.2xlarge is configured with one NVIDIA T4 GPU.
Both of the GPUs are equipped with 16 GB GPU mem-
ory. r5.2xlarge is configured with 8 vCPUs (Intel Platinum
8259CL) with 64 GB host memory. We use SIFT10M [25]
(with around 9GB memory footprint on GPU) in this mea-
surement and fix the parameters in index building and query
processing (e.g., similar memory footprint and accuracy, re-
call@10) for fair comparison. The per-dollar performance
is calculated by Price/Time per Query. Price is AWS EC2
On-Demand hourly rate [54].

Table 4 shows the time per query and per-dollar perfor-
mance of different devices under different batch sizes. The
GPU-based system [23] has lower cost per query than the
CPU-based system (IVF-CPU and HNSW-CPU). The larger
batch size introduces higher computation parallelism, which
fully utilizes the GPU resources. In summary, leveraging
GPUs to accelerate vector query processing provides higher
performance and is more cost-effective. It is notable that the
dataset can be held in the GPU memory, but when the scale of
datasets grows, existing GPU-based vector query processing
systems cannot support large datasets beyond GPU memory.

A.3 Cluster Balancing Algorithm

The pseudo-code is in Algorithm 2. The function BALANCE
balances the original clusters in host memory and returns the
balanced clusters with equal size. It takes two inputs: the l
original clusters and a configurable standard deviation. It uses
cluster_sizes to store the original clusters’ sizes, and uses

Algorithm 2 Cluster balancing algorithm
1: function BALANCE({C1, ...,Cl}, dev)
2: cluster_sizes← /0,map_sizes← /0

3: for i = 1→ l do
4: // SIZE function returns the size of the cluster
5: cluster_sizes.append(SIZE(Ci))
6: map_sizes.append( /0)

7: ρ←Min(cluster_sizes)
8: // χ is a configured value
9: while ρ≥ χ do

10: for i = 1→ l do
11: size← cluster_sizes[i]
12: while size≥ 0 do
13: if size≥ ρ then
14: map_sizes[i].append(ρ)
15: else
16: map_sizes[i].append(size)
17: size← size−ρ

18: // DEV function returns the standard deviation
19: cur_dev← DEV (map_sizes)
20: if cur_dev≤ dev then
21: break
22: else
23: ρ← ρ/2
24: for i = 1→ l do
25: map_sizes[i]← /0

26: BC← /0

27: for i = 1→ l do
28: start← 0
29: for j = 0→ SIZE(map_sizes[i]) do
30: BC.append(Ci[start : start +map_sizes[i][ j]])
31: start← start +map_sizes[i][ j]
32: return BC

map_sizes to store the balanced clusters’ sizes and their re-
lated original clusters. ρ represents the fixed size of balanced
clusters while χ is the minimal threshold specified by the user.
The function first initializes array cluster_sizes through a for
loop and initializes ρ as the minimum value in cluster_sizes
(line 3-7). It then starts a while loop that splits the original
clusters until the variance of the generated clusters is less
than the given standard deviation, dev (line 9-25). Finally, it
generates the balanced clusters with the appropriate sizes and
returns them (line 26-32). The algorithm runs offline, and the
overhead is negligible compared to the index building time.
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