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Abstract
Serverless computing promises automatic resource provision-
ing to relieve the burden of developers. Yet, developers still
have to manually configure resources on current serverless
platforms to satisfy application-level requirements. This is be-
cause cloud applications are orchestrated as serverless work-
flows with multiple stages, exhibiting a complex relationship
between resource configuration and application requirements.

We propose Jolteon, an orchestrator to unleash the promise
of automatic resource provisioning for serverless workflows.
At the core of Jolteon is a stochastic performance model that
combines the benefits of whitebox modeling to capture the ex-
ecution characteristics of serverless computing and blackbox
modeling to accommodate the inherent performance variabil-
ity. We formulate a chance constrained optimization problem
based on the performance model, and exploit sampling and
convexity to find optimal resource configurations that satisfy
user-defined cost or latency bounds. We implement a system
prototype of Jolteon and evaluate it on AWS Lambda with
a variety of serverless workflows. The experimental results
show that Jolteon outperforms the state-of-the-art solution,
Orion, by up to 2.3× on cost and 2.1× on latency.

1 Introduction
Serverless computing [1–6] aims to simplify cloud program-
ming and relieve developers from infrastructure management.
It exposes cloud functions as a key abstraction to developers.
Developers use cloud functions to build cloud applications,
and the serverless computing platform handles underlying
hardware resource management. Serverless computing pro-
vides fine-grained resource elasticity and billing at the granu-
larity of functions.

The potential benefits of serverless computing attract many
applications, such as data analytics [7–9], video process-
ing [10–12], and machine learning [13–15]. Applications are
typically orchestrated as serverless workflows on serverless
computing platforms [16–19]. Specifically, an application is
decomposed into a set of functions, and a serverless workflow
corresponds to a directed acyclic graph (DAG) that organizes
these functions to implement the application logic.

Cloud platforms are expected to satisfy application-level
requirements for cloud applications [20–22]. These require-
ments typically refer to latency and cost bounds. For example,
a developer may expect the end-to-end latency to process a
request for an application (i.e., the corresponding serverless
workflow) to be no larger than 100ms, or the per-request cost

to be no larger than $1. There exists a trade-off between la-
tency and cost. Provisioning more resources results in lower
latency but higher cost, and vice versa. Given a bound on
one metric (e.g., a latency bound), it is desirable to provision
resources to minimize the other metric (e.g., minimize cost).

Serverless computing promises automatic resource provi-
sioning to relieve the burden of developers. Resource provi-
sioning includes two parts, i.e., resource configuration (i.e.,
the function instance size and the number of function in-
stances for each stage for a workflow instance) and resource
scaling (i.e., the number of workflow instances). While cur-
rent serverless platforms provide auto-scaling based on the
realtime load, developers still have to manually configure
resources for workflows to satisfy application-level require-
ments. AWS Lambda provides Power Tuning [23] for devel-
opers to profile the latency-cost curve for a particular function
and optimize the configuration for one function based on the
latency-cost curve. However, Power Tuning does not support
tuning the serverless workflow.

Several recent works have explored resource configura-
tion for serverless workflows [7–9, 24, 25]. Orion [24] uses
a blackbox model to approximate the latency-cost curve for
a workflow, and a heuristic algorithm to search for resource
configurations. The nature of the blackbox approach results
in inaccurate models and the resource configurations found
by the heuristic are sub-optimal. Ditto [9] enables developers
to optimize either latency or cost for a workflow. It only pro-
vides two extremes (minimum latency or minimum cost), and
does not allow developers to explore other trade-offs between
latency and cost. A 7% sacrifice on latency may bring a 1.8×
reduction on cost, which may be more preferable than the
configuration with the minimum latency.

We present Jolteon, a workflow orchestrator that provides
automatic resource configuration to satisfy application-level
requirements for serverless applications. Developers only
need to specify either a latency or cost bound for a work-
flow. Jolteon automatically configures resources to minimize
the execution latency for a cost bound or minimize the cost
for a latency bound. By doing so, Jolteon delivers a serverless
experience for workflow orchestration, and more importantly,
enables developers to navigate the entire latency-cost Pareto
front of the configuration space.

There are two challenges in realizing Jolteon. The first chal-
lenge is to build an accurate performance model to capture
the complex relationship between resource configuration and
application requirements. Existing works [7–9, 24, 25] rely
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Jolteon
Orion [24]

Ditto [9]
Caerus [8]

Locus [7]
Aquatope [25]

Stepconf [26]

CostPre [27]
Power-Tuning [23]

Cose [28]

Analytical performance model? Y N Y Y Y N Y N Y Y

Distribution-aware performance model? Y Y N N N Y N Y N N
Achieving the Pareto front

and guaranteeing the performance bound?
Y N N N N N N N Y Y

Supporting serverless workflow? Y Y Y Y Y Y Y Y N N

Table 1: The design space of Jolteon against existing works of serverless computing.

on either blackbox modeling or whitebox modeling. Black-
box models capture the performance variability of serverless
computing, but lack explainability and ignore the execution
characteristics of serverless workflows. In contrast, white-
box models employ deterministic formulas to represent the
execution characteristics, which is faster and more accurate
on average prediction. However, whitebox models ignore
the inherent variability of serverless computing and fail to
guarantee the performance bound. Jolteon builds a stochastic
performance model. The model uses analytical formulas to
capture the execution characteristics of workflow execution,
which make the model more accurate and efficient (i.e., the
benefit of whitebox modeling). The model uses stochastic
functions to capture the performance variability, which can be
used to bound the performance (i.e., the benefit of blackbox
modeling). This approach leverages the benefits of whitebox
and blackbox models, and avoids their drawbacks.

Given the stochastic performance model, the next challenge
is to find the optimal resource configuration under a latency
or cost bound. As we use random variables to model the exe-
cution variability, the problem is mathematically formulated
as a chance constrained optimization problem, which is a type
of stochastic optimization problem. To solve the problem,
we first convert it to a deterministic formulation via Monte
Carlo sampling and guarantee the performance bound through
a novel inequality. Enumerating all possible configurations
under the deterministic formulation is not practical given the
large search space and the vast number of constraints. We
prove that our formulation is convex. Thus, we leverage the
convexity and use an efficient gradient descent algorithm to
find the optimal resource configuration under the bound.

We implement a system prototype of Jolteon and evaluate it
on AWS Lambda with a variety of serverless workflows. The
experimental results show that Jolteon outperforms Orion [24]
by up to 2.3× on cost and 2.1× on latency. Compared to
Ditto [9] which provides either minimum latency or minimum
cost, Jolteon is able to reduce cost by 1.8× or latency by 3.3×,
with a ≤11% reduction on the other metric. The evaluation
also confirms that Jolteon can satisfy different latency or cost
bounds given by users.

In summary, we make the following contributions.
• We present Jolteon, a workflow orchestrator for serverless

computing that provides automatic resource configuration
to satisfy application-level requirements.

• We propose a stochastic performance model that captures
both the execution characteristics and variability, and a
bound guaranteed sampler to transform the stochastic op-
timization problem. We further prove the convexity of the
problem and apply a gradient descent algorithm to find the
latency-cost Pareto front of the configuration space.

• We implement a Jolteon prototype. The experimental results
show that Jolteon outperforms the state-of-the-art solution,
Orion, by up to 2.3× on cost and 2.1× on latency.

2 Background and Motivation
In this section, we first introduce the background of serverless
computing and application workflows. Then we discuss the
limitations of existing work, which motivate the design of
Jolteon. Finally, we describe the technical challenges to find
the optimal resource configuration that satisfies performance
bounds for serverless workflows.

2.1 Serverless Workflows

Serverless computing simplifies cloud programming for cloud
application developers. It enables developers to create short-
lived, stateless functions triggered by events (e.g., HTTP re-
quest). Serverless platforms are responsible for resource scal-
ing and fault tolerance, allowing developers to concentrate
on application logic without managing cloud resources [5, 6].
Known for its high elasticity and pay-as-you-go billing, server-
less computing meters function run-time at a fine granularity,
one millisecond in major platforms [1–3], and bills users only
for the resources consumed during function execution.

These benefits lead to a shift of traditional serverful appli-
cations to serverless platforms across many fields, including
data analytics [7,8], video processing [10–12], machine learn-
ing [13–15], and vector query processing [29]. A serverless
application is orchestrated into a workflow, represented as a
DAG. Each stage (i.e., node) in the DAG consists of a col-
lection of parallel function instances. The quantity of cloud
resources dedicated to a stage is the product of the number
of function instances and the function size (e.g., the number
of vCPUs). Edges in the DAG denote data dependencies be-
tween consecutive stages. The intermediate data is transmitted
between stages via external storage services, such as S3 [30],

Developers expect that cloud applications are executed to
meet different application-level requirements. For instance,
they typically prioritize latency in online applications and
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Figure 1: Ditto’s performance model.

focus on cost efficiency for offline applications. A key require-
ment for workflow resource configuration is to minimize one
metric (e.g., minimize cost) while adhering to the limit on
another (e.g., a latency bound). Current serverless platforms
only offer auto-scaling to scale the workflow instances, and
delegate resource configuration (e.g., the function size and the
number of function instances in a workflow stage) to develop-
ers. To meet the application-level requirements, developers
have to understand the resource-to-performance mapping of
serverless workflows. This is cumbersome and error-prone,
as identifying the optimal trade-off between latency and cost
(i.e., Pareto front) is complex and most developers lack exper-
tise in the underlying system characteristics.

2.2 Existing Work and Challenges

In this subsection, we compare Jolteon with existing works
and describe the challenges. Table 1 summarizes the key
differences of Jolteon against other resource management
systems of serverless computing.

Whitebox and analytical performance model. To achieve
automatic resource configuration, an essential prerequisite
is to capture the resource-to-performance relationship with
a comprehensive and accurate performance model. Several
works [7–9] leverage whitebox approaches to deterministi-
cally predict the function execution time with analytical equa-
tions. For instance, Locus [7] observes that the data shuffling
time decreases with the increase in resources. Based on Locus,
Caerus [8] and Ditto further divide the execution into several
fine-grained steps (e.g., transmission and computation). They
build individual equations for each step based on its logic.

As depicted in Figure 1, Ditto’s performance model divides
function execution into transmission and computation steps.
The model recognizes that the transmission time remains con-
stant when the number of vCPUs surpasses one, given that a
single vCPU can fully saturate the network bandwidth. Hence,
it employs a piecewise function, using one vCPU as the bound-
ary, to characterize the relationship between resources and
transmission time. These efforts capture the underlying logic
of serverless computing and achieve fast and accurate predic-
tions of average performance. However, the model neglects
the intrinsic performance variability in serverless computing,
thus failing to guarantee the performance bound.

Blackbox and distribution-aware performance model.
Other works [24, 25, 27] note that real-world serverless plat-
forms suffer from performance variability. This variability
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Figure 2: Orion’s performance model.

stems from the skew of the input data characteristics, network
traffic, workflow structure, and invocation pattern, etc. To ad-
dress this, these works [24, 25, 27] employ distribution-aware
performance models to capture such performance variabil-
ity. Specifically, they first collect function execution traces
as sampling data, and then fit a blackbox model to cover the
function execution process.

Among these, Orion [24] utilizes a linear interpolation
method. As depicted in Figure 2, the two sampling distribu-
tions are illustrated by probability distribution functions. The
predicted distribution is fitted through linear interpolation.
Aquatope [25] and CostPre [27] rely on Bayesian optimiza-
tion and mixture density networks, respectively. Although
these techniques capture the performance variability, they
overlook underlying serverless computing characteristics, re-
sulting in imprecise predictions and time-consuming blackbox
fitting. The characteristics of serverless computing refer to
the step-by-step breakdown of function execution, i.e., ini-
tialization, transmission, and computation. We can exploit
the characteristics of each step to build a more accurate and
efficient performance model, e.g., the time of transmission
step is influenced by the available network bandwidth. We
will discuss the details in §4.1.
Pareto front and performance bound. Optimizing the cost
or latency for serverless workflows has been explored in prior
work. Caerus [8] and Locus [7] utilize proportional resource
allocation based on input data size. However, for applications
insensitive to data size, these approaches yield sub-optimal
performance. To rectify this, Ditto [9] introduces a bottom-up
DAG traversal algorithm to minimize either cost or latency,
and achieves near-optimal results. Nevertheless, these studies
do not support finding the optimal resource configuration
under specific performance bounds, and their deterministic
models fail to guarantee the performance bound under the
variability of serverless computing.

Orion [24], Stepconf [26] and Aquatope [25] aim to reduce
cost within a pre-defined latency budget. Orion, considered
as the state-of-the-art, leverages a best-first search algorithm
that explores resource configurations and selects the first one
that satisfies the given latency constraint. Similarly, Stepconf
applies heuristic search methods, while Aquatope resorts to
Bayesian techniques. Notably, the search space of the three
systems is limited, and they cannot enumerate all possible
resource configurations. Consequently, they fail to achieve
the Pareto front between latency and cost while guaranteeing
the performance bound.
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Supporting serverless workflows. At the function level,
some works such as AWS Lambda Power Tuning [23] and
Cose [28] characterize the deterministic latency-cost curve
for specific functions. They profile the latency-cost curve for a
particular function, and allow users to optimize latency or cost
under a given bound of the other metric. However, a serverless
workflow (i.e., a DAG) is composed of many functions with
varying data dependencies. These works are inadequate for
supporting the optimization of serverless workflows.

Challenges. Our goal is to provide automatic resource config-
uration to meet application-level requirements. Specifically,
the system is expected to configure resources automatically
to minimize the execution latency for a user-specified cost
bound or minimize the cost for a user-specified latency bound.
To achieve this goal, two main challenges must be addressed.

The first challenge is to build a performance model to ac-
curately capture the complex relationship between resource
configurations and application requirements (e.g., latency and
cost). As described above, whitebox models successfully cap-
ture the underlying logic of serverless computing and there-
fore provide fast and accurate predictions of average perfor-
mance. However, their deterministic nature fails to capture the
performance variability. Blackbox models, on the other hand,
concentrate on the performance variability but overlook the
underlying system characteristics, resulting in imprecise pre-
dictions and time-consuming blackbox fitting. It is desirable
to develop a performance model that leverages the benefits of
whitebox and blackbox while mitigating their shortcomings.

The second challenge is to identify the optimal resource
configuration within the given performance bound. With the
performance model including distributional factors, the opti-
mization problem becomes stochastic which cannot be solved
directly. Even if the problem is deterministic, the huge search
space of resource configurations and intricate formulation of
the problem make it hard to find the optimal solution. In short,
the second challenge lies in the formulation of the stochas-
tic optimization problem with performance guarantees and
efficiently solving the problem to find the optimal result.

3 Jolteon Overview
Jolteon is a serverless workflow orchestrator that facilitates
automatic resource configuration to meet application-level
requirements (i.e., latency or cost). It employs a novel stochas-
tic performance model to accurately profile the resource-to-
performance relationship in serverless computing (§4.1). It
formulates the chance constrained optimization problem. It
then converts it into a deterministic problem with Monte-
Carlo sampling and guarantees the performance bound via a
novel inequality (§4.2). It employs a gradient descent algo-
rithm that leverages the problem’s convexity to achieve the
optimal result (§4.3). Figure 3 shows the overview.

User interface. Users define their serverless workflow DAGs
and requirements (latency or cost bounds) as input to Jolteon.

Stage 1

Jolteon Monitor
... More Stages

Jolteon Orchestrator

Convex Optimizer

Performance Bound
User

Loggers

Workflow Management

Result
Serverless Runtime

Performance
Profiler

Bound Guaranteed
Sampler

Figure 3: Jolteon overview.

A workflow DAG includes the functions for each stage and
the data dependencies between the stages. Jolteon assesses the
validity of a DAG (e.g., confirming the absence of cycles) and
deploys the functions to the serverless platform. Jolteon then
processes the invocation requests for the workflow, and exe-
cutes the workflow with the optimal resource configuration.
The results are returned upon the completion of the requests.

Jolteon orchestrator. The orchestrator receives workflow
DAGs and requirements from users, and generates resource
configurations. It contains the following components.

Performance profiler. After a workflow is registered, Jolteon’s
performance profiler periodically polls the data logs of the cor-
responding workflow. It learns and updates the performance
model (§4.1) of each workflow stage, modeled by stochas-
tic functions. The stochastic functions are able to leverage
the advantages of both whitebox and blackbox models while
mitigating their shortcomings. Specifically, the performance
model treats every parameter in the analytical formula as a
random variable and fits it as a distribution.

Bound guaranteed sampler. Jolteon formulates the chance
constrained optimization problem based on the workflow
information and user-specified bound. In the formulation,
resource configurations are regarded as independent variables.
Since chance constrained optimization cannot be solved di-
rectly, this module converts it into a deterministic problem
through Monte-Carlo sampling. More samplings lead to a
higher confidence level, but more complicated formulation
with larger solving time. Jolteon proposes a novel inequal-
ity to decide the minimal sample size that guarantees the
performance bound with a high confidence level (§4.2).

Convex optimizer. After sampling, the chance constrained op-
timization problem is converted into a deterministic opti-
mization problem. Solving such problem with existing algo-
rithms [31] is both time-consuming and sub-optimal. Jolteon
leverages one key insight: the problem is convex. Conse-
quently, Jolteon employs a gradient descent algorithm to effi-
ciently find the optimal resource configuration (§4.3). More-
over, Jolteon prunes the constraints with the support constraint
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Symbol Description

di The number of function instances of the ith stage

vi The number of vCPUs of one function in the ith stage

d The array of di of all stages

v The array of vi of all stages

Tj(d,v) The transmission time of the jth function in one stage

C j(d,v) The computation time of the jth function in one stage

LSi(d,v) The latency of the ith stage

CSi(d,v) The cost of the ith stage

LW (d,v) The latency of the entire workflow

CW (d,v) The cost of the entire workflow

Table 2: Key notations in the design.

technique to further reduce formulation complexity. The con-
figuration is then sent to the serverless runtime for execution.

Serverless runtime. The serverless runtime receives the
serverless workflow and the optimal resource configuration
from the orchestrator. It then executes (i.e., through function
invocations) the workflow and records the execution logs. The
logs are used by the profiler to build the performance model.
The execution results are returned to the users.

4 Jolteon Design
In this section, we first describe the stochastic performance
model (§4.1). Then we formulate the chance constrained
optimization problem and introduce the bound guaranteed
sampler (§4.2). Finally, we introduce the convex optimizer
to solve the problem (§4.3). The key notations are listed in
Table 2. Lowercase symbols represent deterministic values
(e.g., x), uppercase symbols represent random variables (e.g.,
X), and bold symbols represent vectors (e.g., x).

4.1 Performance Profiler

Jolteon’s performance profiler collects the function logs to
periodically update the stochastic performance model. In this
subsection, we introduce the details of the stochastic perfor-
mance model which integrates the benefits of both whitebox
and blackbox models while mitigating their drawbacks.

The model first divides each workflow stage (i.e., each node
of the DAG) into functions and phases. A stage consists of
many parallel function instances. The latency of the stage is
the maximum latency of all function instances. Each function
instance is divided into two phases: initialization and execu-
tion. The initialization phase refers to setting up the function
environment while the execution phase is to run the user code.
The phase is further divided into fine-grained steps as follows.

Initialization phase. The initialization phase is to receive the
request and set up the function environment. The first step
involves a network delay and front door execution. The net-
work delay spans from the moment the function is triggered
to when it reaches the API gateway. It is inherently variable,
influenced by the network status. Subsequently, front door
execution includes request authentication, function routing,
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Figure 4: Time distribution of the first step in initialization.

and load balancing. The latency of this process is likewise
unpredictable, shaped by the overall system load. This step is
inevitable and irrelevant to resource configuration. We have
gathered data on the latency from AWS Lambda, where func-
tions are triggered at 30-second intervals via HTTP requests.
We omit the failed invocation requests and only record the
time of requests with a status code of 200. Evidently, this
latency is not stable, as illustrated in Figure 4. We model the
latency with a random variable, denoted by D.

The next step is to set up the function environment. The
serverless platform determines if a corresponding function
instance (e.g., VM or container) is present in the instance
pool. In the absence of such an instance (i.e., cold start), the
platform will allocate a new one, pull the function image,
and initiate the function runtime. Conversely, if an instance
does exist (i.e., warm start), the existing function instance
is reused. The latency is negligible for warm start. Jolteon
profiles cold or warm start according to the specific policy
(e.g., pre-warming or keep-alive) and employs the following
formula to approximate the time of this step, where C is a
random variable of cold start time.

G =

{
0, Warm start
C, Cold start.

Execution phase. In the execution phase, the function in-
cludes two steps: data transmission and computation. Typi-
cally, a workflow stage downloads the data from its preceding
stage, processes the data, and uploads the result to its subse-
quent stage. The allocation of computational resources has a
notable influence on the latency of these two steps. Specifi-
cally, more vCPUs result in higher network bandwidth and
higher computational capacity.

Transmission step. In the data transmission step, data is either
downloaded from or uploaded to external storage. We model
downloading as an example. Relevant factors for this step
include the data size, the available network bandwidth, and
the API overhead. The input data may vary due to the diversity
of data sources and the stochastic nature of data generation.
We model input data size (denoted as S) as a random variable.
The stage comprises d parallel function instances. Let the
available network bandwidth and the number of vCPUs of
a function instance be b and v, respectively. Our goal is to
formulate a model for the transmission time of a function,
based on the given resource configuration, d and v.
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Figure 5: Jolteon’s stochastic performance model.

The data transmission time for a serverless function has two
components: the propagation time and API invocation over-
head. The propagation time is influenced by the data size and
the available network bandwidth. The data of the entire stage
(with size of S) is partitioned into d parts, one for each func-
tion instance. The propagation time of each function instance
is S/(d ×b), where b represents the available bandwidth. b
scales with the number of allocated vCPUs (i.e., v). However,
the bandwidth reaches a saturation point when v is sufficiently
large. Thus, b is approximated by min(v×W,B), where B is
the maximum bandwidth and W is the per-vCPU bandwidth.
The API invocation overhead is independent of resource allo-
cation and denoted by OT . Therefore, the transmission time
for a function instance is summarized as follows:

T (d,v) =
S

d ×min(v×W, B)
+OT . (1)

Computation step. In the computation step, each function han-
dles a data subset of size S/d with v vCPUs. However, the
function logics are diverse. For example, in the frame extrac-
tion stage of video analytics, the function ingests S/d videos
and cycles through each frame with multi-core processing.
The computation time is A× S

dv , where A is the time to process
one video. Conversely, in the map stage of data analytics, the
function sorts the S/d data units. Since the time complexity
of sort is O(x lnx), the time is B× S

dv × ln S
dv , where B is the

time to operate one data unit with one vCPU.
To tackle such complexity, we propose a model that mathe-

matically characterizes the distinct computational logics with
appropriate equations. Specifically, we focus on two typical
function logics: those with polynomial complexity and loga-
rithmic complexity. The execution time of polynomial logic is
represented by ∑

l
i=0 Ai×xi, and the time for logarithmic logic

is lnx× (∑m
i=0 Bi × xi). Here, Ai and Bi are positive random

variables and x is defined as S
dv . For functions without the

relevant logic, the coefficients are set to zero. Consequently,
the computation time of a function instance is expressed as:

C(d,v) =
l

∑
i=0

Ai × (
S
dv

)i + ln
S
dv

×
m

∑
i=0

Bi × (
S
dv

)i. (2)

l and m are decided when fitting the parameters (Ai,Bi) with
historical data. Specifically, Ai is fitted one by one in ascend-
ing order. The fitting process terminates when a specific num-
ber of zero Ai are encountered, and l is the last index i. The

profiler monitors if the function supports multi-processing.
If latency remains the same when v > 1, it is deemed single-
processing. Consequently, the function’s performance model
restricts v’s feasible domain to (0,1]. Another concern is that
Formula 2 is not applicable to function logic with other com-
plexities (e.g., exhaustive search with exponential complexity
rather than polynomial complexity). However, since the fea-
sible domain of v and d is discrete and finite (e.g., v ∈ (0,6]),
other complexities can be approximated by the above poly-
nomial complexity, i.e., Lagrange interpolating polynomial.

Function model to stage model. The aforementioned per-
formance model pertains to an individual function instance.
We must consider the d parallel function instances for a stage.
The latency of the entire stage is the maximum latency of the
d parallel functions. We define the stage latency as LS(d,v):

LS(d,v) = max
{

D j +G j +Tj(d,v)+C j(d,v), j = 1 . . .d
}
.

(3)

Regarding the cost of a stage, current serverless platforms
do not bill users for initialization time. Therefore, the cost
is defined as follows, where α is the cost per second of one
vCPU and β is the cost per invocation.

CS(d,v) =
d

∑
j=1

(
(Tj(d,v)+C j(d,v))× v×α+β

)
. (4)

Stochastic model. The above formulas serve as analytical
(i.e., whitebox) models, and the parameters (e.g., C,W,Ai) are
fitted with historical data. The independent variables d and
v are the resource configuration. As we discussed in §2.2,
treating the parameters (e.g., C,W,Ai) as static values fails to
account for the inherent variability. We instead model these
parameters as random variables, transforming the determinis-
tic functions to stochastic functions. These random variables
are fitted as distributions and marked as uppercase letters. As
shown in Figure 5, when the resource configuration is given,
the stochastic function (SF) outputs a distribution of the pre-
dicted latency rather than a fixed value. Compared to blackbox
models, this stochastic model captures the underlying system
characteristics through the simple yet potent formulas, which
allows higher accuracy and lower fitting overhead. In short,
this stochastic model captures not only the variability but also
the underlying system characteristics, which leverages the
benefits of both whitebox and blackbox models.

4.2 Bound Guaranteed Sampler

Formulation of chance constrained optimization. We first
extend the above stage performance model to the entire work-
flow. In the workflow DAG, the latency of the complete work-
flow is modeled as the maximum latency of paths in the DAG.
One path is a sequence of stages that are connected by edges
and its latency is the sum of all sequential stages’ latency. The
workflow latency, denoted as LW (d,v), is calculated through
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Figure 6: Sampling under different sample size.

either addition or maximum on stage latency, LSi(di,vi). Here,
d and v are p-dimensional arrays where di and vi specify the
resource configuration of the i-th stage (p stages in total). As
for the cost of the workflow, denoted as CW , it is the sum of
all stage cost, i.e., CW (d,v) = ∑

p
i=1 CSi(di,vi).

We then mathematically formulate this stochastic problem
as a chance constrained optimization problem. The objective
is to minimize either latency or cost, subject to the constraint
of guaranteeing the performance bound. The problem is for-
mulated as follows (with cost as the objective function):

Minimize CW (d,v).
s.t. Confidence

(
LW (d,v)≤ εl

)
≥ δ. (5)

In this formulation, certain parameters are random variables
and the constraint mandates that the latency bound εl be guar-
anteed with a predetermined confidence level δ. The formula-
tion to minimize latency under a cost bound is similar.

Bound guaranteed sampling. Chance constrained optimiza-
tion, a subfield of stochastic optimization, deals with uncertain
parameters in constraint functions, while ensuring the con-
straints are guaranteed with a high confidence level. Such
problem has been extensively studied in various research
fields [32–34]. However, adapting this method to our specific
problem introduces two challenges.

The first challenge is that the objective and constraint func-
tions contain random variables. Jolteon employs Monte Carlo
sampling to transform the chance constraint into a set of deter-
ministic constraints. As for the objective function, the random
variables are usually regarded as their expectation values in
optimization. Let function G(d,v,X) be the constraint func-
tion in Formula 5, where X is the set of the random variables
defined in §4.1, represented as a random vector. For example,
G(d,v,X) = LW (d,v)− εl if user specifies a latency bound.
Monte Carlo sampling is used to sample n vectors from the
random variables in the constraint functions, e.g., xi is a de-
terministic sample vector of X. This converts the original
stochastic constraint into a series of deterministic constraints:

{G(d,v,xi) ≤ 0, for i = 1...n}. (6)

All random variables are replaced by their corresponding sam-
ple values. The deterministic problem can be solved directly.

The second challenge is to determine the number of sam-
ples to ensure the performance bound with a high confidence

level. Conceivably, the more samples, the higher confidence
the solution has. For example, assume that the random vector,
X, only contains one random variable, X . X conforms to nor-
mal distribution as shown in Figure 6. The figure contrasts
two different sample sizes: Figure 6(a) uses 100 samples,
while Figure 6(b) uses 10,000 samples. More samples yield
a higher confidence. Specifically, the prediction error for the
95% percentile is 13% in Figure 6(a) and only 0.15% in
Figure 6(b). However, a large sample size introduces high
sampling overhead and intricate problem formulation with
large solving time. The two illustrations in Figure 6 exemplify
a single random variable on two specific sample sizes. How-
ever, the actual problem arises with many random variables,
which further complicates the determination of sample size.

Jolteon leverages Hoeffding’s inequality and sample ap-
proximation theory to find the lower bound of sample size n.
This lower bound allows Jolteon to guarantee the performance
bound at confidence level δ while minimizing the sampling
overhead and simplifying the problem formulation. The lower
bound of sample size is as follows:

1
2× (1−percentile)2 log(

|D|
1−δ

). (7)

In this content, D denotes the domain of independent vari-
ables v and d. δ refers to the confidence level. Jolteon sets δ to
99.9% which is large enough for most user cases. percentile
refers to the percentile for the target bound, such as P95 la-
tency bound. The two parameters are both configurable for
developers. The theoretical proof of the lower bound of n to
guarantee the performance bound is given in Appendix A.1.
The proof is based on Hoeffding’s inequality [35] and sample
approximation theory [36, 37].

The definition domain, D, depends on the structure of work-
flow DAG and is a large value due to the large resource con-
figuration space. In real workflow executions, n may reach
up to thousands, according to Formula 7. However, the sub-
sequent convex optimizer reduces such number with pruning
technique and the evaluation (§6.4) shows that solving with
thousands of constraints is still efficient and fast.

4.3 Convex Optimizer

The sampler transforms the chance constrained optimization
problem (Formula 5) into a deterministic problem with a set
of constraints, i.e., random variables become the sampling
values. Thus, we replace the uppercase symbols with low-
ercase symbols. However, solving such problem at runtime
remains a challenge due to the complex constraints and huge
search space. Jolteon leverages an important insight: the op-
timization problem is convex. A convex problem means the
objective function and all constraints are convex functions.
This confers a significant advantage—the local extremum
also serves as the global extremum, enabling rapid, optimal
solutions via established algorithms [31]. We first prove the
convexity of the above deterministic problem.
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Convexity analysis. According to the definition of convex op-
timization problems [38], we need to prove that CW (d,v) and
LW (d,v) are convex, where (d,v) are independent variables
and all other parameters are constants after sampling.

Since the sum and maximum of convex functions remain
convex, we only need to prove that CSi(di,vi) and LSi(di,vi)
are convex. Formula 3 and 4 further simplify the proof by nar-
rowing the focus on proving T (d,v) and C(d,v) are convex.
We focus on one stage and omit the index i. All variables and
constants are positive due to their real-world meanings.

For the computation step, C(d,v) (i.e., Formula 2), is the
sum of two parts: the polynomial part and the logarithmic part.
Function f (x) = xi is convex and monotonically increasing.
s

dv is convex because its Hessian matrix is positive-definite.
Therefore, the polynomial part is convex due to the convexity
of composite functions. Since s is significantly larger than d×
v due to its real-world meaning (i.e., s

dv > 1), the logarithmic
part is also convex according to its positive-definite Hessian
matrix. Therefore, C(d,v), the sum of two parts, is a convex
function. For the transmission step, T (d,v) (i.e., Formula 1),
is also a convex function due to the convexity of piecewise
maximum functions, where s,w,ot are constants.

The detailed analysis of the convexity of the above sum,
maximum, composite, logarithmic, polynomial, and piecewise
maximum functions is given in Appendix A.2. In summary,
the sampling deterministic problem is convex.

Optimization algorithm. Based the convexity, we propose an
efficient algorithm to optimally solve the problem, as outlined
in Figure 7. Each point in the figure represents one resource
configuration (i.e., d,v). The feasible domain circles out the
points that satisfy the sampling constraints. The first proce-
dure is a gradient descent algorithm. It starts from a random
entry point and takes iterative steps following the gradient
until it approaches a local extremum. The second procedure is
a probe process. Due to the discrete nature of resource config-
urations in the real world, the continuous local extremum may
not be feasible. To address this, the probe process iteratively
examines feasible points surrounding this extremum to find
the final configuration. Given that the problem is convex, the
local extremum is also globally optimal. Thus, the optimiza-
tion algorithm is capable of identifying the optimal solution
under a given performance bound (i.e., Pareto front).

An excessive number of sample constraints complicate the
optimization process and exacerbate the constraints checking
overhead. To mitigate this, we employ a support constraint
technique to prune redundant constraints. This technique iden-
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Figure 8: DAGs of the serverless workflows in the evaluation.

tifies a minimal subset of {c1,c2, ...,cα} while preserving the
feasible domain. If xi < xj (xi is the parameter vector of ci),
then the feasible domain defined by c j becomes a subset of
that defined by ci. Thus, ci can be pruned. This is valid under
the assumption that all constants and variables are positive
and the inequality sign of constraint is ≤. For example, if c1
is x+ y ≤ 1 and c2 is 2x+2y ≤ 1, the feasible domain of c2
is encompassed by that of c1 when x,y > 0.

The solving time of convex optimizer occupies the majority
of Jolteon’s orchestration time. In particular, the solving time
escalates rapidly with the increasing number of constraints
and complexity of the workflow DAG. In §6.4, we evaluate
the solving time of the optimizer and show that it is efficient
and fast under most use cases. In summary, Jolteon’s convex
optimizer is capable of identifying the Pareto front, and is
efficient with the support constraint pruning technique.

5 Implementation
We implement a system prototype with ∼3,800 lines of code
in Python. Our prototype supports AWS Lambda [1] as the
serverless platform, and uses AWS S3 [30] as the external
storage. Jolteon handles execution failures by re-executing
the serverless workflow. Existing fault tolerance mechanisms
for serverless workflows [39–41] are orthogonal to Jolteon.
The code of Jolteon is open-source and is publicly available
at https://github.com/pkusys/Jolteon.

Performance profiler. The performance profiler periodically
polls the data from the serverless runtime and fits a stochastic
performance model through SciPy [42]. We employ the non-
linear least squares method to fit the parameters. The profiler
updates the expectation value and covariance matrix of each
parameter to characterize the distribution. These distributions
are then used to generate samples by the sampler.

Bound guaranteed sampler. The sampler module generates
a set of sample constraints to transform the original problem
into a deterministic problem. The sample size is determined
through Formula 7. Since the distributional parameters con-
stitute a multivariate distribution, the sampling process is
implemented through joint probability distribution with each
parameter’s expectation value and covariance matrix.

Convex optimizer. After sampling, we employ the SLSQP
(Sequential Least Squares Quadratic Programming) method as
the gradient descent algorithm in Figure 7. This method uses a
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(a) TPC-DS Query. (b) Video Analytics. (c) ML Pipeline.
Figure 9: Overall performance for different serverless workflows.

series of quadratic approximations to find the optimum under
a set of nonlinear constraint functions. Given that it performs
optimally when the objective function and constraints are
convex, it aligns well with the nature of our problem. The
probe procedure is implemented by breadth first search at a
fixed depth to iterate the points around the local extremum.

6 Evaluation
In this section, we evaluate Jolteon from the following as-
pects: (i) overall performance against state-of-the-art solu-
tions (§ 6.1); (ii) performance guarantees provided by Jolteon
(§ 6.2); (iii) effectiveness of the performance model (§ 6.3);
(iv) time analysis for running Jolteon (§ 6.4). We also evalu-
ate the sensitivity of Jolteon to various initial configurations
(i.e., entry points) in Appendix A.3.

Setup. We conduct all experiments on AWS. The Jolteon
orchestrator is deployed on one c5.12xlarge EC2 instance
with 48 vCPUs and 96 GB memory. Jolteon executes the
serverless workflow applications on AWS Lambda [1] and
uses AWS S3 [30] as the external storage.

Workloads. Our experiments use three representative server-
less applications. The workflows of these applications have
different characteristics in terms of the number of stages, data
dependencies, I/O and compute demands. Figure 8 shows the
three workflow DAGs, and the details are as follows.
• ML Pipeline is a machine learning workflow adopted from

Cirrus [13]. It consists of four stages connected as a chain:
dimensionality reduction (PCA), model training, merging,
and testing. Using the LightGBM library [43], the training
stage runs multiple parallel functions to train a set of de-
cision tree models, and the merging stage combines them
into a random forest. Each workflow execution trains on
5K images and tests on 2K images of MNIST dataset [44].

• Video Analytics is adopted from Pocket [45] and is com-
posed of four stages: video splitting, frame extraction, pre-
processing and frame classification. There exists one branch
in the workflow, where some frames are preprocessed and
then classified by a pre-trained YOLO model [46], while the
others are directly dispatched to classification. Each work-
flow execution processes 32 YouTube videos in “Music”
and “News” categories, each with one minute duration.

• TPC-DS Query is a data analytics job (Query 95 in TPC-
DS benchmark [47]). This workflow is composed of eight
stages with complex dependencies. The stages perform

a series of filter, groupby, and join operations. Each
workflow execution processes 10 GB TPC-DS data.

Baselines. We compare Jolteon with the following baselines.
• Caerus [8] is a serverless scheduler that uses a heuristic

proportional resource allocation strategy based on input
data size to optimize latency and cost for a workflow.

• Ditto [9] is a state-of-the-art serverless scheduler that uti-
lizes whitebox modeling to provide either minimum latency
or minimum cost for a workflow execution, which we refer
to as Ditto-L and Ditto-C, respectively.

• Orion [24] is a state-of-the-art serverless scheduler that
employs blackbox modeling on the function instance size
and uses deterministic numbers of parallel functions. It then
uses a heuristic search algorithm with the blackbox model
to minimize cost under varying latency requirements.

Metrics. We use end-to-end latency and cost of the workflow
execution as the main metrics. The latency refers to the time
span from the submission of a workflow request to the receipt
of its execution results by the user. The cost is the expense
for the serverless function execution, which is extracted from
AWS Lambda’s “Billed Duration” log entry. We do not use
throughput, because throughput is determined by the number
of workflow instances, which is controlled by the auto-scaling
mechanism of serverless platforms, and the throughput of a
single instance, which is the reciprocal of latency.

6.1 Overall Performance

We first compare the overall performance of Jolteon against
the baselines. For systems that can meet varying performance
requirements (i.e., Jolteon and Orion), we set different la-
tency and cost bounds to obtain the latency-cost curve. For
those that do not explore the latency-cost curve (i.e., Ditto and
Caerus), we measure the best performance they can achieve.
We run the workflows under each resource configuration sev-
eral times and report the average latency and cost. The results
are shown in Figure 9, which we summarize as follows.
• Jolteon outperforms Caerus in both latency and cost. Specif-

ically, Jolteon achieves 1.75× lower latency and 1.33×
lower cost than Caerus for Video Analytics. This is because
the performance model of Caerus only considers the in-
put data size rather than the inherent logic of a serverless
function. As a result, it fails to capture the performance ac-
curately and thus the resource configuration is sub-optimal.
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(a) TPC-DS Query. (b) Video Analytics. (c) ML Pipeline.
Figure 10: Latency guarantee of Jolteon.
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Figure 11: Cost guarantee of Jolteon.

• Ditto-L and Ditto-C achieve minimum latency and cost,
respectively. However, Ditto does not support the trade-
off on the Pareto-optimal latency-cost curve. In serverless
workflow execution, a small sacrifice on one metric (e.g., la-
tency) may bring a significant reduction on the other metric
(e.g., cost). Compared to Ditto, Jolteon is able to trade-off
between latency and cost. With only 7% sacrifice on la-
tency, Jolteon reduces the cost by up to 1.77× compared
with Ditto-L. And an 11% increase on cost enables Jolteon
to reduce the latency by 2.44–3.25× against Ditto-C.

• Orion approximates the latency-cost curve and is able to
meet varying performance requirements. But it uses heuris-
tic search that returns as soon as one configuration meets the
performance requirement and only adjusts function sizes.
This approach significantly narrows the algorithm’s search
space and is far from the Pareto-optimal. Compared to
Orion, Jolteon achieves 1.45–2.07× on latency with the
same cost, and 1.04–2.3× on cost with the same latency.

6.2 Performance Guarantees

This set of experiments evaluates the effectiveness of Jolteon
to provide performance guarantees. We set the percentile of
the target performance requirement to 95%.

Latency guarantee. To evaluate the latency guarantee of
Jolteon, we set different latency bounds and measure the la-
tency. Figure 10 shows the actual 95% latency and the ideal
latency for the three workflows. The measured actual 95% la-
tency is consistently less than and close to the ideal line, which
demonstrates the capability of Jolteon to provide latency guar-
antee. When we increase the latency bound, the actual 95%
latency monotonically increases, indicating that Jolteon can
adapt to varying latency bounds. The actual latency does not
increase when the bound is loose (e.g., >80 seconds for Video
Analytics in Figure 10(b)), since the resource configuration
hits the floor to enable the execution.

Cost guarantee. We also evaluate the cost guarantee of
Jolteon by setting different cost bounds. Figure 11 shows
the actual and ideal 95% cost for the three workflows. Similar
to the latency guarantee, Jolteon is able to provide bounded
cost for all workflows. When the cost bound is relatively loose
(e.g., >$0.02 per run in Figure 11(b)), the actual cost is nearly
unchanged. This is because the optimization objective is la-
tency. Increasing resources does not further reduce latency. In
such cases, Jolteon avoids unnecessary allocation of resources.

6.3 Effectiveness of the Performance Model

To evaluate the performance model, we conduct step-level,
stage-level, and workflow-level experiments.

Step-level effectiveness. We first evaluate the performance
model for the critical execution steps in the workflow. The
critical steps have the longest execution time and the highest
cost in the workflow. Figure 12 shows the actual execution
time and the predicted time distributions against the total
number of vCPUs. The total number of vCPUs is defined
as the product of the number of function instances and the
number of vCPUs allocated to each function for the step.

The three workflows exhibit different characteristics. TPC-
DS Query is an I/O-intensive workflow, where the critical
step is to read the data from S3. Since S3 offers a steady
bandwidth for reading [7], the execution time of the step under
the same vCPU allocation remains stable in Figure 12(a), and
can be precisely predicted by the performance mode with
less than 1% error. Video Analytics and ML Pipeline are
compute-intensive, where the critical steps are computation
steps in video splitting and model training stages, respectively.
These steps have more variable execution time due to the
performance variability of serverless computing, as shown in
Figure 12(b) and Figure 12(c). The stochastic performance
model predicts the execution time distributions that cover
most of the actual execution time.
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(a) TPC-DS Query, map1, read. (b) Video Analytics, splitting, compute. (c) ML Pipeline, training, compute.
Figure 12: Effectiveness of the performance model for critical execution steps.

Video Splitting Stage

Resource Config: (d,v) P50 P95

Large: (16, 4) -6.07% 0.29%

Medium: (8, 2) 6.87% 5.47%

Small: (4, 1) -5.80% -4.50%

MAPE 6.25% 3.42%

Table 3: Errors of Jolteon for stage execution time prediction.

Resource Config #Funcs (d) #vCPUs/Func (v) #vCPUs in Total

Config 0 (32, 16, 8, 8) (2.5, 4, 2.5, 2.5) 184

Config 1 (32, 16, 16, 16) (2, 1.5, 1.5, 2) 144

Config 2 (16, 32, 8, 16) (2, 1.5, 1.5, 1.5) 116

Config 3 (16, 16, 16, 8) (1, 1.5, 1.5, 1.5) 76

Config 4 (8, 16, 4, 4) (1.5, 1, 1, 1) 36

Config 5 (4, 8, 4, 4) (1.5, 1.5, 1.5, 1.5) 30

Table 4: Six resource configurations to run Video Analytics.

Stage-level effectiveness. Then we use large, medium, and
small amounts of resources to examine the effectiveness of
the stage-level performance model. Table 3 lists the predic-
tion errors for the video splitting stage (i.e., the critical stage)
in Video Analytics. d represents the number of function in-
stances, and v represents the number of vCPUs per function.
The error range is [-6.07%, 6.87%]. The mean absolute per-
centage error (MAPE) is 6.25% for P50 and 3.42% for P95
time prediction, indicating that Jolteon is accurate and is able
to capture the performance variability for the stage.

Workflow-level effectiveness. Finally, we evaluate Jolteon’s
errors in predicting the end-to-end latency distributions for
the entire workflow, and compare it with Orion’s blackbox
and Ditto’s whitebox models. We vary the resource configura-
tions with different number of function instances (i.e., d) and
different number of vCPUs per function (i.e., v). The total
number of vCPUs is the dot product of vector d and v. The
detailed configurations are shown in Table 4. As shown in
Table 5 for Video Analytics, Jolteon has an error range in
[-7.59%, 9.29%] for P50 and P95 latency prediction, with a
MAPE under 4%. The two baselines perform much worse.
Orion experiences a MAPE exceeding 30% for both P50 and
P95 latency predictions since its linear interpolation is inac-
curate under large configuration space. Ditto has a MAPE of
33.98% for P50 and 28.00% for P95 latency predictions due
to its inability to accommodate performance variability in its
analytical model.

Video Analytics

Resource

Config

#vCPUs

in Total

Jolteon Orion Ditto

P50 P95 P50 P95 P50 P95

Config 0 184 0.88% -7.58% 20.00% 14.62% 51.75% 40.91%

Config 1 144 3.23% -1.21% 34.38% 36.03% 51.71% 40.89%

Config 2 116 9.29% 5.26% 32.86% 30.20% 75.71% 61.84%

Config 3 76 4.21% 2.56% 52.63% 57.52% 10.88% 8.03%

Config 4 36 3.46% -1.54% 43.53% 44.28% 9.39% 16.31%

Config 5 30 -2.19% -1.38% 12.23% 20.12% -4.46% -0.02%

MAPE 3.88% 3.26% 32.62% 33.80% 33.98% 28.00%

Table 5: Errors for end-to-end latency prediction of different models.

6.4 Time analysis for Jolteon
Performance model training time. We evaluate the offline
time to train the performance model. For each workflow,
Jolteon collects tens of execution profiles with different re-
source configurations. Then, it uses non-linear least squares
to fit the distributions of the random variables (parameters)
in the performance model. Table 6 reports the training time
for the three workflows. The training time is less than 70
milliseconds, which is negligible compared to the end-to-end
latency of tens of seconds.
Solving time. We measure the time of Jolteon’s gradient
descent algorithm in the convex optimizer. We vary the sam-
ple size from 10 to 10,000. Figure 13 shows the results. In
the case of latency bound, the algorithm finishes under 0.5
seconds when sample size is less than 5,000. When a cost
bound is specified, the algorithm finishes within 0.05 seconds.
The higher solving time under a latency bound is due to the
specifics of our implementation. With SLSQP as the algorithm,
constraint functions are smooth and differentiable. The pres-
ence of the max operator in the latency constraint violates
this condition. To address this, we replace the single latency
constraint for the entire workflow with individual latency con-
straints for each DAG path. It eliminates the use of the max
operator but increases the number of constraints.

More complex workflows result in longer solving time.
Among the three workflows, TPC-DS Query has the most
stages and complicated data dependencies (e.g., eight stages).
Our experiment on TPC-DS Query involves 4048 sampling
constraints. As Figure 13(a) shows, Jolteon can solve the
problem within 0.5 seconds. According to the characteriza-
tion on Azure Durable Functions [24], 95% of the serverless
workflows have fewer than eight stages, which indicates that
Jolteon provides sub-second solving time for most use cases.
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Training Time

TPC-DS Query 0.065 s

Video Analytics 0.016 s

ML Pipeline 0.014 s

Table 6: Training time for the performance model.

7 Discussion
Memory in serverless computing. Besides vCPU, the mem-
ory size of a serverless function also impacts its performance.
In AWS Lambda, the memory size of a function is propor-
tional to the configured vCPU. Therefore, the Jolteon proto-
type, which is on top of AWS Lambda, leverages this prop-
erty and uses the vCPU as the main influence factor. Recent
work [48] decouples the memory size from the vCPU in the
resource configuration of a serverless function. In such cases,
Jolteon chooses the memory size greater than the peak mem-
ory usage for the function and adjusts the number of vCPUs
to meet different application requirements.

Auto-scaling. Resource provisioning includes two parts: re-
source configuration and resource scaling. Resource scaling
(e.g., auto-scaling) is used to scale the workflow instances to
meet the realtime execution load. It is orthogonal to resource
configuration and is not the focus of Jolteon’s design.

Limitations of Jolteon’s performance model. One limita-
tion is that the IO model does not reflect intricate IO patterns.
For example, the serverless function may issue a SQL query
to an external database. The IO time is determined by the
SQL query’s logic rather than the returned data size. Another
limitation is that the performance model does not consider
pipelining in serverless workflows. The upload of the up-
stream function and the download of the downstream func-
tion can be pipelined to reduce latency. Jolteon’s performance
model can be extended to capture these complex scenarios.

8 Related Work
Characteristics of serverless computing. Different from
other cloud computing paradigms, serverless computing
exhibits unique performance characteristics. Serverless-
Wild [49] and Orion [24] analyze the performance of server-
less functions in Azure Functions [2], and emphasize the
performance variability and the impact of cold starts. FaaS-
Cache [50] categorizes a serverless function’s lifespan into
initialization and execution phases. Caerus [8] and Ditto [9]
view the function execution as fine-grained transmission and
computation steps. Jolteon integrates the above insights and
introduces a novel stochastic performance model to capture
the characteristics of serverless computing.

Resource configuration for serverless computing. Resource
configuration is critical to satisfy application-level require-
ments in cloud computing [20, 22, 51–53] and even more
important in serverless computing due to its fine-grained re-
source allocation [7, 8]. Existing works either use whitebox
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Figure 13: Solving time of Jolteon.

models [7–9, 23, 26, 28] or blackbox models [24, 25, 27] to
predict the performance of serverless functions and perform
optimization. Jolteon leverages the advantages of both white-
box and blackbox models while mitigating their drawbacks
in the performance model.

Serverless workflow orchestration. Many cloud providers
identify the necessity for serverless workflow orchestration
to facilitate the development of complex cloud applications.
Centralized workflow orchestrators, such as AWS Step Func-
tions [16], Google Workflows [19], and Azure Durable Func-
tions and Logic Apps [17,18], are adopted by major serverless
platforms. Recent works [54–56] propose decentralized work-
flow orchestrators to improve scalability and reduce network
latency. Jolteon can be integrated with them to provide auto-
matic resource configuration.

Serverless workflow execution. Some works [39–41, 57]
focus on the fault tolerance of serverless workflows to guar-
antee the exactly-once semantics. Jolteon can be integrated
with them by capturing the overhead of logging in the perfor-
mance model. Some works [9, 58, 59] exploit shared memory
to reduce data transmission time by co-locating two adjacent
stags in serverless workflows. Jolteon uses S3 as the external
storage and its performance model is also applicable to data
transmission through shared memory.

9 Conclusion
We present Jolteon, a serverless workflow orchestrator
that facilitates automatic resource configuration to satisfy
application-level requirements for serverless applications.
Jolteon employs a novel stochastic performance model to
capture both the execution characteristics and variability, a
bound guaranteed sampler to transform the stochastic prob-
lem and an efficient convex optimizer to find Pareto-optimal
configurations. We evaluate Jolteon with a variety of server-
less workflows. The experimental results show that Jolteon
outperforms the state-of-the-art solution by up to 2.3× on
cost and 2.1× on latency.
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A Appendix
A.1 Lower bound of sample size

Theorem A.1 One of the lower bounds of the sample size, n,
to guarantee the performance bound under confidence level
δ, (0 < δ < 1) is:

1
2× (1−percentile)2 log(

|D|
1−δ

)

Proof . Let Pr be the probability function, i.e., the percentile
function of a random variable, D be the definition domain and
FD be the feasible domain of (d,v). FD (i.e., the ideal feasible
domain) is constrained by Confidence

(
Pr{G(d,v,xi) ≤ 0}≥

percentile
)
≥ δ with percentile as Pr function, while FD′ (i.e.,

the sampling feasible domain) is constrained by n samples
{G(d,v,xi) ≤ 0, for i = 1...n}.

For simplicity, percentile is replaced by p. With
the percentile of performance metric (i.e., p), we have:
Pr{G(d,v,xi) ≤ 0} ≥ p if (d,v)∈ FD and Pr{G(d,v,xi) ≤
0} < p if (d,v) /∈ FD. We define the random variable Zi
by Zi = 1 if G(d,v,xi) ≤ 0 and Zi = 0 otherwise. Now, we
consider the probability of ∃(d,v) ∈ FD′ but (d,v) /∈ FD
(denoted by pro).

pro = Pr{
n

∑
i=1

Zi ≥ n and E(Zi)< p}

≤ Pr{
( n

∑
i=1

Zi −E(
n

∑
i=1

Zi)
)
≥ n−np}

According to Hoeffding’s inequality (0 ≤ Zi ≤ 1), we have:

pro ≤ e−2n(1−p)2

Since there may be |D| points in this domain, one of the
upper bounds of 1− δ (i.e., the probability of violating the
confidence level) is:

1−δ < 1− (1− pro)|D| < |D|× e−2n(1−p)2

Therefore, one of the lower bounds of sample size n is
1

2×(1−p)2 log( |D|
1−δ

).

A.2 Convexity Analysis

Lemma A.1 Given two convex functions f (x) and g(x),
h(x) = f (x)+g(x) is also a convex function, x ∈ D .

Proof . Functions f (x) and g(x) are convex, which satisfy the
following inequality:

f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2)

g(λx1 +(1−λ)x2)≤ λg(x1)+(1−λ)g(x2)

Here, λ is an arbitrary value in [0,1] and x1,x2 ∈ D . We have:

h(λx1 +(1−λ)x2) = f (λx1 +(1−λ)x2)+g(λx1 +(1−λ)x2)

≤ λ f (x1)+(1−λ) f (x2)+λg(x1)+(1−λ)g(x2)

= λh(x1)+(1−λ)h(x2)

Therefore, h(x) is a convex function.

Lemma A.2 Given two convex functions f (x) and g(x),
h(x) = max( f (x),g(x)) is also a convex function, x ∈ D .

Proof . First, we prove a basic inequality for max operation:

max(α1,α2)+max(β1,β2)

= max(α1 +max(β1,β2),α2 +max(β1,β2))

≥ max(α1 +β1,α2 +β2) (8)

We can set α1 = λ f (x1), α2 = λg(x1), β1 = (1−λ) f (x2) and
β2 = (1−λ)g(x2), where x1,x2 ∈ D . Based on Formula 8 and
Lemma A.1, we have:

h(λx1 +(1−λ)x2) = max( f (λx1 +(1−λ)x2),g(λx1 +(1−λ)x2))

≤ max(λ f (x1)+(1−λ) f (x2),λg(x1)+(1−λ)g(x2))

≤ max(λ f (x1),λg(x1))+max((1−λ) f (x2),(1−λ)g(x2))

= λh(x1)+(1−λ)h(x2)

Therefore, h(x) is a convex function.

Lemma A.3 Given two convex functions f (x) and g(x) ( f (x)
is a monotonically increasing function), h(x) = f (g(x)) is
also a convex function, x,g(x) ∈ D .

Proof . ∀x1,x2 ∈ D and λ ∈ [0,1], we have f (g(λx1 +(1−
λ)x2)) ≤ f (λg(x1)+ (1− λ)g(x2)) since f (x) is monotoni-
cally increasing and g(x) is convex. Based on this, we derive:

h(λx1 +(1−λ)x2) = f (g(λx1 +(1−λ)x2))

≤ f (λg(x1)+(1−λ)g(x2))

≤ λ f (g(x1))+(1−λ) f (g(x2)) = λh(x1)+(1−λ)h(x2)

Therefore, h(x) is a convex function.

Lemma A.4 ( s
xy )

α × ln s
xy is a bivariate convex function,

where s is a positive constant, s
xy ∈ (1,∞), x,y ∈ (0,∞) and α

is a nonnegative integer.

Proof . We divide the proof into two cases.

Case one: α = 0. Since ln s
xy has second derivatives when

s
xy ∈ (1,∞). We calculate the Hessian matrix of the bivariate
function:

Hessian(ln
s

xy
) =

[
1
x2 0

0 1
y2

]

Evidently, such matrix is positive semi-definite and ln s
xy is a

convex function.

Case two: α ≥ 1. We define f (z) = zα × lnz, and g(x,y) =
s

xy . We first calculate the derivative of f (z) (z > 1): f ′(z) =
(1+α lnz)× zα−1 > 0. Therefore, f (z) is a monotonically
increasing function. Then, we prove that f (z) is a convex
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Initial Config #Funcs (d) #vCPUs/Func (v) #vCPUs in Total

Large (16, 16, 16, 16) (4, 4, 4, 4) 256

Medium (8, 8, 8, 8) (2, 2, 2, 2) 64

Small (4, 4, 4, 4) (1, 1, 1, 1) 16

Mix1 (4, 8, 16, 4) (1, 2, 4, 1) 88

Mix2 (16, 4, 8, 16) (4, 1, 2, 4) 148

Table 7: Detailed initial configurations.

function when z > 1. When α = 1, we calculate the second
derivative f (z) = zα × lnz as follows:

f ′′(z) = (lnz+1)′ =
1
z
> 0

When α ≥ 2, we calculate the second derivative as follows:

f ′′(z) = ((1+α lnz)× zα−1)′

= α(α−1)zα−2 lnz+(2α−1)zα−2 > 0 (z > 1,α ≥ 2)

Therefore, f (z) is a convex function when z > 1. Last, we
need to prove that g(x,y) is a convex function. We calculate
the Hessian matrix of g(x,y) as follows (s,x,y are positive
and s is constant):

Hessian(g(x,y) =
s

xy
) =

[
2s
x3y

s
x2y2

s
x2y2

2s
xy3

]

Since s,x,y are all positive, this matrix is positive semi-
definite. Therefore, g(x,y) is a convex function. In sum-
mary, f (z) is a monotonically increasing convex function,
and g(x,y) is a convex function. Based on Lemma A.3, we
derive that h(x,y) = f (g(x,y)) is a convex function.

Lemma A.5 f (x,y) = s
x×min(y,w) is a bivariate convex func-

tion, where s,w are positive constants and x,y are positive
independent variables.

Proof . We are able to convert to f (x,y) to max( s
x×w ,

s
x×y ).

The Hessian matrix of s
x×w is:[

2s
wx3 0

0 0

]

It is a positive semi-definite matrix, and s
x×w is a convex func-

tion. As for s
x×y , its convexity is proved in Lemma A.4. Ac-

cording to Lemma A.2, f (x,y) = s
x×min(y,w) = max( s

x×w ,
s

x×y )

is a convex function.

A.3 Sensitivity of Jolteon

To evaluate the sensitivity of Jolteon’s convex optimizer al-
gorithm (§4.3) to various initial configurations (i.e., entry
points), we use five different initial configurations for Video
Analytics: large, medium, small, mix1, and mix2, with total
number of vCPUs ranging from 16 to 256. Table 7 shows them

Initial

Config

Output Config

Tight Bound (12 s) Moderate Bound (36 s) Loose Bound (80 s)

Large Config A Config B Config C

Medium Config A Config B Config C

Small Config A Config B Config D

Mix1 Config A Config B Config C

Mix2 Config A Config B Config C

Table 8: Output configurations of Jolteon for Video Analytics under
different initial configurations and bounds.

Output Config #Funcs (d) #vCPUs/Func (v) #vCPUs in Total

Config A (32, 16, 16, 16) (5, 1.5, 1.5, 5) 288

Config B (8, 8, 8, 8) (1.5, 1.5, 1.5, 1.5) 48

Config C (4, 4, 4, 4) (1, 1, 1.5, 1.5) 20

Config D (4, 4, 4, 4) (1, 1.5, 1.5, 1) 20

Table 9: Detailed output configurations of Jolteon.

in detail, where d and v represent the vectors (four stages)
of the number of function instances and the number of vC-
PUs per function instance, respectively. We run Jolteon with
three different latency bounds: 12 seconds for tight bound, 36
seconds for moderate bound, and 80 seconds for loose bound.

As Table 8 indicates, Jolteon produces identical configu-
rations across all initial configurations under the tight and
moderate bounds. Under the loose bound, Jolteon generates a
slightly different configuration for the small initial configu-
ration. Table 9 further illustrates these output configurations.
Notably, Config C and Config D under the loose bound share
the same number of function instances and total vCPUs. The
slight discrepancy between them lies in the specific allocation
of vCPUs, i.e., (1, 1, 1.5, 1.5) vs. (1, 1.5, 1.5, 1). We run Video
Analytics under these two configurations and obtain similar
performance. Config C and Config D yield end-to-end latency
of 75.9 and 74.5 seconds and cost of $0.00916 and $0.00874,
respectively. The difference between the two configurations in
latency and cost are negligible, which are 1.9% and 4.8%, re-
spectively. In summary, Jolteon’s convex optimizer algorithm
is insensitive to initial configurations.
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