
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Revisiting Congestion Control for Lossless Ethernet
Yiran Zhang, Tsinghua University and Beijing University of Posts and Telecommunications;

Qingkai Meng, Tsinghua University and Beihang University;
Chaolei Hu and Fengyuan Ren, Tsinghua University

https://www.usenix.org/conference/nsdi24/presentation/zhang-yiran

Revisiting Congestion Control for Lossless Ethernet

Yiran Zhang1,2, Qingkai Meng1,3, Chaolei Hu1, Fengyuan Ren1

1Tsinghua University, 2Beijing University of Posts and Telecommunication, 3Beihang University

Abstract
Congestion control is a key enabler for lossless Ethernet at
scale. In this paper, we revisit this classic topic from a new
perspective, i.e., understanding and exploiting the intrinsic
properties of the underlying lossless network. We experi-
mentally and analytically find that the intrinsic properties of
lossless networks, such as packet conservation, can indeed
provide valuable implications in estimating pipe capacity and
the precise number of excessive packets. Besides, we derive
principles on how to treat congested flows and victim flows
individually to handle HoL blocking efficiently. Then, we
propose ACK-driven congestion control (ACC) for lossless
Ethernet, which simply resorts to the knowledge of ACK time
series to exert a temporary halt to exactly drain out excessive
packets of congested flows and then match its rate to pipe
capacity. Testbed and large-scale simulations demonstrate
that ACC ameliorates fundamental issues in lossless Ethernet
(e.g., congestion spreading, HoL blocking, and deadlock) and
achieves excellent low latency and high throughput perfor-
mance. For instance, compared with existing schemes, ACC
improves the average and 99th percentile FCT performance
of small flows by 1.3~3.3⇥ and 1.4~11.5⇥, respectively.

1 Introduction

As the adoption of RDMA continues to grow in Ethernet-
based data centers, there is a wave of the deployment of
lossless networks. A lossless network can harness the full
potential of RDMA and benefit application latency perfor-
mance that used to be affected by packet loss [6, 15, 17].

Lossless Ethernet employs hop-by-hop flow control, i.e.,
Priority-based Flow Control (PFC) [1], to ensure that pack-
ets are not dropped due to buffer overflow. However, when
persistent congestion occurs, PFC may impose a backpres-
sure effect on upstream ports, and the cascade reaction can
even spread to remote switches. Flows not destined to the
congestion point are also paused, which is well-known as the
Head-of-Line (HoL) blocking issue [42, 49]. The frequent

trigger of PFC may also be along with deadlock and unfair-
ness issues [21,25,26,34,42,49]. The root cause of the above
side effects is that PFC itself can not allocate appropriate
bandwidth for each flow, so network congestion can not be
eliminated but only spreads. As a result, end-to-end conges-
tion control becomes a key enabler for high-performance
lossless Ethernet at scale [21, 49].

Many efforts have been devoted to developing congestion
control to facilitate the deployment of lossless Ethernet. DC-
QCN [49] employs widely-used ECN in switches to detect
congestion and heuristically throttles congested flows. Never-
theless, ECN solely based on queue length may not provide
the correct congestion indicator once PFC takes effect [45].
HPCC [29] relies on high-precision INT [2] to guide conges-
tion control but incurs high per-packet overhead and sacrifices
throughput performance. TIMELY [33] advocates RTT-based
congestion control. Still, the RTT samples may mislead con-
gestion judgment when RTT suddenly increases owing to
HoL blocking. Recently, TCD [45] makes a new attempt to
accurately detect congested flows but still follows the heuris-
tic rate control rules as traditional congestion controls, which
makes it essentially hard to achieve low latency and high
throughput simultaneously.

Reflecting on these efforts, we notice that instead of de-
signing congestion control for lossless Ethernet from scratch,
almost all existing works weave unfitted pieces into their
schemes thus resulting in sub-optimal performance. In partic-
ular, congestion detection is the foundation while rate control
is indeed the core of achieving appropriate bandwidth allo-
cation for each flow. Both of them should consider essential
features of lossless Ethernet and work harmoniously together
to realize high-performance congestion control. Therefore,
we ask this question: can we take a step back and rethink con-
gestion control for lossless Ethernet by taking full advantage
of its intrinsic properties?

The crux to understanding the intrinsic properties of loss-
less Ethernet is to recognize the profound impact of hop-
by-hop flow control (i.e., PFC). For instance, the ON-OFF
regulation of hop-by-hop flow control introduces a new ON-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 131

OFF style port state in switches, changing the foundation of
congestion detection. More importantly, no packet dropping
at intermediate switches in turn enables an end-to-end loss-
less path, which alters the view of the network pipe and opens
new opportunities for flow-level bandwidth allocation. In fact,
previous efforts unconsciously neglect one intrinsic yet pow-
erful property, i.e., packet conservation: packets are not lost
in the lossless network1. All injected packets are eventually
delivered to receivers and acknowledged by ACKs, before
which they fly in the network pipe or queue at switches.

In this paper, based on the understanding of above intrinsic
properties and in-depth experimental investigations, we de-
rive two key principles to build a desirable congestion control
for lossless Ethernet: (1) Since packet conservation property
implies that the number of ACKs equals to the number of
packets injected into the network, the ACK-driven paradigm
should gain renewed emphasis in lossless Ethernet to infer
network pipe capacity and the exact number of excessive pack-
ets (§ 3.2). (2) To handle HoL blocking efficiently, congested
flows should be suppressed sufficiently to eliminate accumu-
lated buffers as soon as possible; victim flows should adapt to
the severity of congestion to balance HoL blocking alleviation
and throughput performance (§ 3.3).

Armed with the above principles, we propose a new conges-
tion control for lossless Ethernet called ACC (ACK-Driven
Congestion Control). ACC utilizes TCD [45] to accurately
detect congested flows and victim flows. For congested flows,
ACC gracefully employs a two-step strategy: senders first
wait for the excessive packets to drain out via a temporary
halt and then match the rate to network pipe capacity. In de-
tail, by correlating ACK sequences across multiple periods
and ACK arrival rate, ACC senders figure out the number of
excessive packets and the exact time to be drained at switches.
For victim flows, ACC senders collect the duration pattern of
ACK markings to perceive the severity of congestion and only
adjust the rate when congestion spreading lasts long.

Our key contributions are summarized as follows:
• Understanding the implications of intrinsic properties of

lossless Ethernet (e.g., packet conservation) on congestion
control and deriving basic principles for handling congested
flows and victim flows. Our perspective strikes out a new
path of exploiting intrinsic properties to guide the precise rate
control for lossless networks.

• Developing a new congestion control scheme called ACC
for lossless Ethernet. As ACK can correspond to each injected
packet precisely, ACC utilizes ACK time series to derive exact
backlogged packets in switches and network pipe capacity.
ACC can quickly converge to the proper rate in one RTT and
empty accumulated queues rapidly.

1Note that in lossy networks where packets can be dropped due to buffer
overflow, the number of packets injected into the network is not equal to
the number of ejected packets (i.e., acknowledged by receivers). So packet
conservation property does not hold in lossy networks. In addition, we do not
consider packet loss due to packet corruption or device failure in this paper.

• Implementing ACC in SoftRoCE [36] and evaluating
ACC via extensive experiments. Results show that ACC well
alleviates congestion spreading and HoL blocking issues and
can achieve low latency and high throughput. For instance,
compared with state-of-the-art schemes, ACC improves the
average and 99th percentile FCT performance of small flows
by 1.3~3.3⇥ and 1.4~11.5⇥, respectively.

2 Design Space
2.1 Desirable Properties
We begin with reexamining the desirable properties of conges-
tion control for lossless Ethernet. Specifically, we target the
scenario of a single RDMA domain deployed with a single
CC scheme, which is common in Ethernet-based datacenters.

(1) Fast convergence. The primary goal of congestion
control is allocating the proper rate for each flow thus the ag-
gregation rate converges to the bottleneck capacity. However,
in lossless Ethernet, fast convergence is particularly crucial
to the following issues:
• Restricting the spreading of congestion and alleviating

HoL blocking. Without fast convergence, a congestion point
is likely to spread into a congestion tree with cascading ac-
cumulated queues along branches. Take Figure 1(a) as an
example. After congestion happens at port P4, P4 becomes
the root of the congestion tree. Once the PFC pause prop-
agates to upstream switches, the paths of congested flows
(e.g., <S1-R1>) become the main branch of the congestion
tree. When other flows (e.g., F0) destined for non-congestion
points pass through the main branch, the backpressure of PFC
may further induce the secondary branch. Thus, HoL blocking
occurs. Flows not destined for congestion points innocently
suffer from PFC pause. The accordingly secondary branch
in Figure 1(b) is <P1-S0>. When the congestion tree grows,
the input and output of the switches along the branches are
prone to be modulated into an ON-OFF pattern by PFC (i.e.,
alternating between sending and pausing), thus disturbing con-
gestion detection and subsequent rate regulation. If multiple
congestion points are in the same congestion tree (i.e., a larger
congestion tree covers a smaller congestion tree), congestion
point in the larger congestion tree will be first eliminated then
the smaller congestion tree.
• Lowering the risk of deadlock. Deadlock is a silent killer

in the lossless network [21, 25, 26, 38]. The typical causes
of deadlock in today’s data centers are as follows: Initially,
owing to reasons such as routing misconfiguration, switch
firmware failure, or link failure, a Cyclic Buffer Dependency
(CBD) emerges in the topology. Then if congestion happens
and the congestion control fails to converge quickly, the fre-
quent trigger of PFC may be induced. Eventually, PFC pause
propagates to the whole cycle and all switches wait for its
upstream to send PFC resume, thus a deadlock occurs. From
another perspective, even if CBD exists, the fast convergence
of congestion control can make it resilient against deadlock.

132 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HN
…

R1

R0

S1

SW2 SW3 SW4

F1

SW1S0

H1

F0

P1 P2 P3
P4

(a) Topology and flows (N > 1)

P4

HNH1S1 S0

P3

P1
P2

…

(b) Congestion tree

Figure 1: Typical scenario.

(2) Low latency and high throughput. Today’s applica-
tions increasingly pursue stringent latency and throughput
performance [23,27]. In lossless Ethernet, offloading network
stacks into hardware (i.e., RDMA) helps sustain the criti-
cal latency and bandwidth requirements at hosts but leads to
the network becoming the bottleneck. On the one hand, for
increasingly dominant storage workloads with NVMe-over-
Fabrics technology [10,27], the overall completion latency for
a single storage operation is determined by the latency of the
slowest network operation. Each storage operation involves
messages with a size of only several KB and may require
microsecond-scale latency [3, 19, 47, 48]. On the other hand,
data processing applications [16, 44] and AI applications in-
creasingly involve communicating among high computation
speed devices at scale [29, 39, 51]. These applications pe-
riodically transfer a large volume of data and the average
transfer time of each round directly impacts the overall pro-
cessing/training time and cost, which imposes high require-
ments on throughput performance. To sum up, congestion
control should be able to achieve low latency for short flows
and predictable high throughput for longer flows.

2.2 Ternary Flow States in Lossless Ethernet
The foundation of congestion control in lossless Ethernet is
understanding the network state space under the influence
of PFC. We notice that a recent work TCD [45] develops a
ternary congestion signal tailored to lossless networks, which
can distinguish between switch ports that are roots of con-
gestion trees (i.e., congestion ports) and switch ports on the
branches that are only affected by PFC (i.e., undetermined
ports). TCD terms the new state as "undetermined" because
the real states of these ports are masked due to intermittent
ON-OFF sending pattern when PFC triggers. TCD-enabled
switches mark packets passing through a congested port with
CE and mark packets passing through an undetermined port
with UE, which indicates “congestion encountered” and “un-
determined encountered”, respectively. Besides, UE can only
be marked when the packet is not marked with CE. As a result,
TCD can notify end hosts of ternary flow states: congested
flows that pass through congestion ports, undetermined flows
2 that only pass through undetermined ports, and uncongested
flows. As shown in Figure 1, port P4 is the congestion port,
while all other nodes of the congestion tree are undetermined
ports. F1 is the congested flow, while F0 is the victim flow.

2We interchangeably use “victim flows” and “undetermined flows”
throughout the paper.

(a) F1: inflight packets and packets
backlogged in switch buffers

(b) Packets arriving pattern

Figure 2: [N = 20] F1: packets backlogged in switches and
data/ACK arriving pattern.

However, although TCD can be useful for perceiving net-
work states, it remains an essential issue on how to deal with
these refined flows to fulfill the desirable properties for con-
gestion control. Concretely, for congested flows that are actual
contributors to congestion, congestion control should regu-
late its rate to converge quickly to the proper value and stay
near it. By doing so, emerging congestion can be eliminated
rapidly and prevents the potential risk of congestion spread-
ing. Still, chances are that congestion spreads (e.g., caused
by bursty traffic or first RTT traffic) and thus may accompany
the emergence of HoL blocking and victim flows.

3 Principles
In this section, we aim to present design principles to answer
key questions for congestion control in lossless Ethernet:

(1) How to adjust the rate of congested flows to achieve
fast convergence? (§ 3.2)

(2) How to treat congested flows and victim flows individ-
ually to handle HoL blocking? (§ 3.3)

3.1 Experiment Setup
To provide vivid illustration, we conduct detailed investiga-
tions via ns-3 simulations. The network topology is shown
in Figure 1(a). The link capacity is 100Gbps with 2 µs prop-
agation delay. F0 and F1 are long-lived flows. H1⇠HN send
concurrent 64KB bursts lasting for about 2ms and can hardly
be regulated by end-to-end congestion control as the size is
smaller than bandwidth-delay-product (BDP). For rate de-
crease algorithms at hosts, we adopt the widely-used DC-
QCN [49]. The PFC threshold is 512KB.

The switches support TCD so hosts are aware of ternary
states of flows. Specifically, assume F0 and F1 start simul-
taneously and achieve their fair bandwidth allocation, then
bursts start. After congestion occurs at port P4, F0 becomes
the victim flow in the branch <P4-S1>. We introduce differ-
ent congestion degrees by changing the value of N, which
indicates the number of concurrent senders. A larger N in-
duces more severe congestion at port P4, resulting in a deeper
congestion tree.

3.2 The Power of ACK-Driven
To explore the potential principle to throttle congested flows,
we first take a close look by combining the in-network per-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 133

(a) F1:DCQCN (b) F1 stops 20µs and sends
at PCrate

(c) F1 stops 180µs and sends
at PCrate

Figure 3: [N = 20] Queue occupancy at Port P3. PCrate: the rate
corresponding to the pipe capacity of the flow.

(a) F1: DCQCN (b) F1 stops 90µs and sends
at PCrate

Figure 4: [N = 10] Queue occupancy at Port P3.

spective (e.g., congested packets backlogged in switches) and
the end-host perspective (e.g., inflight bytes seen by senders).

Figure 2(a) shows the evolution of F1 packets backlogged
in each switch port (the upper subfigure) and the inflight
bytes maintained at the sender H1 (the lower subfigure) under
Setting I (N = 20). The inflight bytes are derived from the
difference between the next sending byte sequence and the
unacknowledged byte sequence. After congestion occurs at
1ms, F1 packets are only queued at P4 till 1.1ms. As PFC takes
effect and congestion gradually spreads to upstream switches,
the number of backlogged bytes at ports P3, P2, and P1 rise
one by one. For congested flow F1, the maximum amount
of traffic that can be delivered per RTT is C⇥RT T/(N +1),
also called as the network pipe capacity of this flow (around
0.012MB in this scenario). As shown in Figure 2(a), we notice
that the number of inflight bytes closely tracks the sum of total
backlogged packets (i.e., packets queued in P4, P3, P2, and
P1) and the network pipe capacity of F1.

From the end-host perspective, Figure 2(b) depicts the pack-
ets arriving pattern of congested flow F1 at R1 and its ACKs
at S1. After congestion occurs at 1ms, the arriving pattern of
F1 data packets is continuous for a long time period at first
because excessive packets would eventually go through the
continuously-ON congested port P4. The arriving pattern of
ACKs corresponds well to data packets. We also record the
arriving rate of F1 ACKs. For congested flow F1, the arriving
rate of ACKs (around 4.7Gbps) is exactly the available band-
width of F1, which can also deduce the capacity of network
pipe (i.e., available bandwidth⇥ RT T). In summary, we have
Observation 1: For congested flows: (1) the number of exces-
sive packets backlogged in switches is exactly the difference
between inflight packets and the network pipe capacity; and
(2) the ACK arrival rate can imply the available bandwidth.

Indeed, the above observations corroborate an intrinsic
property of lossless Ethernet: packet conservation, i.e., sent
packets are never lost. Different from traditional lossy net-
works where packets may be dropped due to buffer overflow,
in lossless Ethernet, excessive packets will backlog in switch
buffers along the branch after filling the pipe. Thus all of them
are eventually delivered and acknowledged by ACKs.

The implications behind packet conservation property lie
in that: the precise number of excessive packets and the net-
work pipe capacity of congested flow can both be inferred

from the ACK time series. Thus, the ACK-driven paradigm
really comes into its own in a lossless network with packet
conservation property. To this end, we derive Principle 1: In
lossless Ethernet, the ACK-driven paradigm is a powerful
knob to infer the proper throttled rate and the precise
number of excessive packets for congested flows.

3.3 Handling HoL Blocking
Once PFC takes effect, victim flows may emerge and suffer
from HoL blocking. The following question is how to treat
congested flows and victim flows individually to handle HoL
blocking. Ideally, HoL blocking should be eliminated as soon
as possible without incurring unnecessary performance loss.

Next, we focus on the effect of rate control strategies of
congested flows on HoL blocking alleviation and victim flows
under different degrees of congestion (e.g., N = 20 and N =
10). We enable TCD in switches thus flows with packets
marked as UE are identified as victim flows. The default rate
control strategy is that only congested flows will be throttled
once detected, and victim flows will adjust the sending rate
the same as uncongested flows according to DCQCN.

Figure 3(a) reports the queue occupancy of individual flows
at the switch port P3 when N = 20 with DCQCN. After bursts
start at 1ms, congestion emerges at port P4. Then conges-
tion spreads to upstream switches and packets accumulate at
ports P3 and P2 (not shown in the figure). The HoL blocking
process lasts for about 2ms. We notice that the queue accumu-
lation of F0 accompanies with the queue buildup of F1, which
confirms that HoL blocking originates from queue buildup of
congested flows along the branch.

Further, to understand how congested flows with precise
rate adjustment may impact HoL blocking, we let congested
flow F1 first empty the accumulated packets along switches
by stopping for a while (after congestion is detected) and then
send at the rate corresponding to the network pipe capacity
(i.e., PCrate). As shown in Figure 3(b), congestion spreading at
P3 is largely alleviated. The queue occupancy of F1 is quickly
suppressed and the total blocking time of F0 is reduced. We
also estimate an ideal stopping time (i.e., 180us) and Figure
3(c) depicts the queue occupancy. With sufficiently long time
to empty the accumulated packets along switches, the duration
of HoL blocking is much shorter than in Figure 3(b). However,
F0 is still blocked at port P3 and has queue buildup. This is
because although congested flow F1 are stopped precisely,

134 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pause frames may still be triggered due to large ingress queue
previously accumulated at the downstream port 3.

When N = 10, we see a more desired impact on alleviat-
ing HoL blocking. As shown in Figure 4(a), the congestion
degree is smaller when N = 10, where the duration time of
HoL blocking is short. With DCQCN, the queue occupancy
of F0 is even much larger than F1 at port P3. However, as
depicted in Figure 4(b), once congested flow F1 stops for a
sufficient time to empty the queue and then sends at the rate
corresponding to the network pipe capacity, HoL blocking
can even be eliminated. With fewer accumulated packets and
a faster draining rate at the downstream congested port, the
corresponding ingress queue falls below the PFC threshold
faster. In this scenario, victim flows can safely pass without
causing pause frames and HoL blocking. In summary, we
have Observation 2: Stopping congested flows sufficiently
long can eliminate associated buffers as soon as possible.
However, under different congestion situations, HoL blocking
may still occur and victim flows have the risk of inducing
further congestion spreading.

The above observations tell that although stopping con-
gested flows does not necessarily stop pause frames from
affecting victim flows, it does help get rid of such blocking
states as soon as the accumulated buffer of congested flow is
sufficiently drained. During this process, victim flows may
still emerge and have the risk of congestion spreading. Thus,
we advocate treating victim flows dynamically to adapt to
different congestion situations, rather than treat them iden-
tically. We derive Principle 2: Stopping congested flows
sufficiently long is the foremost means to suppressing HoL
blocking. While congested flows are stopping, victim flows
should balance HoL blocking alleviation and throughput
by adapting to the severity of congestion.

Incorporating Principle 1 and Principle 2, we come to the
following strategies for congested flows and victim flows in
lossless Ethernet: Congested flows should first stop to wait for
accumulated congested queues to drain out, and then send at
the rate of network pipe capacity. While victim flows should
sacrifice throughput as little as possible and benefit HoL block-
ing alleviation. Such collaborative strategies can rapidly sup-
press congestion spreading without link underutilization, and
benefit latency and throughput performance.

4 ACK-Driven Congestion Control
Following the above principles, we present the design of ACK-
driven congestion control (ACC). The switch supports TCD
and marks ternary congestion notification in data packets.
A CE marked packet indicates a congested flow that passes
through a congestion port. A UE marked packet indicates that
the flow only passes through ports affected by PFC. The flow
is uncongested if neither CE nor UE is marked (denoted by

3PFC is triggered based on the ingress queue length. In today’s commodity
shared-buffer switches, the ingress queue length is a counter which is updated
when packets enqueue the ingress and dequeue the egress [21].

Sending

Congested

Uncongested

Undetermined

Source Halt

Receiving
ACK

CE

UE

NO

Rate
decrease

Rate increase

Rate keep or decrease

ACK
arrival rate

ACK
sequence

Figure 5: ACC state machine.

NO). The receiver copies the TCD marking to the correspond-
ing ACK and sends it back to the sender.

At its core, ACC conducts ACK-driven rate adjustment in-
cluding enforcing a source halt according to ACK sequences
(§ 4.2), and referring to ACK arrival rate to guide rate decrease
for congested flows (§ 4.3). The source halt state involves a
halt time which guarantees draining out accumulated packets
in the network while avoiding link under-utilization. For vic-
tim flows, ACC adaptively adjusts the rate according to the
feature of duration time of ACK markings (§ 4.4).

4.1 State Machine Overview
The ACC sender makes rate adjustment decisions every period
T (e.g., base RTT, see § 5). At the end of each period T , the
sender identifies the current state of the flow according to
TCD marking and conducts corresponding rate adjustment.

Figure 5 illustrates the state machine of ACK-driven rate
adjustment at ACC senders. TCD marking is aggregated in
each T with the priority order CE > UE > NO. If there is
ACK with CE received, the flow may experience congestion.
The ACC sender records the number of CE marked ACKs of
each flow. If the marking fraction of CE is above a threshold
(i.e., 90%) during a period T , it is considered a steadily con-
gested flow. If there is no ACK with CE received but with UE
marking received, the flow is regarded as a victim flow that
experiences an undetermined state. Only when neither UE nor
CE marking is received, the flow is uncongested. Specifically,
when the flow is identified as congested, it will first enter into
a source halt state where the connection ceases transmission
and the ACK arrival rate is recorded for later sending. After
leaving the source halt state, congested flows are throttled at
the proper rate derived from the ACK arrival rate. For uncon-
gested flows, the sender directly increases the sending rate.
For victim flows, the sender adjusts the sending rate according
to the duration pattern of UE markings.

4.2 Halting Congested Flows
For congested flows, ACC introduces a source halt state which
actively stops the transmission of congested flows before
sending at the appropriate rate (§ 3.2 Principle 2). The crux
of the source halt is the halt time. An appropriate halt time
should ensure that accumulated packets are drained without
under-utilizing the link. Indeed, a proper number of packets
should fill the network pipe without causing queue buildup
in the switch buffer. Specifically, ACC senders calculate the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 135

ACK

…

Sender k ReceiverSwitch

Draining time of the queue: !/#
Draining time of flow k in the queue: (∆%! – ∆&!) / (!

ACK ACK ACK

…

…

Arrival rate: !!

Link capacity: "

Sent:

Acked:

SenderM

! = ∑ (+%! – +&!)"
!#$

#$"

#%"

Figure 6: The rationale of calculating tHalt .

duration of the source halt state according to the time series
of ACK sequences (§ 3.2 Principle 1).

Concretely, for each flow, the sender maintains a value
called tNextPkt to represent when the next packet is transmitted.
Initially, tNextPkt is set to 0 and is assigned by the congestion
control algorithm. With ACC, tNextPkt is updated as follows
when the sender enters into the source halt state:

tNextPkt tNextPkt + tHalt (1)

where tHalt is calculated based on the estimated draining time.
After tHalt , a sender considers that the accumulated queues
have drained out. Figure 6 illustrates the rationale under the
typical incast scenario with M senders. Assume for flow k,
DSk is the total sent out bytes in one period T (i.e., base RTT).
DAk is the total acknowledged bytes in the next period. Ideally,
all packets sent in one period should be acknowledged in the
next period when there is no congestion (i.e., DAk = DSk).
Once congestion happens, the excessive packets build up the
queue. The total excessive sent packets are ÂM

k=1(DSk�DAk).
Then the draining time of the bottleneck queue is ÂM

k=1(DSk�
DAk)/C, where C is link capacity. Since flow k can only pass
through the bottleneck with the rate Rk, the draining time of
total packets belonging to flow k in the bottleneck queue can
be calculated as (DSk�DAk)/Rk, which is the expected tHalt
of flow k. For clarity, in the following, we use DS and DA to
denote DSk and DAk for flow k, respectively.

Each flow maintains a sequence space to calculate DS and
DA. Assume snd_una denotes the first sequence that has been
sent but not acknowledged, and snd_nxt denotes the next
sequence to be sent. snd_una is updated every time an ACK
is received. When a packet is sent, snd_nxt is also updated.
Then DS is the difference between snd_nxt at the end of the
current period and snd_nxt at the beginning of the current
period. DA is the difference between snd_una at the end of the
next period and snd_una at the beginning of the next period.
When severe congestion causes no ACK to arrive during a
period, DS should accumulate until an ACK is received.

In detail, ACC senders manipulate DS and DA among sev-
eral periods to calculate tHalt and exert source halt as shown in
Figure 7: (1) Period Ti�1 in normal transmission; (2) Period Ti
starts receiving ACKs of packets sent in Ti�1 and sends at the
same rate as Ti�1; (3) The first period Ti+1 enters the source
halt state and stops transmission; (4) Period Ti+n leaves the
source halt state and starts transmission. Assume the sender
starts a flow and then experiences congestion during Ti�1. The
available bandwidth is derived from ACK arrival rate, and

Sender

Receiver

Ti Ti+1
Enter the
source halt

First period
in source halt:

…

Leave the source halt
and send normally

Ti+n

…

First ACK
Ti-1 ……

tHalt

packets sent in Ti	
are inflight

Figure 7: The timeline of entering and exiting source halt.

Ti�1 period directly uses ACK sequences received in Ti period
to obtain the excessive packets in Ti�1. Indeed only Ti period
will use the excessive rate to infer the excessive packets. The
detailed process of exerting source halt is as follows:
• At the end of Ti, the sender identifies the flow as congested

and prepares to exert source halt. tHalt is calculated by (DS�
DA)/R and the flow halts until over period Ti+1. DS is obtained
during Ti�1, while DA and R is obtained in Ti. Note that the
flow still sends packets at the previous rate during Ti, where
excessive packets sent in Ti may also lead to queue buildup.
• At the end of Ti+1, the sender already enters the source

halt state and stops transmission. The sender should estimate
excessive packets sent in Ti and extend the insufficient halt
time calculated at the end of Ti. We notice that the excessive
packets sent in Ti can be inferred according to how much the
sending rate exceeds the available bandwidth, without the
need to wait for the arrival of ACKs. Concretely, based on the
sending rate Rs in the period before source halt (i.e., sending
rate of Ti�1) and the current available bandwidth R (i.e., the
ACK arrival rate in Ti), the number of excessive sent packets
r in Ti equals to DS subtracting the estimated pipe capacity
(line 7 in Algorithm 1). Finally, tHalt is extended by textend
(line 8-9 in Algorithm 1).

• During Ti+n, the sender leaves the source halt state and
starts transmission. The sender should only consider ACKs
of new packets sent after leaving the source halt state for
following ACK-driven rate adjustment. To this end, the sender
records snd_nxt before entering into the source halt state. For
each received ACK, only when the current snd_una is greater
than the recorded snd_nxt, the ACK is considered eligible
(line 2 in Algorithm 1).

4.3 Throttling Congested Flows
For congested flows, after leaving the source halt state, the
sender utilizes the ACK arrival rate to guide rate decrease
(§ 3.2 Principle 1). ACK arrival rate (line 3 in Algorithm
1) can reflect the data receiving rate at the receiver 4. The
aggregate receiving rate is the capacity of the bottleneck link.
To reduce the disturbance due to congestion in the reverse
path, ACKs are sent with higher priority than data packets
to avoid a significant queueing delay. The effectiveness of
this method has been confirmed in [33]. Besides, the arrival

4Currently, we only consider per-packet ACKs for accurately estimating
excessive packets and network pipe capacity. However, if there is ACK
coalescing, the precise number of excessive packets can still be inferred from
cumulative ACK sequences.

136 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Variables Description
snd_una The current unacknowledged byte
snd_nxt_start The next sending byte when the sender

is allowed to send, initialized as 0
halt Whether the sender has halted
Rs The current sending rate
RI The rate increment value
tNextPkt The next sending time
Nu The number of consecutive uncon-

gested periods
Nv The number of consecutive periods re-

ceiving UE
Pthresh The threshold of Nv to throttle victim

flows

Table 1: Variables of ACC sender algorithm.

rate of ACKs may be so small that just one ACK arrives in
several periods. To address this corner case, the sender also
records the inter-arrival time of ACKs. When the inter-arrival
time is larger than T , the sender estimates the arrival rate by
replacing T with the inter-arrival time.

4.4 Adapting Undetermined Flows
If ACKs marked with UE are received in a period T , the cor-
responding flow is an undetermined flow (i.e., victim flow).
ACC treats victim flows adaptively according to the severity
of congestion (§ 3.3 Principle 2). Indeed, the duration of re-
ceiving UE marks can indicate the severity of congestion. If
congestion is not severe, ACC senders will receive few UE
marks (e.g., only within one period) as congestion may not
spread or can be quickly suppressed due to source halt of
congested flows. However, if congestion is severe, congestion
spreading may last long and ACC senders are likely to ob-
serve UE marks stretching across multiple periods. Thus, after
identifying victim flows, ACC senders continuously observe
the arriving pattern of UE marks to adjust the sending rate.

Concretely, ACC senders first keep the rate and then reduce
the sending rate according to the number of consecutive peri-
ods with UE marks. As shown in Algorithm 1 (lines 23-24), if
the number of consecutive periods with UE marks exceeds a
period threshold Pthresh, victim flows will decrease the current
rate by half to reduce the injection rate and prevent further
congestion spreading. In this way, victim flows avoids blindly
decreasing the rate with the side effect of losing throughput,
but help alleviate HoL blocking when congestion spreading
lasts long.

4.5 Rate Increase for Uncongested Flows
If neither CE nor UE marked ACKs are received during period
T , the flow is uncongested and should attempt to increase the
sending rate. The principles are as follows:

(1) The increase step of uncongested flows should consider
the current sending rate. A flow with a small sending rate
should increase more, while a flow with a large sending rate

Algorithm 1 ACC sender algorithm.
1: function CONGESTED(recvNum,snd_nxt_start,snd_una)
2: if halt == f alse and snd_una > snd_nxt_start then
3: R = recvNum⇤MTU/T ; //calculating ACK arrival rate
4: Rs = R;
5: SourceHalt(R,DS,DA); //calculating the halt time
6: else if Halt == true then
7: r = DS�DS⇤R/Rs;
8: textend = r/R;
9: tHalt tHalt + textend ;

10: tNextPkt tNextPkt + textend ;
11: end if
12: end function
13: function UNCONGESTED
14: if Nu < 2 then
15: RI = RILow;
16: else
17: RI = RIHigh;
18: end if
19: Rs = Rs +

(lineRate�Rs)
lineRate ⇤RI;//increasing the sending rate

20: Nu = Nu +1;
21: end function
22: function UNDETERMINED
23: if Nv > Pthresh then
24: Rs = Rs/2;
25: end if
26: end function
27: function SOURCEHALT(R,DS,DA)
28: if DS > DA then
29: tHalt = (DS�DA)/R;
30: tNextPkt tNextPkt + tHalt ;
31: halt = true;
32: snd_nxt_start = snd_nxt;
33: end if
34: end function

should increase less.
(2) The rate increase process should be gradual at first to

avoid causing congestion immediately while aggressive after
available bandwidth is considered adequate.

ACC senders make rate adjustments following the law in
lines 13-21 in Algorithm 1. Generally, the sender increases
the sending rate by adding an amount proportional to the dif-
ference between lineRate and the current sending rate. Note
that lineRate means the maximum rate of NIC which may
vary if NIC speed changes. There are two stages for the rate
increase. RI is the maximum increase amount per period with
different values for two stages and is proportional to lineRate.
For the early stage, RI is set as a small value RILow. After two
consecutive increase periods, the maximum increase amount
per period RI is set as a large value RIHigh. RILow and RIHigh
are both proportional to RI. In this way, uncongested flows
increase gradually at first, then aggressively with a large in-
crease step and finally increase less per period as the sending
rate gets closer to the line rate.
4.6 Theoretical Analysis
We build a fluid model of ACC and analyze its performance,
including convergence and fairness. The main conclusions are
summarized in the following propositions, and the detailed
proof is listed in Appendix A.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 137

Kernel rxe_completer

rxe_comp_queue_pkt

Completion
Queue

check_ack

complete_wqe

1. Get TCD flag,
ACK arrival rate
2. Start timer
3. Update tNextPkt

rxe_requester

rate pacer

req_next_wqe

init_packet

rxe_xmit_packet

Hold until
tNextPkt

Record the newest
trasmit time

Init TCD flag，
per-packet ack

Ethernet NIC

(a) Sending data and receiving ACKs

Kernel

rxe_resp_queue_pkt

Response
Queue

rxe_responder

send_ack
execute

rxe_xmit_packet

Acknowledge
Piggyback
TCD flag

Ethernet NIC

(b) Receiving data and send-
ing ACKs

Figure 8: ACC implementation in SoftRoCE.

Proposition 1: When the aggregate sending rate is larger
than the bottleneck link bandwidth, ACC can converge the
aggregate sending rate towards the bottleneck link bandwidth
within one control period T .
Proposition 2: ACC can always guarantee fair bandwidth
allocation regardless of the initial sending rate of the flow, i.e.,

Si!
C
N

Si is the sending rate of flow i, C is the bottleneck link band-
width, N is the number of flows sharing the bottleneck link.

5 Implementation
In this section, we describe the Linux implementation of
ACC using SoftRoCE, which is a software implementation of
RDMA and fulfills the RoCE NIC function on Ethernet NICs.
Figure 8 illustrates the kernel SoftRoCE architecture with our
ACC extensions shaded in gray. ACC involves modifications
in three main modules, as described below.
rxe_completer This module is responsible for process-
ing received ACKs at the sender. We modify the check_ack
function to implement the ACC algorithm and maintain the
state machine of ACC. For the first ACK of each flow, we start
a timer for periodically checking ACKs in ACC. The ACC
algorithm determines the sending rate of each flow accord-
ing to current state (congested, undetermined or uncongested)
and converts the rate to pacing delay among packets. Based
on the latest sending time and pacing delay, the function can
calculate tNextPkt . tNextPkt is also updated once the flow enters
the source halt state (Equation 1).
rxe_requester This module is responsible for sending
data at the sender. Since the original SoftRoCE does not
support congestion control, we add a rate pacer to controlling
the transmission time of packets according to tNextPkt . The
rate pacer continues comparing current time with tNextPkt , and
source halt can be enforced by holding back the next packet
until tNextPkt .
rxe_responder This module receives data packets and
triggers the generation of ACKs. For ACC, after processing
the data packets and prepare to generate ACK, it will piggy-
back the TCD marking to ACK packets.
Discussion on NIC implementation. In RDMA NICs, the QP
Context (QPC) maintains for a QP all its contexts, including

the DMA states and connection states (e.g., expected packet
sequence numbers and sending rate). For ACC, the additional
QPC size required for each QP is less than 40B (including
ternary states and variables in Table 1), so the total required
size for 1K QPs can be less than 40KB, which is acceptable for
on-chip memory consumption. Besides, current commercial
RDMA NICs already support around 1K rate limiters based
on timers [43].

6 Evaluation
6.1 Evaluation Setup
Testbed. We build a testbed consisting of 5 servers connected
to one switch. Each server is equipped with AMD Ryzen 9
3950X CPU@3.5GHz, 64GB RAM, an Intel 82599ES 10GbE
NIC and runs Ubuntu 20.04 with Linux kernel 5.4.127. All
hosts are connected via a 32⇥100Gbps Tofino switch. We use
the default shared buffer setting in the Tofino switch, and also
implement ACC and DCQCN [49] in SoftRoCE [36].
Schemes compared. We focus on the comparison among
ACC, ECN-based DCQCN [49], RTT-based TIMELY [33]
and INT-based HPCC [29]. We use the open-source code of
DCQCN, TIMELY and HPCC provided in the HPCC sim-
ulator [28] and implement ACC (including the support of
TCD in switches). HPCC and DCQCN are state-of-the-art
and state-of-the-practice in data centers, respectively. Note
that HPCC requires INT support from switches to obtain pre-
cise link load. In large-scale simulations, we also compare
ACC with DCQCN+TCD and TIMELY+TCD [45], which are
congestion control schemes enhanced by accurate congestion
detection in TCD. TCD preliminarily proposes to reduce the
rate of congested flows aggressively and adjust victim flows
gently via heuristically modifying the parameters of existing
algorithms.
Network topology. We adopt a fat-tree [5] topology in large-
scale simulations. There are 320 servers in 20 racks, 20 aggre-
gation switches and 16 core switches. Each server has a 100
Gbps link connected to ToR switches. All links between core,
aggregation and ToR switches are 400 Gbps. Each link has
1µs delay. The switch buffer size is set to 32MB according
to real device configurations. PFC is enabled by default and
XOFF is set to 512KB.
Workloads. We generate flows according to Web Search [6]
and Cache Follower [40] workloads. The overall load is 80%.
We also use Hadoop [40] workload (load 50%) adding in-
cast traffic (load 20%). For each incast, 64 randomly selected
senders send 20KB to one receiver. These workloads contain
typical traffic patterns in data centers with most traffic consti-
tuted by few but large flows [6, 11]. Cache Follower and Web
Search workloads contain more heavy flows. Hadoop work-
load is the lightest, around 70% flows smaller than 10KB.
Parameter setting. The core parameters of ACC include the
period T , RI (i.e., RILow and RIHigh) and Pthresh. Since ACC
relies on the difference between sent bytes and acknowledged
bytes in a period T to figure out excessive data, T must be

138 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) DCQCN (b) ACC

Figure 9: Testbed experiment.

the base RTT to ensure that ACKs can arrive during the next
period when there is no congestion. RILow and RIHigh are the
maximum increase amount in each period. As the aggres-
sive source halt state would directly cease transmission, RILow
and RIHigh can be set large to rapidly occupy available band-
width. We recommend setting RILow as 1/250 of the line rate
while RIHigh = 10RILow. For example, RILow is 400Mbps and
RIHigh is 4Gbps when link capacity is 100Gbps. We recom-
mend setting the queue length threshold in TCD as a small
value, i.e., 2MTU. A small but non-zero threshold ensures
that congestion can be sensed at the onset while not too sen-
sitive to transient jitter. By default, we set RIHigh = 4Gbps,
RILow = 400Mbps and Pthresh = 1. The experiments also indi-
cate that our default parameters are proper (Appendix B).

For congestion detection at switches, TCD relies on
max(Ton) to determine the maximum duration of a continuous
ON period to detect the ternary state transitions. According to
the equation in [45], max(Ton) is set to 24µs in our large-scale
simulations. For HPCC, we use the default parameter with
h= 0.95 and maxStage= 5. For DCQCN, we set Kmin = 5KB
and Kmax = 200KB following the parameter setting in [31,49].
For TIMELY, a = 0.875 and b = 0.8, as suggested in [50].

6.2 Testbed
We implement ACC and DCQCN in SoftRoCE referring to
[49]. In our testbed, RTT is around 20µs. Since the period
of generating CNPs in DCQCN is 50µs, we set the period
T in ACC also to 50µs. The congestion detection results of
TCD are equal with ECN in this incast scenario. We configure
SoftRoCE such that ACK is generated for every packet5.

We let each of the four servers start a long flow and record
the aggregated sending rates calculated by the congestion
control algorithm. Note that in ACC, the sender maintains a
sending rate driven by ACK arrival rate and the rate increase
algorithm. As shown in Figure 9(a) and Figure 9(b), ACC
outperforms DCQCN in terms of fast convergence and stabil-
ity. After the congestion occurs, DCQCN gradually reduces
the sending rate. Due to the heuristic rate regulation, it takes
about 0.5ms (⇠25RTT) to reduce to 10Gbps, and then the
aggregation sending rate is reduced to 1Gbps. Finally, it takes
around 18ms to converge to the fair share. By contrast, ACC
can directly adjust the rate to the proper rate (i.e., 10Gbps)

5We set MTU to 4000B due to the performance issue of SoftRoCE.

(a) Queue length (b) Halt time in ACC

(c) Bottleneck link utilization (d) Fair rate

Figure 10: Convergence, link utilization and fairness.

after one period. The subgraph in each figure shows the ag-
gregate sending rate just after the congestion occurs. The rate
determined by the ACC algorithm is maintained as 10Gbps
under the guidance of the ACK arrival rate. The actual sending
is halted because the flows firstly enter the source halt.

6.3 Microbenchmarks
We first conduct fine-grained simulations to evaluate the basic
performance of ACC (e.g., convergence, link utilization and
fairness). Then we focus on its ability in dealing with typical
issues in lossless Ethernet such as congestion spreading, HoL
blocking and deadlock.
ACC can quickly eliminate congestion, maintain near full
link utilization and attain fair rate allocation: We let ten
source nodes send long-lived traffic to a single destination
node through a switch. All links are 100Gbps. Figure 10(a)
shows the bottleneck queue length evolution. ACC quickly
suppresses the deep queue. Thus congestion is eliminated
rapidly. This benefits from the source halt state based on pre-
cise excessive packet information in ACC. As depicted in
Figure 10(b), the actual halt time of each flow after enter-
ing the source halt state is close to the ideal halt time (i.e.,
the maximum bottleneck queue length divided by link band-
width), but DCQCN and TIMELY fail to rapidly eliminate
the congestion and maintain a low-standing queue.

As for link utilization, both DCQCN and TIMELY incur un-
stable utilization and underutilize the link due to step-by-step
rate adjustment rules. Since HPCC trades high throughput for
low latency, it maintains a 95% link utilization. Overall, ACC
can achieve steady and near-full link utilization.

As illustrated in Figure 10(d), each flow attains the expected
average fair rate (i.e., 10Gbps) with ACC. DCQCN, TIMELY,
and HPCC also achieves reasonable fairness. The aggregate
flow rate attained in DCQCN, TIMELY, and HPCC are lower
than expected. The reasons are that HPCC reserves 5% link
bandwidth headroom and the heuristic rate adjustment in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 139

(a) DCQCN (b) TIMELY

(c) HPCC (d) ACC
Figure 11: Buffer occupancy at the congested port P4/SW4
and the number of received PAUSEs.

DCQCN and TIMELY.
ACC can effectively suppress congestion spreading and al-
leviate HoL blocking under challenging bursty traffic: We
adopt the topology in Figure 1 to further evaluate the ability
to deal with congestion spreading and HoL blocking under
bursty traffic in simulation (N=15). Note that uncongested
flow F0 shares links with congested flow F1 in SW1⇠SW3.
Figure 11 depicts the individual buffer occupancy of F1 and
burst at the congested port P4, as well as the number of re-
ceived PAUSEs in switches and hosts. DCQCN and TIMELY
both receive PAUSEs at switches and hosts, indicating that
congestion spreading is severe and the congestion tree grows
many branches. The backlogged packets of F1 can not be
drained rapidly due to sluggish rate decrease in DCQCN and
TIMELY. HoL blocking (i.e., F0 is blocked) also occurs be-
cause PAUSEs are received at SW1⇠SW3 where uncongested
flow F0 sharing ports with F1.

With ACC and also HPCC, congestion spreading is sup-
pressed rapidly with many fewer PAUSEs received at both
switches and hosts. ACC and HPCC receive no PAUSEs in
SW1⇠SW3, indicating that there is no HoL blocking and F0
avoids becoming a victim. Only a few PAUSEs are received
due to uncontrollable bursts from H1⇠H15. Besides, HPCC
drastically drains the queue at first, then suffers a standing
queue for a long period, i.e., from 2ms to 2.7ms, as illus-
trated in Figure 11(c). This is because the total sending rate
has matched the bottleneck bandwidth while there are still
backlogged packets. As shown in Figure 11(d), ACC drains
backlogged packets at the congested port at the maximum
rate, with 2ms to empty the long-standing queue. This is be-
cause ACC senders timely enter the source halt state and refer
to the precise information of excessive packets.
ACC is resilient against deadlock: To validate the signifi-
cance of congestion control in preventing deadlock in lossless
Ethernet, we adopt a typical topology as illustrated in Fig-

L1 L2

T1 T2 T3 T4

… …

400Gbps

100Gbps

Figure 12: Topology

Scheme Fraction
DCQCN 6%
TIMELY 74%

HPCC 0%
ACC 0%

Table 2: Fraction of deadlock

ure 12, which is a common unit in Clos topology. To emulate
the typical scenarios where deadlock is prone to appear, we
artificially let link L0-T3 and link L1-T0 fail to form a CBD.
There are eight servers under each ToR switch. We simulate
ACC, DCQCN, TIMELY, and HPCC with Web Search work-
load [6]. The load is 60%. We run simulations 50 times with
different traffic traces, and every simulation lasts for 100ms.
Table 2 shows the fraction of deadlock runs. We identify a
deadlock by finding whether there are flows with infinite com-
pletion times. Among 50 simulations, there is no deadlock in
ACC and HPCC. However, DCQCN and TIMELY encounter
deadlocks 3 and 37 times, respectively. With fast convergence,
ACC is resilient against deadlock.

6.4 Large-Scale Simulations
We conduct large-scale simulations to evaluate the over-
all FCT performance of ACC. For each workload, we clas-
sify flows into small (<100KB), medium (�100KB and
< 10MB), and large (>10MB) flows. Note that in Hadoop
workload, the size of large flows is larger than 1MB.
ACC achieves low latency for small and medium flows:
Figure 13(a) exhibits the average FCT and 99th percentile
FCT under Web Search workload. On the whole, DCQCN
and TIMELY have undesirable performance. For DCQCN,
the average FCT for small flows is 3.3⇥ of ACC, and the 99th
percentile FCT is 11.5⇥ of ACC. This is because ACC can
quickly converge to the appropriate rate through the ACK
arrival rate. Besides, the FCT performance of ACC is better
than HPCC. For small flows, ACC reduces the average FCT
by 29% compared to HPCC, and the 99th percentile FCT
drops by 40%. The performance gain on small flows comes
from the source halt that directly stops the transmission of the
congested flow so that the queues can be rapidly drained.

Under Cache Follower workload, ACC achieves better FCT
performance than HPCC, with lower FCT even for small and
medium flows. For medium flows, ACC reduces the 99th
percentile FCT by 41% compared with HPCC. For DCQCN,
the average FCT and 99th percentile FCT are 2.4⇥ and 1.7⇥
larger than ACC, respectively.

Under Hadoop workload, the FCT performance of ACC is
close to HPCC. As shown in Figure 13(c), ACC achieves com-
parable FCT performance with HPCC for small and medium
flows. The flow sizes in Hadoop workload are smaller, with
55% of flows being less than 1KB. Such flow size distribution
induces less persistent congestion than the other two work-
loads. As a result, the queuing delay dominates the FCT for

140 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Web Search 80% load (b) Cache Follower 80% load (c) Hadoop (50% load)+incast (20% load)

Figure 13: Average and tail (99th percentile) FCT performance under various workloads.

(a) Web Search 80% load (b) Cache Follower 80% load

Figure 14: FCT slowdown performance

(a) Web Search 80% load (b) Cache Follower 80% load

Figure 15: Number of PFC PAUSEs

small flows. As HPCC sacrifices link utilization leading to
queue underflow, thus benefiting FCT performance for small
and medium flows.
ACC does not sacrifice throughput of large flows: Fig-
ure 14(a) and Figure 14(b) depict the detailed FCT slowdown
under Cache Follower and Web Search workload. For numer-
ous small and medium flows, ACC achieves comparable or
even better 99th percentile FCT slowdown than HPCC under
both workloads while always attaining better performance
than HPCC for relatively large flows. For example, for flows
larger than 30MB/10MB, the 99th percentile FCT slowdown
with ACC is 26% and 27% lower than HPCC, respectively. In
Figure 13(b), ACC also outperforms HPCC by 30% for the
99th percentile FCT of large flows. ACC does not sacrifice
the throughput of large flows because it precisely drains out
excessive packets and does not underflow the queues to waste
link bandwidth.
ACC outperforms DCQCN+TCD and TIMELY+TCD
enhanced with heuristic rules: Figure 13 also demon-
strates that with accurate congestion detection and heuris-
tic rules on adjusting the rate of congested/victim flows,
both DCQCN+TCD and TIMELY+TCD improve the aver-
age and tail FCT performance compared with DCQCN and
TIMELY. However, since DCQCN+TCD and TIMELY+TCD
still heuristically decrease the rate of congested flows follow-
ing the original paradigm, they can not drain congested queues

(a) FCT slowdown (b) PFC PUASEs

Figure 16: Impact of source halt

rapidly and allocate the proper rate precisely under various
workloads. Thus, DCQCN+TCD and TIMELY+TCD may
suffer from slow convergence and long-standing queues. For
instance, under Cache Follower workload, ACC improves tail
FCT performance of small flows by 3.9⇥ and 5.1⇥ compared
with DCQCN+TCD and TIMELY+TCD, respectively.
ACC greatly reduces PFC PAUSE generation: The number
of received PAUSEs in different layers under Web Search
and Cache Follower workload is drawn in Figure 15. The
results show that ACC almost has no trigger of PFC messages
because of fast convergence and the ability to maintain low-
standing queues. Thus there is little HoL blocking. In Web
Search workload, for DCQCN and TIMELY, most PAUSEs
are received in the aggregation layer because the challenging
incast pattern happens in the ToR layer. In Cache Follower
workload, most PAUSEs are received at the aggregation layer
and servers, indicating that congestion spreading is severe
hence many innocent senders are affected.
Source halt benefits low latency for small flows and re-
duces the risk of PFC PAUSEs: Aiming at understanding
the significance of source halt, we take a closer look at the
comparison between ACC and ACC w/o halt. ACC w/o halt
removes the source halt state and directly decreases the send-
ing rate of congested flows according to the ACK arrival rate.
Figure 16(a) manifests that ACC w/o halt can achieve sim-
ilar performance for medium and large flows, while small
flows suffer from larger FCT. Small flows experience undesir-
able queueing delays as congested queues can not be rapidly
drained out. ACC w/o halt can still fulfill fast convergence ow-
ing to the guidance of ACK arrival rate. Besides, as illustrated
in Figure 16(b), since there are more long-standing queues,
the risk of triggering PFC PAUSEs increases. ACC signifi-
cantly reduces the PFC PAUSEs at each layer compared with
ACC w/o halt. The congestion spreading is also restricted

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 141

effectively, with many fewer PAUSEs received at the servers,
ToR, and the core layer.

7 Related Work
Lossless Ethernet vs. Lossy Ethernet. There has been
an ongoing discussion about lossless and lossy Ethernet in
RDMA-based datacenter. Lossless Ethernet can benefit appli-
cation performance but comes with side effects of deploying
PFC (i.e., HoL blocking, congestion spreading, deadlock, etc).
However, ACC reveals that besides its side effects, PFC also
gives a unique packet conservation property which can facili-
tate precise congestion control and in turn mitigate the side
effects of PFC. In contrast, although lossy Ethernet can essen-
tially avoid the side effects of PFC, it may suffer from latency
degradation due to packet losses and imposes higher imple-
mentation requirements on RDMA NICs (e.g., more complex
loss recovery and reorder logic). Thus, existing efforts can
be mainly classified into two lines: (i) Developing conges-
tion control (or flow control) to minimize the side effects
of PFC: For example, CC schemes including DCQCN [49],
PCN [13], TCD/TCD-MQ [45, 46], ACC, etc, and new link-
layer flow control like deadlock-free GFC [38]. (ii) Develop-
ing advanced loss recovery to improve RDMA performance:
For example, IRN [34] first introduces selective retransmis-
sion into RDMA NICs. TLT [30] proposes to reduce timeouts
by protecting important packets. SLR [32] utilizes switches
to send loss notifications to request fast retransmissions and
is compatible with default Go-back-N retransmission.
Congestion control in lossless interconnects. Besides loss-
less Ethernet, there are other lossless interconnects, e.g., In-
finiBand [9] and Fibre Channel [8]. For example, InfiniBand
deploys credit-based flow control to guarantee no packet loss,
which also suffers from HoL blocking, congestion spreading,
and deadlock problems [9, 22, 41]. Despite the fact that ACC
is designed for lossless Ethernet employing PFC, we think
our key insights (e.g., utilizing the ACK-driven paradigm to
infer excessive packets and throttled rate) are also suitable for
congestion control in other lossless interconnects with packet
conservation property.
Receiver-driven and other advanced congestion controls.
Recently several receiver-driven congestion controls have
been proposed, such as ExpressPass [14], pHost [18], NDP
[23], and Homa [35]. The core of receiver-driven congestion
control is “request and allocation” style transport [24]. These
receiver-driven schemes are first proposed in lossy Ethernet,
where new flows blindly transmit unscheduled packets in the
first RTT. Hence congestion may also occur with the risk of
packet loss. Besides, NDP and ExpressPass utilize CP [12] or
explicitly drop credits to enforce a bounded queue. PCN [13]
is a receiver-driven congestion control scheme designed in
lossless Ethernet while only utilizing the receiving rate at
the receiver to guide rate decrease, thus accumulated queues
may still be eliminated slowly and HoL blocking can not
be suppressed rapidly. There are also other advanced con-

gestion controls designed for datacenters. For instance, Pow-
erTCP [4] proposes to fulfill fine-grained congestion control
by adapting to Power (i.e., bandwidth-window product) based
on INT. Bolt [7] leverages sub-RTT signals provided by pro-
grammable switches to enable reacting to congestion faster
than the RTT control loop, which realizes low queueing and
benefits minimal packet loss under bursty workloads. Besides,
Fasspass [37] first proposes to delegate all control (i.e., when
each packet should be transmitted and what path it should
follow) to a centralized arbiter.

ACC stands out as it fully builds on the simple yet powerful
packet conservation law in lossless Ethernet while achieving
low latency and high throughput simultaneously.
Source halt. On-Ramp [31] proposes to pause the source
actively to deal with transient and equilibrium tension in tra-
ditional lossy Ethernet. The source PAUSE technique in On-
Ramp is similar to the source halt state in ACC. However,
On-Ramp relies on clock synchronization [20] to obtain ac-
curate one-way delay measurement and roughly estimates
the pause time without knowing network pipe capacity. The
source halt state in ACC precisely drains out accumulated
packets of congested flows while only relying on the ACK
time series. To the best of our knowledge, none of the existing
congestion control schemes in lossless Ethernet proposes to
accurately and rapidly drain out backlogged packets.

8 Conclusion
In this paper, we revisit congestion control for lossless Ether-
net from the perspective of unlocking its intrinsic properties,
e.g., packet conservation. We propose a new congestion con-
trol called ACC, which essentially treats the ACKs as accurate
"tokens" of the network pipe to guide the traffic injection rate
and timing, i.e., waiting for backlogged packets to drain out
and then sending with the rate corresponding to network pipe
capacity. Extensive experiments show that ACC alleviates
thorny issues in lossless Ethernet, such as congestion spread-
ing, HoL blocking, and deadlock. Besides, ACC achieves low
latency and high throughput simultaneously under various
workloads and even outperforms state-of-the-art congestion
control schemes. We believe that the philosophy of exploiting
intrinsic properties opens new avenues for rethinking con-
gestion control and other traffic management mechanisms in
lossless Ethernet.

Acknowledgements
We thank the anonymous reviewers and our shepherd Naveen
Kr. Sharma, for their valuable comments and helpful sug-
gestions. This work is supported in part by the National
Key Research and Development Program of China (No.
2022YFB2901404), and by National Natural Science Foun-
dation of China (NSFC) under Grant No. 62132007, No.
62221003 and No. 62302055, and by the China Post-Doctoral
Science Foundation under Grant No. 2023M730172, as well
as gifts from Huawei. Corresponding author: Qingkai Meng
and Fengyuan Ren.

142 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ieee 802.1 qbb - priority-based flow control. http://

www.ieee802.org/1/pages/802.1bb.html, 2010.

[2] In-band network telemetry (int) dataplane specifica-
tion. https://p4.org/p4-spec/docs/INT_v2_1.

pdf, 2020.

[3] Nvm express over fabrics revision 1.1a. https:

//nvmexpress.org/wp-content/uploads/NVMe-o

ver-Fabrics-1.1a-2021.07.12-Ratified.pdf,
2021.

[4] Vamsi Addanki, Oliver Michel, and Stefan Schmid. Pow-
erTCP: Pushing the performance limits of datacenter
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
51–70, Renton, WA, April 2022. USENIX Association.

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM
’08, page 63–74, New York, NY, USA, 2008. Association
for Computing Machinery.

[6] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 63–74, New York,
NY, USA, 2010. Association for Computing Machinery.

[7] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita
Dukkipati. Bolt: Sub-RTT congestion control for Ultra-
Low latency. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
219–236, Boston, MA, April 2023. USENIX Associa-
tion.

[8] Fibre Channel Industry Association. Fibre channel.
https://fibrechannel.org/, 2022.

[9] InfiniBand Trade Association. Infiniband architecture
specification volume 2 release 1.3.1. https://cw.i

nfinibandta.org/document/dl/8125, 2016.

[10] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Commun. ACM, 60(4):48–54, mar 2017.

[11] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, page 267–280, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[12] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin.
Catch the whole lot in an action: Rapid precise packet
loss notification in data center. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 17–28, 2014.

[13] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang,
and Fengyuan Ren. Re-architecting congestion man-
agement in lossless ethernet. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 19–36, 2020.

[14] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’17, page 239–252, New York, NY, USA, 2017.
Association for Computing Machinery.

[15] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. Commun. ACM,
51(1):107–113, jan 2008.

[17] Nandita Dukkipati, Neal Cardwell, Yuchung Cheng, and
Matt Mathis. Tail Loss Probe (TLP): An Algorithm
for Fast Recovery of Tail Losses. Internet-Draft draft-
dukkipati-tcpm-tcp-loss-probe-01, Internet Engineering
Task Force, February 2013. Work in Progress.

[18] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Phost:
Distributed near-optimal datacenter transport over com-
modity network fabric. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’15, New York, NY, USA, 2015.
Association for Computing Machinery.

[19] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage
meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 519–533. USENIX Association, April 2021.

[20] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 81–94, Renton, WA, April 2018.
USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 143

http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://fibrechannel.org/
https://fibrechannel.org/
https://cw.infinibandta.org/document/dl/8125
https://cw.infinibandta.org/document/dl/8125

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

[22] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni,
G. Pfister, W. Rooney, and J. Duato. Congestion control
in infiniband networks. In 13th Symposium on High
Performance Interconnects (HOTI’05), pages 158–159,
2005.

[23] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’17,
page 29–42, New York, NY, USA, 2017. Association
for Computing Machinery.

[24] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’20,
page 422–434, New York, NY, USA, 2020. Association
for Computing Machinery.

[25] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Deadlocks
in datacenter networks: Why do they form, and how to
avoid them. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks, HotNets ’16, page 92–98,
New York, NY, USA, 2016. Association for Computing
Machinery.

[26] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
IEEE/ACM Trans. Netw., 27(2):889–902, apr 2019.

[27] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
pages 514–528, 2020.

[28] Yuliang Li. HPCC NS-3 simulator.
https://github.com/alibaba-edu/High-Pre

cision-Congestion-Control, 2019.

[29] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery.

[30] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung,
and Dongsu Han. Towards timeout-less transport in
commodity datacenter networks. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 33–48, New York, NY, USA, 2021.
Association for Computing Machinery.

[31] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Breaking the Transience-Equilibrium nexus:
A new approach to datacenter packet transport. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 47–63. USENIX As-
sociation, April 2021.

[32] Qingkai Meng, Yiran Zhang, Shan Zhang, Zhiyuan
Wang, Tong Zhang, Hongbin Luo, and Fengyuan Ren.
Switch-assistant loss recovery for rdma transport con-
trol. IEEE/ACM Transactions on Networking, pages
1–16, 2023.

[33] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacen-
ter. SIGCOMM Comput. Commun. Rev., 45(4):537–550,
aug 2015.

[34] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for rdma. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, page 313–326, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[35] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’18, page 221–235, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[36] NVIDIA. How To Configure Soft-RoCE.
https://enterprise-support.nvidia.com/s/

article/howto-configure-soft-roce, 2023.

144 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce

[37] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: a centralized
"zero-queue" datacenter network. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
page 307–318, New York, NY, USA, 2014. Association
for Computing Machinery.

[38] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: Avoiding deadlock in lossless
networks. In Proceedings of the ACM Special Inter-
est Group on Data Communication, SIGCOMM ’19,
page 75–89, New York, NY, USA, 2019. Association
for Computing Machinery.

[39] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Ku-
mar, and Aditya Akella. Congestion control in machine
learning clusters. In Proceedings of the 21st ACM Work-
shop on Hot Topics in Networks, pages 235–242, 2022.

[40] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (dat-
acenter) network. SIGCOMM Comput. Commun. Rev.,
45(4):123–137, aug 2015.

[41] J.R. Santos, Y. Turner, and G. Janakiraman. End-to-end
congestion control for infiniband. In IEEE INFOCOM
2003. Twenty-second Annual Joint Conference of the
IEEE Computer and Communications Societies (IEEE
Cat. No.03CH37428), volume 2, pages 1123–1133 vol.2,
2003.

[42] Brent Stephens, Alan L. Cox, Ankit Singla, John Carter,
Colin Dixon, and Wesley Felter. Practical dcb for im-
proved data center networks. In IEEE INFOCOM 2014 -
IEEE Conference on Computer Communications, pages
1824–1832, 2014.

[43] Zilong Wang, Xinchen Wan, Chaoliang Zeng, and Kai
Chen. Accurate and scalable rate limiter for rdma nics.
In Proceedings of the 7th Asia-Pacific Workshop on Net-
working, APNET ’23, page 15–20, New York, NY, USA,
2023. Association for Computing Machinery.

[44] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: A unified engine for
big data processing. Commun. ACM, 59(11):56–65, oct
2016.

[45] Yiran Zhang, Yifan Liu, Qingkai Meng, and Fengyuan
Ren. Congestion detection in lossless networks. In
Proceedings of the ACM SIGCOMM Conference, SIG-
COMM ’21, page 370–383, New York, NY, USA, 2021.
Association for Computing Machinery.

[46] Yiran Zhang, Qingkai Meng, Yifan Liu, and Fengyuan
Ren. Revisiting congestion detection in lossless
networks. IEEE/ACM Transactions on Networking,
31(5):2361–2375, 2023.

[47] Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian
Wu, Priyaranjan Jha, Mosharaf Chowdhury, and Amin
Vahdat. Aequitas: admission control for performance-
critical rpcs in datacenters. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 1–18, 2022.

[48] Yiying Zhang and Steven Swanson. A study of appli-
cation performance with non-volatile main memory. In
2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10, 2015.

[49] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 523–536, New York, NY, USA, 2015.
Association for Computing Machinery.

[50] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcn and timely. In Proceedings of the 12th Interna-
tional on Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’16, page 313–327,
New York, NY, USA, 2016. Association for Computing
Machinery.

[51] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie
Wang, Eric Liang, Robert Nishihara, Philipp Moritz, and
Ion Stoica. Hoplite: Efficient and fault-tolerant collec-
tive communication for task-based distributed systems.
In Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, SIGCOMM ’21, page 641–656, New York, NY,
USA, 2021. Association for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 145

Parameter Definition

C Bottleneck link bandwidth
N The number of flows
T Control period
k The kth period
RI Rate increment
Si(k) Sending rate of flow i at kth period
Ri(k) Actual sending rate of flow i considering

the source halt state at kth period
Q(k) Bottleneck queue length at kth period
ji(k) Allocated bandwidth fraction of flow i at

kth period, ji(k) =
Si(k)

ÂSi(k)

Table 3: Parameter list

APPEDNDIX

A. Theoretical Analysis

In this section, we analyze the convergence and fairness of
ACC in theory. The key parameters are listed in Table 3. We
assume that the receiver will generate ACK for each received
packet and the delay of generating ACK is negligible.

Convergence: Without loss of generality, assuming that the
switch queue corresponding to the bottleneck link is initially
empty, the sending rate of N flows is arbitrary. There are
following two cases:

(1) ÂSi(0)>C: If the aggregate sending rate of the initial
N flows exceeds the bottleneck link bandwidth, congestion
occurs and queues start to accumulate. All congested flows
will enter the source halt state:

8
<

:

Q(1) = (ÂSi(0)�C)T
Ri(1) = 0
Si(1) = ji(0)C

(2)

As shown in Figure 17(a), after each flow enters the source
halt state, the actual sending rate Ri(1) = 0. Flow i stops
transmission to wait for the queue to be emptied. During this
period, the sending rate Si(1) derived from ACK arrival rate
is ji(0)C, and is recorded for following transmission. The
congested queue drains at the rate C, and needs dÂSi(0)�C

C e
periods to approach 0:

8
<

:

Q(k) = (ÂSi(0)�C)T � (k�1)CT
Ri(k) = ji(0)C
Si(k) = ji(0)C

(3)

Thus, we derive ÂSi(k) = Âji(0)C = Â Si(0)
ÂSi(0)

C = C, in-
dicating that the aggregate sending rate ÂSi(k) converges
to C within one period. After leaving the source halt state,
Ri(k) = Si(k) and flow i starts normal transmission.

(2) ÂSi(0)C: If the initial aggregate sending rate of N
flows is less than or equal to the bottleneck link bandwidth,

Queue
length

!!

"!

0 Time(T)

0
"! 0 #

"! 0 #

[∑&!(0) − #]T
−#Draining rate：

1

(a) ÂSi(0)>C

Queue
length

!!

"!

0 Time(T)

0
"! #0 $

"! #0 $

[∑'!(#0) − $]T

−$

k0 k0+1

(b) ÂSi(0)C

Figure 17: Convergence of ACC

all flows will try to increase the sending rate. Eventually, the
aggregate sending rate of N flows will exceed the bottleneck
bandwidth after k0 periods, then the evolution behavior of
the congested queue and aggregate sending rate of N flows is
consistent with those in the previous case. Figure 17(b) shows
the evolution of bottleneck queue length, Ri and Si.

To sum up, when the aggregate sending rate is larger than
the bottleneck link bandwidth, ACC can converge to the bot-
tleneck link bandwidth within one control period T and elimi-
nate queue accumulation at the fastest speed of the bottleneck
link bandwidth.

Fairness: Assuming that the above convergence process
ends at the beginning of the k1 period, when the switch queue
has been emptied, and the sending rate of the flow i starts to
increase from ji(k0)C. Let r = RI

C , we have
8
<

:

Q(k1) = 0
Si(k1) = (1� r)ji(k0)C+ rC
Ri(k1) = Si(k1)

(4)

We have

ji(k1) =
Si(k1)

ÂSi(k1)
=

(1� r)ji(k0)+ r
1� r+ rN

(5)

146 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Since N > 1, it is obvious that ÂSi(k1) = (1+ rN� r)C >C.
The link is congested, and the flow i will slow down in the
next period and enter the source halt state:

8
<

:

Q(k1 +1) = (rN� r)CT
Si(k1 +1) = ji(k1)C
Ri(k1 +1) = 0

(6)

The switch queue will be drained at a rate of C, during which
the sending rate Si is kept unchanged, we have

8
<

:

Q(k1 +m) = (rN� r�m+1)CT
Si(k1 +m) = ji(k1)C
Ri(k1 +m) = 0

(7)

Let M = drN� r+1e. Finally, at the beginning of the k1 +
M period, the queue length is 0, and the flow i will start to
increase the sending rate again. We have

8
<

:

Q(k1 +M) = 0
Si(k1 +M) = (1� r)ji(k1)C+ rC
Ri(k1 +M) = Si(k1 +M)

(8)

We have

ji(k1 +M) =
Si(k1 +M)

ÂSi(k1 +M)
=

(1� r)ji(k1)+ r
1� r+ rN

(9)

Comparing Equation (5) and Equation (9), it can be seen
that ACC will repeat the process of rate increase for one
period and rate decrease for M�1 periods. At the same time,
according to Equation (5) and Equation (9), we can calculate
ji(k1 + kM) as follows:

ji(k1 + kM) =
(1� r)ji(k1 +(k�1)M)+ r

1� r+ rN

=
1� r

1� r+ rN
ji(k1 +(k�1)M)+

r
1� r+ rN

· · ·

= (
1� r

1� r+ rN
)

k+1
ji(k0)+

k

Â
j=0

(
1� r

1� r+ rN
)

j
(

r
1� r+ rN

)

(10)

When k! •, as 1�r
1�r+rN < 1, so (1�r

1�r+rN)
k+1 approaches

zero. We have:

ji(k1 + kM)!
r

1�r+rN

1� (1�r
1�r+rN)

=
1
N

(11)

Equation (11) indicates that ACC can achieve fair rate alloca-
tion.

(a) Average slowdown

(b) The 99th percentile slowdown

Figure 18: Parameter sensitivity of RI, 80% load (WebSearch)

B. Supplementary of Evaluations

To better understand the parameter sensitivity and link utiliza-
tion performance of ACC, we supplement experiment results
in this section. In §B.1, we present the parameter sensitivity
of RI and Pthresh. After that, we present the simulation results
under typical bursty traffic (§B.2).

B.1 Parameter Sensitivity of RI and Pthresh

Parameter RI: In ACC, the key parameter in the rate increase
process is RI. A larger RI indicates a more aggressive rate
increase. To explore the performance sensitivity of ACC on
RI, we use the same Web Search workload and topology as
in Figure 14(a) but vary RI between 1G and 8G. Figure 18
shows the average FCT slowdown of small, medium, and large
flows. On the whole, a larger RI yields higher throughput
for large flows but may introduce larger FCT for small and
medium flows. Due to the source halt state and ACK arrival
rate guidance in ACC, the sending rate can quickly drop
once the aggressive rate increase induces congestion. As a
result, the average FCT slowdown of small and medium flows
is not sensitive to RI. The overall results indicate that our
recommended value of RI is reasonable.
Parameter Pthresh: In ACC, Pthresh controls the rate regulation
of victim flows. Victim flows will keep its rate until Pthresh
consecutive periods. A smaller Pthresh will enforce the victim
flow to throttle its rate earlier to help mitigate the congestion
spreading. To explore the performance sensitivity of ACC on
Pthresh especially when HoL blocking happen frequently, we
run a challenging workload consisting of foreground traffic

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 147

(a) Average slowdown (b) The 99th percentile slowdown (c) The number of PFC PAUSEs

Figure 19: Parameter sensitivity of Pthresh, 80% load (WebSearch + incast)

(a) N = 10

(b) N = 20

Figure 20: Utilization of link <SW3-SW4>. Bursts start at
time 5ms. Topology is Figure 1(a)..

and background traffic: 60% Web Search workload as the
foreground traffic with 20% load of 64-1 incast workload as
the background traffic. For each incast, 64 randomly selected
senders send 50KB to one receiver. We vary Pthresh from 0
to 3. Note that Pthresh = 0 represents that victim flows will
always reduce half of the sending rate per T .

Figure 19(a) and Figure 19(b) show the average and 99th
percentile FCT slowdown of the foreground WebSearch work-
load. As Pthresh increases, medium flows and large flows have
better FCT slowdown performance. For example, for large
flows, the 99th percentile FCT slowdown with Pthresh = 0 is
1.22⇥ of when Pthresh = 1. For medium and large victim flows,
by keeping the sending rate until Pthresh periods, they lose less
throughput with a larger Pthresh. While the FCT slowdown per-
formance of small flows with size less than 10KB are mainly

determined by queueing delay. As a result, the average and
tail FCT slowdown of small flows are not sensitive to Pthresh.

However, as shown in Figure 19(c), a larger Pthresh may
trigger more PFC PAUSEs at each layer, indicating heavier
HoL blocking and more risks of PFC. This is because with a
large Pthresh, victim flows react very late to congestion spread-
ing, at which HoL blocking already occurs for a long time
and propagations to multiple switches. Indeed, throttling the
rate of victim flows early can aggressively reduce the injected
traffic around the blocked switch ports, thus speeding up the
alleviation of HoL blocking. On the whole, the results indi-
cate that our recommended value of Pthresh (i.e., 1) is proper,
which can balance the FCT performance and alleviation of
HoL blocking.

B.2 Link Utilization
We adopt the same topology and traffic pattern as in Fig-
ure 1(a) to evaluate the link utilization performance especially
under bursty traffic. Note that uncongested flow F0 shares
links with congested flow F1 in SW1⇠SW3. At time 5ms,
concurrent bursts with size of 64KB start. Then the congested
flow F1 should be throttled while uncongested flow F0 should
be unaffected and occupy available bandwidth. We use N = 10
and N = 20 to introduce different degree of burstiness.

As illustrated in Figure 20(a), after time 5ms, both DCQCN
and TIMELY incur low link utilization lasting for around
1.5ms and 6ms, respectively. Figure 20(b) shows that when
N = 20, DCQCN and TIMELY get worse burst tolerance
performance, with around 7ms and 12ms to recover to full
link utilization. Due to step-by-step rate adjustment rules of
DCQCN and TIMELY, they can not eliminate congestion
at SW4 quickly and congestion spreads to upstream SW3,
thus link <SW3-SW4> is blocked. The low link utilization
is also attributed to the uncongested flow F0 being throttled
mistakenly due to misleading queue-based (or delay-based)
congestion signals. ACC incurs not full link utilization lasting
for about 1.5ms (N = 10) and 2ms (N = 20), which is the
time required for uncongested flow F0 to increase the sending
rate. HPCC can ramp up quickly after bursts start but only
maintains a 95% link utilization in steady state.

148 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Design Space
	Desirable Properties
	Ternary Flow States in Lossless Ethernet

	Principles
	Experiment Setup
	The Power of ACK-Driven
	Handling HoL Blocking

	ACK-Driven Congestion Control
	State Machine Overview
	Halting Congested Flows
	Throttling Congested Flows
	Adapting Undetermined Flows
	Rate Increase for Uncongested Flows
	Theoretical Analysis

	Implementation
	Evaluation
	Evaluation Setup
	Testbed
	Microbenchmarks
	Large-Scale Simulations

	Related Work
	Conclusion

