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Abstract
Sketching algorithms (sketches) have emerged as a resource-
efficient and accurate solution for software-based network
monitoring. However, existing sketch-based monitoring
makes sacrifices in online accuracy (query time accuracy)
and performance (handling line rate traffic with low latency)
when dealing with distributed traffic across multiple cores.
In this work, we present OctoSketch, a software monitoring
framework that can scale a wide spectrum of sketches to
many cores with high online accuracy and performance. In
contrast to previous systems that adopt straightforward sketch
merges from individual cores to obtain the aggregated result,
we devise a continuous, change-based mechanism that can
generally be applied to sketches to perform the aggregation.
This design ensures high online accuracy of the aggregated
result at any query time and reduces computation costs to
achieve high throughput. We apply OctoSketch to nine repre-
sentative sketches on three software platforms (CPU, DPDK,
and eBPF XDP). Our results demonstrate that OctoSketch
achieves about 15.6× lower errors and up to 4.5× higher
throughput than the state-of-the-art.

1 Introduction
While telemetry on dedicated switching hardware continues
to be important, the deployment of monitoring capabilities in
software platforms is increasing with the transition towards
virtualized deployments and “white-box” capabilities [1–3].
The ability to monitor network traffic within software plat-
forms has become a key enabler for many network manage-
ment applications, including load balancing, anomaly detec-
tion, and performance diagnosis [4, 5]. Over the years, the
volume of traffic processed by each server has seen a sub-
stantial increase (e.g., 10G to 100G). As a result, efficient
monitoring of traffic across multiple cores emerges as a press-
ing demand.

When monitoring traffic distributed across cores, down-
stream applications often entail high-fidelity aggregated
measurement results. For instance, in-network caching sys-
tems [6, 7] require real-time measurement of the hot objects
to determine what to cache. Similarly, a load balancer needs
aggregated flow statistics (e.g., heavy hitters, top-k flows) to
decide where to assign flows (to cores or nodes) [7, 8]. In this

scenario, sketch algorithms naturally emerge as a promising
solution. This is because recent theoretical advances [9] have
shown that many sketches, such as Count-Min [10], Count
Sketch [11], and UnivMon [12], have intrinsic mergeability:
Independent sketches monitoring different traffic partitions
can be merged in a way such as sum and max to obtain ag-
gregated results without losing accuracy guarantee. With this
property, a natural design for sketch-based multicore monitor-
ing is to run an independent sketch per core and periodically
merge the entire sketches from all cores for aggregation.

While we have seen significant recent progress in sketch al-
gorithms [12–17] and their implementations [18,19], we argue
that sketch-based multicore monitoring systems remain im-
practical. Many existing systems, such as Elastic Sketch [13],
NitroSketch [14], and HeteroSketch [20], adopt the above
“sketch-merge” design to scale their systems to distributed
settings. However, these solutions raise two significant issues
in practice. First, this approach does not retain accuracy at
any given time – if the aggregator responsible for answering
the query has not yet obtained the most recent sketches from
cores, the aggregated result is stale, missing the measurement
over the current traffic. A recent study [21] shows that an
inaccurate and stale result can lead to a significant load imbal-
ance in a load balancer. Second, if we consider an undesirable
extreme to frequently merge sketches for fresh results, the
packet performance will be significantly reduced, and it is
difficult for each core to achieve high line rates (§2.2).

Ideally, we want a multicore monitoring system to meet
three requirements. First, we need high accuracy whenever
applications query a measurement result. This is essentially
online accuracy, which enables real-time telemetry support
for applications. Second, we expect resource efficiency to
achieve line rates with low resource overhead since CPU
and memory resources are shared among other services [22].
Finally, we need generality, covering a broad range of traffic
metrics for various application requirements [12, 13, 23].

In this paper, we present OctoSketch, a software frame-
work to perform high-performance and real-time monitoring
on multiple CPU cores that meets the above three require-
ments. In OctoSketch, we argue for a continuous, change-
based design to aggregate the sketch results among multiple
cores. In contrast to periodically merging entire sketches,
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OctoSketch keeps track of individual counter changes in the
sketch for every packet and sends the counter difference-∆
(from the last update) when the change is sufficiently large
(e.g., over a threshold to meet the accuracy requirement). By
this simple-yet-effective design, each worker still maintains a
sketch but intends to send the ∆ that could affect the overall
accuracy of the aggregated result. In this way, communication
between the worker and the aggregator becomes a “continu-
ous” stream of worker-aggregator messages, which are tiny in
space but carry the most critical and timely information. Com-
pared to previous efforts [9,12,13,20], OctoSketch eliminates
potentially wasted counter updates when merging the sketches
(e.g., many counters do not change significantly since the last
update) to improve online accuracy and optimize resource
footprints.

With the continuous, change-based message passing
scheme, OctoSketch is able to realize dynamic resource allo-
cation policies toward different systems and user objectives.
For example, within a CPU resource budget, OctoSketch can
be configured to achieve the best (possible) online accuracy;
or if the accuracy requirement is loose (e.g., ≪ than best
possible accuracy), OctoSketch can be configured to save
CPU cycles instead of using all the aggregator CPU trying
to reach an unnecessary accuracy. OctoSketch realizes these
policies by (1) maintaining a shared buffer between workers
and the aggregator, (2) adjusting worker message frequency
via dynamic counter update thresholds, and (3) letting the
aggregator learn the sending rate of the workers via the queue
occupancy in the shared buffer, as detailed in §4.3.

To the best of our knowledge, OctoSketch is the first work
to: (a) propose the integration of a continuous, change-based
update mechanism with various sketches to enable the practi-
cal adoption of sketches in the multi-core scenario. Our goal
is to improve the accuracy and performance of distributed
sketches across cores to meet various measurement objec-
tives; (b) analytically prove that OctoSketch can retain the
same asymptotic error bounds as in the ideal case in which
traffic is not distributed. That is, when querying OctoSketch,
the aggregator can provide a result that represents the aggrega-
tion of traffic from all cores (by a bounded error) at any given
time; and (c) provide practical end-to-end design and imple-
mentation of this idea on three popular software platforms.
We further show that, compared to existing sketch-merge ap-
proaches, OctoSketch reduces message passing overhead by
up to four orders of magnitude for the same accuracy.

We apply OctoSketch to a wide range of state-of-the-art
sketches (e.g., Count-Min Sketch [10], UnivMon [12], Elastic
Sketch [13], and CocoSketch [16]) and demonstrate its per-
formance on the CPU, Intel DPDK library [24], and eBPF
XDP [25]. Our experiments show that OctoSketch achieves
around 15.6× smaller errors than previous sketch-merge tech-
niques at query time. Moreover, OctoSketch also reaches up to
4.5× higher throughput and up to 1.9× reduction in CPU uti-
lization in DPDK. We apply OctoSketch to two common use

Driver
(e.g., DPDK PMD)

Application
(e.g., load balancer)

Monitoring

NIC

Core 1
Aggregator

Core 2 Core 3

poll queues 
in NIC

Figure 1: Multicore monitoring problem in a server

cases: load balancer and key-value cache. Our results show
that OctoSketch achieves a 3.15× lower imbalance rate and a
13% higher cache hit rate than the sketch-merge baseline. We
have open-sourced OctoSketch and other baseline algorithms
on https://github.com/Froot-NetSys/OctoSketch.
Ethics: This work does not raise ethical issues.

2 Background and Motivation
In this section, we first describe how distributed traffic over
multiple cores brings new challenges to online monitoring.
We then discuss existing efforts and their limitations in scaling
monitoring capabilities to distributed settings.

2.1 Multicore monitoring problem
Since the latest NIC designs [26] for data centers have already
reached 100Gbps/port, network applications supporting such
a high speed require multiple CPU cores. For instance, a
DPDK-enabled Open vSwitch [27] requires 6 to 10 CPU cores
to reach 100Gbps. Hence, we call such a network application
using multiple cores a multicore application.

Multicore applications often require timely and accurate
traffic measurement results, such as heavy hitters, distinct
flows, and entropy [4, 5]. Figure 1 shows a typical workflow
for monitoring traffic distributed over multiple cores. The
NIC will distribute the incoming packets into multiple Rx
queues, and each CPU core will poll packets from one or more
queues via driver (e.g., DPDK polling mode driver [24]). The
resource in each core is shared between drivers, applications,
and monitoring programs.

In contrast to a non-distributed monitoring setting, this
multicore workflow for a single server poses three significant
challenges:
• Online accuracy: Many applications need to obtain accu-

rate aggregated statistics in an online fashion. For example,
cache-based load balancers rely on real-time large flow
measurements to determine hot items to cache [6, 7]. We
define the online accuracy according to the statistics com-
puted over the traffic from the end of the last measurement
to the current query time. Due to the distributed nature of
the traffic, there can be a significant error or delay to query
aggregated statistics at any given time for two reasons: (1)
the current aggregated result is stale, and (2) frequent ag-
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Figure 2: Example of the Count-Min sketch

gregation from all the cores is expensive to compute.
• Resource efficiency: The resources (e.g., CPU and memory

space) used by monitoring should keep up with line-rate
requirements and leave ample room for applications.
• Generality in metrics of interest: Similar to other network

monitoring systems [12,13], a multicore monitoring system
shall measure multiple traffic metrics to support a range of
applications (e.g., DDoS detection [5], load balancing [4],
and traffic engineering [28]).

2.2 Prior Solutions and Limitations
Background of Sketches. Sketches have emerged as a
promising network monitoring solution due to their high re-
source efficiency and accuracy guarantees. At a high level,
sketches are a kind of approximate data structure that can
estimate various statistics online. For example, there are (1)
Count-Min sketch [10] and Count sketch [11] for detecting
heavy hitters (flows with large sizes), (2) Locher sketch [29]
for detecting superspreaders (Source IPs that connect to many
Destination IPs), (3) CocoSketch [16] for querying flow size
on multiple keys, and (4) UnivMon [12] and Elastic sketch
[13] for supporting a range of these tasks instead of a special-
ized sketch per task. As shown in prior work [12–14, 30–32],
these sketches can often provide better accuracy-memory
tradeoffs than traditional sampling-based techniques [33, 34].

To illustrate the insertion process of sketches, we use the
Count-Min sketch for heavy-hitter detection as an example.
As shown in Figure 2, the Count-Min sketch typically con-
sists of multiple arrays of counters. For the insertion of each
packet, it computes a set of independent hash values based on
the flow key (e.g., Source IP) of the packet and updates the
corresponding counter in each array. Moreover, Count-Min
Sketch needs additional data structures (e.g., heap) to store
flow keys whose estimated sizes are large. We further discuss
the background of sketches and their applications in §A.
Key-based partition. One way to apply sketches in the mul-
ticore scenario is to divide different keys to different cores
based on hashing. For each core, we can maintain a sketch
for tracking the keys hashed to it and the keys in different
sketches never overlap. However, strictly pinning a key to a
core can lead to degraded packet performance. For example,
when the skewness of the network traffic varies, key-based
partition often leads to high load imbalance among cores.

Worker 1
Mergeable Sketch 

with Flow Keys

…
…

Entire 
sketch

Step 1: Insert packets 
into each worker

Step 2: Send 
entire sketches to 

the aggregator

Step 3: Merge 
received sketches

Low throughput due to 
slow flow key storage

Worker 5
Mergeable Sketch 

with Flow Keys

Aggregator

Mergeable Sketch 
with Flow Keys

Low online accuracy 
due to slow merging

Figure 3: Merging sketches from multiple cores to an
aggregator (sketch-merge)

Splitting large flows into multiple cores will help balance the
load, as shown in existing load-balancing algorithms [35].
Moreover, depending on the definition of the key, it is some-
times infeasible to pin a key to a core. For instance, a NIC may
distribute packets based on the 5-tuple while the application
may want to measure the keys based on user-level information
(e.g., the key-value pair). In this case, it is hard to guarantee all
packets associated with a key will reach the same core. More-
over, some multiple applications require measuring results
based on multiple key definitions, and we cannot guarantee
key distribution across different keys, as shown in [16]. As
a result, OctoSketch does not make any assumptions about
the way of distributing keys to accommodate various network
applications.
Merging sketches from multiple cores (sketch-merge). An-
other natural solution is to merge multiple sketches from dif-
ferent cores into one for query periodically, where the merged
sketch preserves the same accuracy guarantee [9]. For in-
stance, Sketch 1 measuring flow set A can be merged with
Sketch 2 measuring flow set B (e.g., sum or max of the two
counter arrays) to obtain statistics about a combined flow set
A∪B, as long as Sketches 1 and 2 share the same configu-
ration. Most existing solutions leverage this mergeability to
scale to multi-site (e.g., multiple cores or servers) in diverse
domains, including UnivMon [12], HeteroSketch [20], and
FetchSGD [36].

However, periodically merging entire sketches from multi-
ple cores brings large penalties on online accuracy and overall
throughput. We use Figure 3 as an example to illustrate the
workflow and its issues: Given k workers, each worker main-
tains one sketch to handle its own traffic. If one worker has
received enough packets or a certain time interval is reached,
it will send its sketch with heavy flow keys to the aggregator
and recreate a new one. Once the aggregator receives a new
sketch from a worker, the aggregator merges the sketch to
its own (aggregated) sketch, and reports aggregated results
such as heavy hitters and distinct counts. Unfortunately, the
merging process can bring significant overheads to both the
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aggregator and the workers as follows:
• Bottleneck in the aggregator: In practice, the aggregator

is stuck in a fundamental dilemma: To achieve high online
accuracy, the aggregator has to frequently merge multiple
sketches (e.g., merging at every millisecond), which can
be prohibitively expensive to compute; otherwise, while in-
frequent and fixed-time merges save resources, the queried
result at the aggregator may be stale by up to a fixed time
window. To understand this problem, we consider a hypo-
thetical non-merging design where all packets are processed
by a single core with unlimited CPU cycles and cache, and
use its accuracy as a reference of the ideal accuracy. As
depicted in Figure 4, the aggregator needs to merge around
3×104 sketches per second to achieve comparable accu-
racy to the ideal case under 150 million packets per second
throughput. However, a 2.35GHz CPU core can only sup-
port up to 3×103 merges per second. 1

• Bottleneck in the worker: Each worker core keeps an en-
tire sketch instance, including its counter structure and flow
key storage. Prior efforts (e.g., [13, 14]) have demonstrated
that flow key storage is one of the performance bottlenecks
in sketches. Maintaining such flow key storage per core is
computation-heavy considering the high-volume traffic.

3 System Overview
We now describe the high-level design of OctoSketch and
highlight the key ideas to achieve the multicore requirements.

3.1 OctoSketch Workflow
As illustrated in Figure 5, OctoSketch has two main compo-
nents: multiple monitoring workers for ingesting the traffic

1The setting is the same as in §6 and §7. We use Count-Min sketch and
CAIDA dataset [37], and show the absolute errors of heavy hitter detection.
In this experiment, we have 16 workers and 1 aggregator. The frequency
of merging is set at each worker. Since the aggregator is receiving and
aggregating sketches from all workers, the aggregator is the bottleneck and
can only accommodate 3×103 merges per second, while each worker can
still send more merges. When increasing the merge frequency beyond the
maximum rate the aggregator can support, we use a buffer to store sketches
and aggregate the results later for evaluating the errors.

Worker 1

Aggregator

+!

(!!, )

Flow Key 
Storage

+!

……

+1
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+1

+1
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Larger than 
threshold
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Figure 5: Workflow of OctoSketch

Query Type Sketch Acc. Thp.

Flow Size
Count-Min [10] 9.32× 3.85×

Count Sketch [11] 9.04× 3.22×

Cardinality
LogLog [38] 54.93× 1.29×

HyperLogLog [39] 38.97× 1.29×
Super-Spreader Locher Sketch [29] 4.06× 4.51×

Quantile DDSketch [40] 4.29× 0.92×
Multi-Key CocoSketch [16] 37.25× 1.01×

General
UnivMon [12] 13.55× 2.63×

ElasticSketch [13] 14.03× 0.93×

Table 1: Applicability of the OctoSketch on latest sketches

and one aggregator for answering queries and overall control.
By default, we allocate each worker and aggregator a separate
core/thread. Thanks to the lightweight design of OctoSketch,
one aggregator is sufficient to achieve online accuracy (§7).
There is also a shared buffer for workers and aggregators to
prevent inter-thread message losses from bursts.
Data ingestion in the workers: Each worker is a monitoring
program running in a CPU core that is responsible for process-
ing its own portion of the traffic from a NIC Rx queue and
maintaining relevant sketch data structures (e.g., hash-indexed
counter arrays) for later aggregation. In OctoSketch, the goal
of the workers is to provide timely and accurate counter up-
dates to the aggregator to answer queries, while minimizing
the CPU and memory footprints. When the worker sends an
update to the aggregator, it will insert the update into a shared
buffer. Unlike prior work that sends the entire sketch as an
update, OctoSketch adapts to actual workloads and sends only
lightweight, change-based counter updates (∆s). We describe
this distributed update mechanism in detail in §4.1.
Query estimation in the aggregator: The aggregator fetches
updates from all workers via the shared buffer and updates
its own aggregated data structures to compute the statistics
of interest. We describe the aggregation procedure in detail
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in §4.2. The query results will then be shared with other
software processing libraries or online applications for their
management purposes.
Supported sketches (Table 1): OctoSketch is a general
framework that support all linearly mergeable sketches and
thus can answer a broad spectrum of sketch-based queries. To
demonstrate the performance of OctoSketch, we apply OctoS-
ketch to 9 popular sketches as shown in Table 1. We note that
OctoSketch cannot make sketches that are fundamentally not
mergeable (e.g., RAP [41] for detecting heavy hitters) work
in the multicore scenario.

3.2 Key Ideas
To realize the OctoSketch workflow, we have three key ideas.
By leveraging these ideas, OctoSketch can achieve near-ideal
online accuracy and line-rate throughput, outperforming the
baseline solution as summarized in Figure 6.

Idea 1: Adopting a continuous, change-based mechanism
where each worker only sends “sufficiently changed”
counters to the aggregator.

This idea achieves significantly better online accuracy com-
pared to merging sketches (e.g., all the sketch counters and the
corresponding flow key storage). The fundamental reason be-
hind the inefficiency of sketch-merge is that if we look at the
value of each counter, not all counters are equally important
to query accuracy. Due to the skewness of the network work-
load, the counter values in the sketch are also heavy-tailed.
As shown in Figure 7, if we use the Count-Min sketch to find
heavy hitters, more than 80% of the counter values do not
change in the aggregator, while there are also counters whose
changes are larger than 103. In other words, the aggregator
and the workers waste most computations to merge counters
which are not important and delay the updates from important
counters.

Inspired by prior change-based solutions [42–45], OctoS-
ketch essentially “amortizes” a large sketch merging opera-
tion into a series of individual counter change notifications
to achieve online accuracy. Each notification only contains
the counters that changed above a threshold. In this way, we
can save the computation of merging small counters and use
the resources for merging large counters more frequently. In

other words, we only send counters with the most critical
informational value for online accuracy. Our analysis in §5
shows that estimation accuracy is bounded by a certain range
from ideal accuracy.

Compared to prior change-based designs with hash tables
or other deterministic structures, OctoSketch aims to enable
the use of diverse sketches for efficient multicore monitoring
by addressing several additional challenges. First, sketches
introduce extra errors on top of the errors caused by the
change-based updates. The change thresholds must be de-
termined based on the unified error bounds. Second, there are
several key parameters regarding the sketch data structures
and communication between different parties. We need to
dynamically fine-tune the parameters to allocate the resources
among workers and aggregators for various objectives. Third,
for different sketches, we need to analyze and reconstruct the
data structures for better performance.

Idea 2: Adaptive resource allocation between workers and
aggregator under various objectives.

With Idea 1, OctoSketch provides an improved tradeoff
between communication and online accuracy. As a multi-
core system, a key question is how OctoSketch can allocate
resources among workers and aggregator to meet various
system objectives. For instance, an example objective is to
achieve the best possible online accuracy with a fixed CPU
budget (e.g., 50%). Users can also specify an accuracy require-
ment (e.g., 95%) while the objective is to minimize total CPU
utilization. To meet these objectives, we adaptively allocate
resources using dynamic counter change thresholds based on
traffic rates. In particular, we set a universal threshold for all
workers to adjust the resources: (1) When the packet arrival
rate on a worker is high, the counter changes are significant,
and the worker needs to send updates via the work-aggregator
channel. (2) When the packet arrival rate is low, the worker
does not send updates until sufficient counter changes are
made, saving worker/aggregator resources for other worker-
aggregator channels.

Therefore, to achieve the best possible online accuracy, the
aggregator just needs to poll counter updates from workers
(via concurrent queues) as much as possible within a CPU
limit. When the queue length is small, the aggregator will
decrease the threshold to receive more frequent counter up-
dates. If we only want to fulfill an accuracy requirement that
is lower than the best possible accuracy, we can derive a fixed
threshold to meet the error bound based on the analysis in §5.

Idea 3: Reconstructing workers and aggregator to remove
redundant data structures.

To scale to multiple cores, prior solutions need to main-
tain flow key storage in each worker and aggregator, which
is compute-heavy (as shown in §2.2). We observe that Idea
1 and 2 enable the opportunity to reconstruct sketches and
remove flow key storage in the workers. Specifically, since
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Symbol Description
k the number of workers
τ the threshold shared by all workers
e the flow key of a packet

f (e) the real size of flow e
f̂ (e) the estimated size of flow e
d the number of arrays in the sketch
l the number of counters in each array

hi(.) the hash function for the ith array
Ci[ j] the jth counter in the ith array

q j the shared queue between worker j
and aggregator

Table 2: Symbols and notations

the traffic statistics are calculated based on aggregated flows,
only the aggregator needs to keep a flow key storage and the
workers can remove their flow key storage. Therefore, each
worker eliminates the performance bottleneck of maintaining
complex data structures (e.g., heap) and only sends potential
heavy flow keys to the aggregator. Due to the efficient contin-
uous, change-based mechanism, the counter and key updates
will not create additional burdens on the aggregator.

4 Detailed Design
In this section, we first use the Count-Min sketch [10] as an
example to describe how OctoSketch works in both workers
(§4.1) and the aggregator (§4.2). Then, we extend the design
of OctoSketch to other sketches. We summarize the frequently
used symbols and notations in Table 2.

4.1 Worker
Data structure: In each worker, OctoSketch maintains a
Count-Min sketch with d arrays of l counters without flow
key storage. Since OctoSketch guarantees that all counters
in every worker are always smaller than a given threshold τ

(e.g., 128), we only need ⌈logτ⌉ bits (e.g., 8) for each counter
instead of using 32-bit counters. Thus, we can effectively
save 4×memory without losing accuracy. In our experiments,
we find that setting τ to 128 is often sufficient to handle the
highest achievable throughput (≈ 1400Mpps) for 16 workers.
Sketch insertion: Algorithm 1 describes how to insert a
packet into each worker. The original operations of the Count-

Algorithm 1: Sketch insertions on worker j.
Input: A packet with flow key e

1 foreach i (1 ⩽ i ⩽ d) do
2 Ci[hi(e)]←Ci[hi(e)]+1;
3 if Ci[hi(e)]⩾ τ then
4 q j.enqueue(e, i,hi(e),Ci[hi(e)]);
5 Ci[hi(e)]← 0;
6 end

Min sketch are shown in black color, while the newly added
operations by OctoSketch are shown in green color. In Line
3-5, when the Count-Min sketch updates a counter in each
of its arrays, the worker will check whether the counter is
larger than the threshold τ. If the counter value is above τ in a
packet insertion, the worker generates a message containing
a vector of <the flow key of the packet, the row and column
indices of the counter, and the counter value> and pushes
it into a concurrent queue between worker and aggregator.
Each worker has a corresponding queue to avoid competition
among workers, and the counter will be cleared out.

Figure 8 illustrates an example of the insertion step. To in-
sert packet e1, the worker first updates a counter in each array.
Because the accessed counter in the second array is larger
than the threshold 10, OctoSketch pushes the tuple <the flow
key (e1), the 2D counter index (the 2nd array, the 4th counter),
counter value (10)> into the shared buffer and sets the counter
to 0. While the aggregator can get the counter index via hash-
ing the flow key, we choose to send the index directly to
reduce the hash computation cost for the aggregator.

4.2 Aggregator
Data structure: The aggregator needs to maintain a d× l
Count-Min sketch that is same-sized as other sketches in the
workers, and a min-heap to record heavy flow keys.

Algorithm 2: Sketch insertions on the aggregator.

1 foreach i (1 ⩽ i ⩽ k) do
2 (e, j, p,V )← qi.dequeue();
3 C j[p]←C j[p]+V ;
4 if C j[p]> heap.min then
5 f̂ (e)←mink∈[d]Ck[hk(e)];

6 heap.insert
(

e, f̂ (e)
)

;

7 end

Insertion to the aggregated sketch: As shown in Algorithm
2, the aggregator keeps polling the items (the 4-tuple) from
the k shared (concurrent) queues. For each item from the
queue, the aggregator first updates the corresponding counter
based on the index and value, and then updates the flow key
heap. If the new counter is larger than the minimum value
recorded in the heap, the aggregator will obtain the estimated
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flow size e based on the query method of the Count-Min
sketch (minimum counter value in the d accessed counters)
and insert e into the heap. For example, as shown in Figure 8,
if a tuple < e1,2,4,10> is in the shared queue, the aggregator
will increase the 4th counter in the 2nd array by 10. Note if
the counter after updating is larger than the minimum value
record in the heap, the aggregator will update the heap with
the tuple (e1,96), where 96 is the estimated size of e1.

4.3 Resource Allocation
We conceptually consolidate k workers as a single worker
and k shared queues as a single queue to address the resource
allocation problem. All k workers share the same threshold
τ. The threshold is an atomic value. Ideally, the aggregator
should adjust the threshold τ to match its receive rate with the
total sending rate of k workers. Different from a distributed
system where servers are interconnected by the network, the
aggregator in a single server can quickly access the variables
of other cores and obtain a global view to adjust the threshold.

The aggregator periodically modifies the threshold (e.g.,
every 100µs). To ensure that the total queue length is small, the
aggregator should set a target queue length Q (e.g., 10). 2 For
each time window t, the aggregator measures the total queue
length Qt as a reference mark for adjusting the threshold. We
assume the sending rate is stable in that short period, so we
can predict the queue length for the next time window based
on the previous one. Specifically, as shown in Equation 1,
according to Qt−1 and Qt , we calculate the expected queue

2The target queue length should be larger than 0. Otherwise, the aggrega-
tor tends to keep increasing the threshold to ensure that the sending rate is
always lower than the receiving rate.

length Q̂t+1 for the next time window t +1 corresponding to
the threshold τ.

Q̂t+1 = Qt +(Qt −Qt−1) (1)

As shown in Equation 2, if the expected queue length Q̂t+1
is too small, the aggregator will decrease the threshold to
increase the send rate and the queue length; if Q̂t+1 is too
large, the aggregator will increase the threshold to decrease
the queue length.

τt+1 =


τt −1, Q̂t+1 < (1−α) ·Q
τt +1, Q̂t+1 > (1+α) ·Q
τt , Otherwise

(2)

Policies for resource allocation:
• Best possible accuracy: The policy we describe above can

make OctoSketch quickly adapt to dynamic packet arrival
rates. However, it will use up 100% of CPU resources in
the aggregator to improve accuracy as much as possible,
which may not be ideal. Alternatively, we can consider two
additional policies to reduce the aggregator CPU utilization.
• Optimizing CPU usage for an accuracy target: As we will

prove in §5, the error bound of OctoSketch depends on the
threshold τ. Based on an accuracy target, we can calculate
the corresponding threshold τ′ based on Equation 3 and
set it as the lower bound of the threshold. In particular, the
threshold will not decrease if it is smaller than τ′. In this
policy, we can free up some extra computation resources
when there is not much traffic.
• Setting CPU usage limit: We can also add a scheduling

policy that forces the aggregator to use at most p% (e.g.,
50%) of the CPU. We leverage the Linux program CPU
limit [46] to monitor and control CPU usage within p%.

4.4 Extension to Other Sketches
With some additional considerations, we can apply OctoS-
ketch to a broad spectrum of sketches. In this work, we con-
sider 8 additional sketches and scale them into multiple cores
with OctoSketch. We summarize the key point of applying
OctoSketch to these sketches and defer the details of each
sketch to Appendix C.
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Supporting sketches for estimating Cardinality: The
merging process of cardinality-related sketches (e.g., Hyper-
LogLog [39], Locher sketch [29]) is different from the Count-
Min sketch. Given the received counter A and the correspond-
ing counter B in the aggregator, instead of summing up the
counters, these sketches should set B = Max(A,B). To apply
OctoSketch to these kinds of sketches, every time the counter
is updated, the worker never zeros it out but only sends the
counter whose value change is large enough to the aggregator.
Take HyperLogLog as an example. If the counter before up-
dating is C and is C′ after updating, the worker will send the
counter if

∣∣∣2C−2C′
∣∣∣ ⩾ 2τ. We use 2C instead of C, because

the estimation provided by the HyperLogLog is based on the
2C, which is the same as that of LogLog and Locher sketch.
In Appendix B, we prove that, after applying OctoSketch, the
cardinality-related sketches can achieve the same accuracy as
the ideal one if the cardinality is sufficiently large.
Handling counters with flow keys: Unlike Count-Min sketch
where the sketch structure only contains counters, some com-
plex sketches (e.g., CocoSketch [16] and Elastic sketch [13])
has a flow key corresponding to every counter. For these
sketches, OctoSketch will send both the key and the counter
to the aggregator and set the counter to zero if the counter is
large enough. For each <key, counter> pair, the aggregator
inserts the key into the sketch using the same insertion logic
as the original sketch.
Handling negative counter values: For sketches such as the
Count Sketch [11] and UnivMon [12], each counter value
can be positive or negative. For these sketches, when OctoS-
ketch checks whether the counter is large enough, we use the
absolute value instead.
Benefits of applying OctoSketch (Table 1): The actual bene-
fits vary among sketches as shown in Table 1. The throughput
benefit of OctoSketch often comes from the heavy key storage.
Because some sketches (e.g., ElasticSketch [13]) proposed
their own heavy key storage to speed up, OctoSketch cannot
further optimize their throughput. The throughput may de-
crease due to the additional overhead of the concurrent queue.
However, such a gap is often small (< 10%), and OctoSketch
can still improve their accuracy.

5 Analysis
In this section, we first show that, after applying OctoSketch,
sketches can still achieve the same error bounds as that of
the ideal accuracy after receiving enough packets. Then, we
analyze the tradeoff between online accuracy and commu-
nication cost. We prove that OctoSketch requires up to four
orders of magnitude fewer worker-aggregator messages than
prior sketch-merge approach for the same accuracy.

5.1 Error Bound
We show the error bound of OctoSketch for the Count-Min
sketch in this section. The detailed proofs and analysis of Oc-

toSketch for Count sketch and HyperLogLog are deferred to
Appendix B. These three sketches provide three typical kinds
of accuracy guarantees which are also used by other sketches
(e.g., Elastic sketch, Locher sketch, and UnivMon). To ana-
lyze the worst-case guarantee, we assume that the threshold
is always τmax and denote τ≡ τmax.

Let f̂ (e) be the estimated flow size of flow e for OctoSketch,
f (e) be the real flow size of flow e, k′ be the maximum number
of workers that a flow may pass by, and L1 = ∑e f (e) which
is the total number of packets in the traffic.
Theorem 1. For OctoSketch for Count-Min sketch, let d =
log2 δ−1 and l = 2ε−1. For any flow e and any traffics whose
L1 > ε−1k′τ,

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL1

]
< δ (3)

Proof sketch: Suppose that f̂ ′(e) is the estimated size of
the Count-Min sketch working in a single core. Note that∣∣∣ f̂ (e)− f (e)

∣∣∣ ⩽ ∣∣∣ f̂ ′(e)− f (e)
∣∣∣ + ∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣, where the

first part
∣∣∣ f̂ ′(e)− f (e)

∣∣∣ is the original error from the Count-

Min, while the second part
∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣ is the additional
error brought by OctoSketch. For the first part, we can reuse
the result in the paper of Count-Min sketch [10]. The analy-
sis of the additional error caused by OctoSketch is shown in
Appendix B. We show that such an additional error is finally
marginal compared with that of the Count-Min sketch.
Interpretation: This theorem shows that OctoSketch can
still achieve the same asymptotic error bounds as perform
sketches in a single location after receiving enough packets.
The number of packets depends on the maximum number of
workers a flow may pass by (k′) and the threshold of each
worker (τ). In our experiments, setting τ to 27 is enough to
achieve around 1400Mpps for 16 workers. In that case, after
receiving 1M packets, OctoSketch can guarantee the same
asymptotic error bounds for ε > 2−9 ≈ 0.2%. Note that flows
may not appear on all 16 workers. If each flow is distributed to
most two workers (i.e., k′ = 2), after 1M packets, OctoSketch
can guarantee the same error bounds of ε > 2−12 ≈ 0.024%.
Moreover, using this theorem, we can also compute the re-
quired threshold τ based on the accuracy requirement ε, trace
length L1, and k′. Specifically, we can set the threshold as
τ = εL1

k′ (4).

5.2 Communication and Accuracy tradeoff
We want to guarantee that the accuracy of the aggregated
result over multiple cores is close to the ideal accuracy. We
first formally define this accuracy goal in the following.
Definition 1 (Accuracy Goal). Given a sketch S1 which works
in a single core and a sketch S2 which is the aggregated result
over multiple cores, suppose that f̂i(e) is the estimated flow
size of e for sketch Si. We want to ensure that, at any time,

1628    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



for any flow e,
∣∣∣ f̂1(e)− f̂2(e)

∣∣∣ < ∆, where ∆ is a predefined
parameter.

Note that the cost to achieve the accuracy goal varies for
different sketches. In this section, we use the Count-Min
sketch [10] and Count sketch [11] as a case study to show
the superiority of OctoSketch over sketch-merge. To calculate
the cost, we consider the number of counters the aggregator
should process to achieve the accuracy goal. Suppose that for
the Count-Min/Count sketch in each worker and the aggrega-
tor, there are d arrays, each with l counters.
Theorem 2. To achieve the accuracy goal, sketch-merge
needs to send O

(
∆−1k ·N ·dl

)
counters, while OctoSketch

needs to send O
(
∆−1k ·N ·d

)
counters.

Interpretation: We can see that OctoSketch needs to send l
times fewer counters to achieve the accuracy goal compared to
sketch-merge. In prior work [12,13], there are often more than
thousands of counters in each array, i.e., l > 103. Therefore,
OctoSketch can send much fewer counters to achieve the same
accuracy guarantee. Note that the computation cost needed in
the aggregator is proportional to the number of counters sent.
It also validates our experimental results that sketch-merge
needs too much computation to achieve the similar accuracy.
In experiments, we set d = 3 and l = 216. If we set ∆ to 100,
for 16 workers (k = 16), OctoSketch needs to send at most
0.48N counters to achieve the accuracy goal, i.e., OctoSketch
only needs to send at most 1 counter to the aggregator per
2 packets. Meanwhile, sketch-merge needs around 3× 104

counters per packet to achieve the same accuracy.

6 Implementation
We implement OctoSketch using C++ and use xxHash [47] as
the hashing library. All experiments are run on CloudLab [48].
We have open-sourced the artifact on GitHub [49].
Shared buffer: We use the concurrent queue [50] to be
the shared buffers between workers and the aggregator. The
queue is lock-free and uses atomic operations to achieve high
throughput. In addition, it can dynamically allocate memory
according to the number of items in the queue.
CPU: We implement OctoSketch on a machine with an AMD
EPYC 7452 32-Core Processor at 2.35GHz and 128 GB ECC
memory. We pre-process the input traces and distribute them
to different workers. Each worker only needs to read the
flow keys in memory and insert them into the sketch. In that
way, we can focus on measuring the performance of sketches
without the impacts from other applications.
DPDK: We also integrate OctoSketch with DPDK (version
21.11) [24]. Each OctoSketch worker is integrated with the
polling mode thread in DPDK. Our testbed has two servers
that are the same as the CPU implementation. Each server is
equipped with a Mellanox ConnectX-5 Ex 100G NIC [26].
One server generates high-speed TCP traffic using pktgen-
dpdk, while another server runs DPDK to receive packets and
process them using OctoSketch. We use multiple cores to

receive packets. Each worker corresponds to one core and one
Rx queue, and it should extract packets from the Rx queue
and insert them into the sketch. Thus, we can measure the
overhead of sketches compared with DPDK.
eBPF XDP: We also integrate OctoSketch with XDP [25]
in Linux kernel 5.15.0 using SKB mode. Our testbed has
two servers that are the same as the DPDK implementation.
We load the OctoSketch worker into the kernel to process
packets, and the aggregator works in the user space. We use
the bpf_ringbuf provided in the XDP library to send data
from kernel space to user space. Note that in our setting, we
cannot implement sketch-merge as it needs to send too much
data (the whole sketch and heavy flow keys) at a time.

7 Evaluation
Our experiments compare the OctoSketch to the baseline
sketch-merge approach and demonstrate that:
• OctoSketch can always maintain high online accuracy at

any query time.
• OctoSketch can achieve high throughputs on all tested plat-

forms, and it scales linearly with the number of workers.
• OctoSketch can achieve high resource efficiency on a repre-

sentative high-performance packet processing library (Intel
DPDK).

7.1 Experimental Methodology
Traces: We mainly use two datasets:
• We use CAIDA traces [37] collected in the Equinix-

Chicago monitor in 2018 in for our experiments by default.
We use <Source IP, Destination IP> as the flow key.
• We generated 11 datasets that follows the Zipf [51] distri-

bution with various skewness using Web Polygraph [52].
Metrics: We evaluate the following six performance metrics.

• Absolute Error: 1
|Q| ∑e∈Q

∣∣∣ f (e)− f̂ (e)
∣∣∣, where f (e) is the

real size, f̂ (e) is the estimated size, and Q is the query set.

• Relative Error: 1
|Q| ∑e∈Q

| f (e)− f̂ (e)|
f (e) , where f (e) is the real

value, f̂ (e) is the estimated value, and Q is the query set.
• Recall Rate: The ratio of the number of correctly reported

flows to the number of correct flows.3

• Miss Rate: The ratio of the number of missing correct flows
to the number of correct flows, which is 1−RR.
• Precision Rate: The ratio of the number of correctly re-

ported flows to the number of reported flows.
• F1 Score: F1 Score is 2 · (RR ·PR)/(RR+PR), where RR

is the recall rate, and PR is the precision rate.
• Throughput: For CPU, we use million insertions per second

(Mips). For DPDK and XDP, we use million packets per
second (Mpps). The throughput numbers are the average
value among 100 trials.

3Correct flows are the real heavy hitters in the traffic, and correctly re-
ported flows are the real heavy hitters in the reported ones.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1629



5 10 15 20 25
Number of Packets (×106)

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

Ideal
Merge

OctoSketch
Iceberg

(a) Recall Rate

5 10 15 20 25
Number of Packets (×106)

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

is
io

n 
R

at
e

Ideal
Merge

OctoSketch
Iceberg

(b) Precision Rate

5 10 15 20 25
Number of Packets (×106)

0

500

1000

1500

A
bs

ol
ut

e 
Er

ro
r

Ideal
Merge

OctoSketch
Iceberg

(c) Absolute Error

5 10 15 20 25
Number of Packets (×106)

0.0

0.1

0.2

R
el

at
iv

e 
Er

ro
r

Ideal
Merge

OctoSketch
Iceberg

(d) Relative Error

Figure 10: Accuracy of Count-Min Sketch at different query time.

Sketches: We apply OctoSketch to all 9 sketches in Table 1.
Due to space limitations, we show 4 representative sketches
in this section: Count-Min Sketch [10] for detecting heavy
hitters, Locher Sketch [29] for measuring super-spreaders,
CocoSketch [16] for arbitrary partial key queries, and Univ-
Mon [12] for generic flow monitoring.
Baselines: (1) Ideal accuracy is the accuracy of the sketch
that works in a single core and measures the whole traffic. (2)
Sketch-merge is merging the entire sketches as shown in §2.2.
(3) Iceberg [53] uses the Count-Min sketch to find global
heavy hitters. Instead of utilizing the sketch mergeability, Ice-
berg only uses the Count-Min sketch as a local heavy hitter
estimator. Each worker in the Iceberg only sends the local
heavy flow keys to the aggregator. The aggregator will ask
every other worker for the statistics of these flow keys and
aggregate the result. Once all worker answers, the aggrega-
tor can decide on the global heavy hitters. As shown in its
paper [53], such a multi-round communication can reduce
communication overhead.
Parameters: We refer to the individual paper to configure the
sketch parameters [10, 12, 13, 16, 29]. For instance, in Count-
Min sketch and Locher sketch, we use 3 arrays of 216 counters
per array. For CocoSketch, we use 2 arrays as suggested in
their paper, and there are 216 buckets per array. We describe
the detailed parameters and configurations in Appendix D.1.

7.2 Online Accuracy
F1 scores at different query times (Figure 10a-10b&20):
The F1 Score of OctoSketch is often close to the ideal ac-
curacy and is 36.5% higher than sketch-merge. The sketch-
merge needs to wait longer to get the sketches from all work-
ers and converge to a relatively accurate result. Therefore, its
F1 score is often lower than 0.5 before processing 5 million
packets. Then we look at the recall (Figure 10a) and precision
(Figure 10b) of the F1 score, respectively. The recall of Oc-
toSketch is usually lower than the ideal accuracy, while the
precision is often higher. It is because the counter in the ag-
gregator is often smaller than that of the ideal accuracy since
there is some information left in each worker. As a result,
OctoSketch tends to underestimate compared to the ideal ac-
curacy, resulting in a higher precision but a lower recall. The
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Figure 11: Accuracy with different parameters
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Figure 12: Dynamically changing workloads

recall rate of Iceberg is around 54% lower than OctoSketch.
Its recall rate is low because the multi-round communication
to all workers increases the delay (staleness) in the aggregator,
which makes the aggregator miss many heavy flows.
Errors at different query times (Figure 10c-10d&21): Oc-
toSketch can keep low errors in any query time. The gap be-
tween the relative error of OctoSketch and the ideal accuracy
is often less than 0.05 and continues to decrease with more
packets received, which matches our theoretical analysis in
§5.1. The relative error of sketch-merge is 15.6× larger than
OctoSketch, and its absolute error is 41.9× larger than Oc-
toSketch. In addition, the accuracy of sketch-merge changes
significantly over time: error drops abruptly once the aggrega-
tor merges a sketch, and keeps increasing until the aggregator
merges another one. In contrast, OctoSketch’s continuous
mechanism maintains stable accuracy. The relative error of
Iceberg is 2.6× larger than OctoSketch.
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Figure 13: Throughput on CPU

Accuracy with different numbers of workers (Figure 11a):
The miss rate of sketch-merge on the Count-Min sketch in-
creases when scaling to more workers. It is because the time
it takes to merge sketches in the aggregator has to increase
as the number of workers increases. With 16 workers, the
miss rate of sketch-merge for the Count-Min sketch is around
14.7× larger than that of OctoSketch, while the difference
between the miss rate of OctoSketch and the ideal one is less
than 2%. The Iceberg algorithm uses multi-round communica-
tion, which further increases the complexity and waiting time
of the aggregator. As a result, its miss rate is around 12.0×
larger than sketch-merge and 70.3× larger than OctoSketch.
Accuracy with different skewness (Figure 11b): OctoS-
ketch for the Count-Min sketch achieves low miss rates on dif-
ferent skewnesses, while the error of sketch-merge increases
with increasing skewness. It also verifies our statement shown
in §3.2 that sketch-merge is not friendly to heavy-tailed work-
loads. The miss rate of sketch-merge is around 9.1× larger
than OctoSketch, while the miss rate of Iceberg is around
21.0× larger.
Dynamically changing workloads (Figure 12): We simulate
dynamic workloads by combing five datasets with different
skewness (0.3→ 3.0→ 1.5→ 0.9→ 2.4). We find that Oc-
toSketch for the Count-Min sketch is robust to dynamically
changing workloads and maintains similar accuracy to the
ideal. However, we note that OctoSketch does not address
the inherent accuracy issues of the sketches. If the original
sketch used is not capable of handling dynamically changing
workloads, OctoSketch does not mitigate this limitation, but
does not worsen the accuracy. Nevertheless, we observe that
many sketches [10, 11, 13, 39] tend to exhibit a certain level
of robustness to such dynamic workloads.

7.3 Throughput
CPU Throughput (Figure 13): OctoSketch achieves high
CPU throughput and scales well with more workers. In the
Count-Min sketch, with 16 workers, OctoSketch can achieve
around 1400Mips. The multi-round communication in Iceberg
increases the computation overhead of each worker and thus
decreases the throughput. The throughput of Iceberg is around
1.4× lower than sketch-merge and 5.3× lower than OctoS-
ketch. Compared to sketch-merge, OctoSketch can achieve

3.85×, 4.5×, and 2.63× higher throughput for Count-Min
sketch, Locher sketch, and UnivMon, respectively. It is worth
noting that the throughput of OctoSketch can sometimes in-
crease faster than linear scaling with more workers. This is
because the counter update threshold may also increase with
more workers. Therefore, each worker costs less to send coun-
ters and the total throughput increases faster. For CocoSketch,
due to the extra overhead of OctoSketch to send counters, the
throughput sometimes is slightly lower than sketch merge,
but the gap between them is less than 10%.
DPDK Throughput (Figure 14): OctoSketch achieves high
throughput in DPDK. For the six tested sketches, OctoSketch
can often reach ≈100Mpps with 10 workers. Sketch-merge
often needs at least 2 more workers to achieve similar through-
put as OctoSketch for Count-Min sketch, Locher sketch, and
UnivMon. Specifically, OctoSketch accelerates the Locher
sketch to achieve 97.0Mpps in 8 workers, while sketch-merge
only achieves 61.3Mpps using 10 workers. One exception
is CocoSketch: the throughput of OctoSketch is similar to
that of the sketch-merge. This is because CocoSketch does
not need additional heavy key storage, and thus OctoSketch
does not further optimize throughput. Iceberg reaches only
32.9Mpps with 10 workers, because Iceberg needs multiround
communication between the aggregator and all workers and
additional workers can bring communication overheads.
eBPF XDP Throughput (Figure 15): As we cannot imple-
ment sketch-merge in XDP as shown in §6, we compare the
throughput of OctoSketch to that of the XDP with sketches.
The throughput of OctoSketch scales linearly with the number
of workers. The throughput of OctoSketch with the Count-
Min sketch is about 85% of the XDP, and the throughput of
OctoSketch with the CocoSketch achieves 92% of the XDP.

7.4 CPU Utilization and Stability
In this experiment, we show how OctoSketch can quickly
adapt to varying packet arrival rates in DPDK.
CPU usage (Figure 16): The sketch CPU utilization is often
reduced after applying OctoSketch. For the Count-Min sketch,
the CPU usage of OctoSketch is around 1.75 and 3.34 times
lower than sketch-merge and Iceberg, respectively. As shown
in §7.3, OctoSketch incurs more CPU cycles when applied
to CocoSketch due to the cost of sending counters. But the
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Figure 14: Throughput on DPDK
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Figure 16: CPU usage on DPDK

difference in CPU usage is usually less than 7%. Note that the
CPU usage of sketches often decreases with more workers
because the overhead of performing packet processing under
DPDK will be increased when dealing with large volumes
of traffic. The CPU usage of Iceberg increases with more
workers due to the extra multi-round communication between
workers and the aggregator.
Packet processing latency (Figure 17): We measure the
latency needed for the Count-Min sketch in mini-batches (32
packets). We do not show per-packet latency as it is too fine-
grained (≈ 10ns) for servers to measure. As shown in Figure
17a, for OctoSketch, more than 65% of the batches can be
finished in 0.5µs, and over 98% of batches can be finished in
1µs. Moreover, the median latency of sketch-merge is around
3 times larger than that of the OctoSketch. Figure 17b shows
that sketch-merge has larger jitters than OctoSketch. Every
time sketch-merge creates a new sketch, there will be frequent
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Figure 17: Latency on DPDK

sketch and flow key operations in the next few batches, leading
to large latency. The jitters in OctoSketch are mainly caused
by the atomic operations in the concurrent queue. Overall, the
latencies and jitters in OctoSketch are significantly smaller
than those of sketch-merge.
Adaptive thresholds (Figure 18): To illustrate the adaptive-
ness of OctoSketch, we use 10 workers to run Count-Min
sketches with DPDK, set the lower bound of the thresholds
to 8, and dynamically change the packet arrival rate. The up-
per figure shows that OctoSketch can quickly adapt to the
varying arrival rates of packets. Moreover, we notice that the
highest threshold used is still smaller than 20, i.e., 8-bit is
enough for each counter. The bottom figure shows the total
queue length of the 10 shared queues. We find that the large
queue length is often caused by the threshold decrease. Even
if the packet arrival rate is stable, OctoSketch will still dy-
namically adjust the threshold. Sometimes, the threshold is
too low, leading to a longer queue. However, OctoSketch can
quickly adjust the threshold to decrease the queue length. We
can see the queue length is relatively stable around the target
length and is usually well below 400. Therefore, the size of
the shared buffer needed by OctoSketch is often smaller than
10KB. Such a size is much smaller than that of the sketch-
merge. For sketch-merge, we need at least 768KB (the size of
a Count-Min sketch) more memory for merging.

7.5 Case Study: Load balancer
In this section, we show the benefit of OctoSketch for the Intel
dynamic load balancer [35]. We also conduct a case study on
the key-value cache and defer the results to Appendix §D.3.
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Figure 19: Load balancer with different monitoring tools.

Initially, all traffic is distributed through RSS (based on hash).
The aggregator aggregates the statistics over multiple cores
and detects large flows. Once a flow is detected as a large flow,
the aggregator sets a flow director rule for this flow in the
network adaptor. Then, the large flow will be redirected and
redistributed to multiple cores with the help of Intel DLB [54]
which maintains the order of packets. In this experiment, we
run simulations on the CPU due to the lack of Intel DLB
hardware support in our testbed and measure load imbalance
rate as the ratio of the number of packets processed by the
most loaded worker relative to the least loaded worker [55].
The ideal imbalance rate should be 0.
Load balance over time (Figure 19a): OctoSketch helps In-
tel load balancer to achieve low imbalance rates. With fewer
than 1M packets, the imbalance rate from OctoSketch is lower
than 10%. However, sketch-merge needs more than 10M pack-
ets to reach a low imbalance rate and its imbalance rate can
be large (> 100%) before that. This is because sketch-merge
spends more time detecting new large flows than OctoSketch,
resulting in more packet losses. Moreover, after processing
more than 20M packets, the imbalance rate of OctoSketch is
still 3.15× lower than that of sketch-merge.
Load balance over skewness (Figure 19b): We also show
the imbalance rates on processing different packet traces with
varying skewness. OctoSketch maintains low imbalance rates
regardless of the skewness, while sketch-merge’s imbalance
rate is about 8.89× larger when the skewness is larger than
1.2. Note that larger skewness does not always lead to larger
imbalances. The imbalance rate also depends on how fast the
algorithm can detect large flows and redistribute them.

8 Other Related work
Mergeability of sketches: As discussed in §2.2, most exist-
ing solutions (e.g., CocoSketch [56], Beaucoup [15], HeteroS-
ketch [20], and FetchSGD [36]) leverage the mergeability to
apply sketches to distributed systems. These works often send
the whole sketch to the aggregator, and the aggregator can get
the aggregated result based on the merged sketch. There are
also some works [57] that try to explore the operations that
can be supported by merge. Specifically, prior works mainly
use merge to get the statistics over union (A∪B), while [57]
discusses how to use merge to support other operations like
intersection, Jaccard similarity, and relative complement.
Continuous monitoring model: In addition to the linear
mergeability [9] discussed in §2.2, there are also theoretical
works about continuous monitoring for distributed systems.
However, some of these efforts [58] assume that every worker
has a lot of resources to record all flow sizes, while some
of them [59, 60] only focus on a specific sketch of a task.
In addition, these works [53] all aim to minimize the total
communication cost, and failed to consider the computation
cost. As shown in §2.2, the main bottleneck in the multicore
scenario is the computation cost.
Real-time telemetry: Timeliness is an important property in
distributed monitoring. Trumpet [61] is an event monitoring
system in which users define network-wide events. There is
a centralized controller which installs triggers at end-hosts
where triggers test for local conditions, and the controller
aggregates these signals and tests for the presence of specified
network-wide events. They use a hash table in each end-host
and assume that the end-host can process all packets with full
accuracy. However, in our high-volume, multicore context,
each core in a server does not have enough computation and
memory resources to do so.

9 Conclusions
Today’s networked applications require multicore packet pro-
cessing and distributed flow monitoring. While sketches have
emerged as a resource-efficient and highly accurate measure-
ment primitive, fundamental limitations remain. Prior dis-
tributed solutions merge sketches from all cores and bring
significant accuracy degradation and resource overhead. In
this paper, we propose OctoSketch to scale sketches to mul-
ticore scenarios using a continuous, change-based mecha-
nism to aggregate multicore measurements. OctoSketch can
be applied to a broad range of sketches and answer various
sketch-based queries. Our evaluation shows that OctoSketch
can achieve significantly higher accuracy and throughput than
prior sketch-merge techniques.
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A Background of sketches
Here we give a background of sketching algorithms and the
applications of sketches on software platforms.
Sketch example: Count-Min sketch. The Count-Min
sketch [10] maintains d arrays of counters, with w counters
in each array. When a packet arrives, the Count-Min sketch
calculates d independent hash values from the flow identity of
the packet (e.g., 5-tuple, source IP, and destination IP). Each
hash function offers an independent counter position in each
array, and the Count-Min sketch subsequently increases the
associated counter per array. When querying the size of a
flow, its estimation is given by the minimum value among the
associated counters for that flow.
Applications of sketches: Performing telemetry under high-
performance packet processing is an important application for
sketches. As an example, DPDK has included sketching al-
gorithms in their library to provide an efficient way to profile
the traffic for heavy hitters [62]. In addition, prior works [4]
apply sketches to a DPDK-based Load Balancer. Specifically,
they use sketches to detect heavy hitters and distribute them
to multiple idle worker cores for parallel packet processing.
Moreover, prior system work also applies sketches to super-
spreader/DDoS detection [32] and key-value cache [7, 21].

B Analysis
Theorem 1. For OctoSketch for Count-Min sketch, let d =
log2 δ−1 and l = 2ε−1. For any flow e and any traffic whose
L1 > ε−1k′τ,

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL1

]
< δ (4)

Proof. Suppose that f̂ ′(e) is the estimated size of the
Count-Min sketch that works in a single core. Note that∣∣∣ f̂ (e)− f (e)

∣∣∣ ⩽ ∣∣∣ f̂ ′(e)− f (e)
∣∣∣ + ∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣, where the

first part
∣∣∣ f̂ ′(e)− f (e)

∣∣∣ is the original error from the Count-

Min sketch, while the second part
∣∣∣ f̂ (e)− f̂ ′(e)

∣∣∣ is the addi-
tional error brought by the OctoSketch.

For the first part, given d = log2 δ−1 and l = 2ε−1, the error
bound of the Count-Min sketch [10] as shown in its paper is
that

Pr
[∣∣∣ f̂ ′(e)− f (e)

∣∣∣> εL1

]
< δ. (5)
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Then, we consider the second part, i.e., the gap of estimated
flow size between OctoSketch for Count-Min sketch and the
Count-Min sketch that works in a single core. Note that for
each worker, there is at most τ flow size information left in
the worker’s sketch at any time. The total gap between each
counter in the aggregator’s sketch and the single core baseline
is at most k′ · τ. Because the gap between the estimation is
not larger than the gap between each counter, we can get that∣∣∣ f̂ ′(e)− f̂ (e)

∣∣∣< k′τ. Given L1 > ε−1k′τ, we can ensure that∣∣∣ f̂ ′(e)− f̂ (e)
∣∣∣< εL1.

Because the Count-Min sketch only overestimates the flow
size, we can get that f̂ ′(e)⩾ f (e). Because OctoSketch will
always have some flow size information in the worker not
updated to the aggregator, we have the query result from the
aggregator f̂ (e) ⩽ f̂ ′(e). Based on 5 and f̂ (e) ⩽ f̂ ′(e), we
have

Pr
[

f̂ (e)− f (e)> εL1

]
< δ. (6)

Based on f̂ ′(e) ⩾ f (e), f̂ ′(e) ⩾ f̂ (e), and
∣∣∣ f̂ ′(e)− f̂ (e)

∣∣∣ <
εL1, we have f (e)− f̂ (e) < εL1. Based on 6 and f (e)−
f̂ (e)< εL1, we can get the result.

Theorem 2. To achieve the accuracy goal, sketch-merge
needs to send O

(
∆−1k ·N ·dl

)
counters, while OctoSketch

needs to send O
(
∆−1k ·N ·d

)
counters.

Proof. We first consider the number of counters needed by
the sketch-merge technique. There are d · l counters for each
sketch. To guarantee that the gap of estimated size is smaller
than ∆, sketch-merge needs to send the whole sketch (d · l
counters) to the aggregator for every ∆

k packets. Therefore,
sketch-merge needs to send the sketch at least k·N

∆
times. As a

result, sketch-merge needs to send O
( k·N

∆
·d · l

)
counters.

For OctoSketch, to guarantee the error, OctoSketch needs
to set the threshold as ∆

k . Note that each packet only accesses
one counter in the array. Because there are N packets in the
traffic, each array sends at most k·N

∆
counters. As a result,

OctoSketch needs to send O
( k·N

∆
·d
)

counters.

Let Lk = k
√

∑e f k(e) be the k-th norm of the frequency
vector of the traffic. Then, we show the error bound of the
OctoSketch for the Count sketch.
Theorem 3. For OctoSketch for the Count sketch, let d =
O(log2 δ−1) and l = 8ε−2. For any flow e and any traffics
whose L2 > 2ε−1k′τ,

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL2

]
< δ (7)

Proof. Similar to that of the Count-Min sketch, we first
analyze the error brought by the Count sketch. Suppose
that f̂ ′(e) is the estimated size of the Count sketch that
works in a single core. Given d = O(log2 δ−1) and l = 8ε−2,
based on the error bound of the Count sketch [11], we have
Pr
[∣∣∣ f̂ ′(e)− f (e)

∣∣∣> ε

2 L2

]
< δ. Then we analyze the error

brought by OctoSketch. Given the threshold τ of each worker
and L2 > 2ε−1k′τ, we can make sure that∣∣∣ f̂ ′(e)− f̂ (e)

∣∣∣< k′τ <
ε

2
L2

Based on the triangle inequality, we have

Pr
[∣∣∣ f̂ (e)− f (e)

∣∣∣> εL2

]
< δ

Then, we show the error bound of the OctoSketch for Hy-
perLogLog. Because HyperLogLog works for different query
tasks from the Count-Min sketch and the Count sketch, we
define different symbols for HyperLogLog. Let Ẑ be the esti-
mated cardinality of HyperLogLog, Ẑ′ be the estimated cardi-
nality of the OctoSketch for HyperLogLog, m be the number
of counters used in the HyperLogLog, αm is the constant
used by HyperLogLog given m, C[i] be the ith counter in the
HyperLogLog, and C′[i] be the ith counter in the OctoSketch
for HyperLogLog. As shown in the paper [39], αm is always
smaller than 0.73 regardless of m, and

Ẑ = αmm2

(
m

∑
i=1

2−C[i]

)−1

Theorem 4. If Ẑ > 2αmm22τ−2, we have

Ẑ = Ẑ′

Proof. OctoSketch can guarantee that, for any i,∣∣∣2C[i]−2C′[i]
∣∣∣ < 2τ, and C′[i] = τ − 1 by default. As all

counters are integers, we can get that

C′[i] =
{

0, C[i]< τ−1
C[i], C[i]⩾ τ−1

Therefore, if all C[i]⩾ τ−1, we can guarantee that Ẑ = Ẑ′. If
there is any C[i]< τ−1,

Ẑ ⩽ αmm2
(

2−(τ−2)
)−1

= 2αmm22τ−2

Different from the Count-Min sketch, not all packets can
change the value of the accessed HyperLogLog. As the prop-
erty of HyperLogLog, if there are N distinct flow keys mapped
to the counter, the counter will only be updated O(logN)
times. In other words, the number of updates is much smaller
than the number of packets in the workloads. For example,
there are about 30 million packets in 1 minute in CAIDA
traces [37], while there are only around 1 million distinct flow
keys, and only part of them can update the accessed counter.
Therefore, in our experiments, the threshold τ = 2 is often
enough for the aggregator to process all updates.
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Figure 20: F1 scores on other sketches
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Figure 21: Relative errors on other sketches

C Extensions to other sketches
In this section, we show how we apply OctoSketch to the
other eight sketches in detail.
Count sketch [11] and UnivMon [12]: There are also mul-
tiple arrays of counters in the Count sketch. Count sketch
offers unbiased size estimation to each flow and thus each
counter value in the Count sketch can be positive or negative.
Therefore, as discussed in §4.4, OctoSketch uses the absolute
value to check whether the counter is large enough. Moreover,
UnivMon is composed of multiple Count sketches, and the
insertion process is the same for each Count sketch.
LogLog [38], HyperLogLog [39], and Locher sketch [29]:
There is only one array of small counters (e.g., 4-bit counter)
for LogLog and HyperLogLog. Note that the insertion logics
of LogLog and HyperLogLog are the same, and they mainly
differ in the query method. Therefore, we apply OctoSketch
to both of them in the same way. The details of applying
OctoSketch to HyperLogLog are discussed in §4.4. Locher
sketch is comprised of multiple arrays of HyperLogLog [39]
estimators, and the insertion process is the same for each
HyperLogLog.
DDSketch [40]: There is one array of counters in the DDS-
ketch. As the insertion logic of the DDSketch is similar to
that of the Count-Min sketch, we apply OctoSketch to the
DDSketch in the same way.
CocoSketch [16]: CocoSketch is composed of a number of
(e.g., 2) arrays of buckets, and each bucket stores a key and
a counter. CocoSketch does not need an additional heap to
record flow keys. Therefore, OctoSketch for CocoSketch also

does not need the heap in the aggregator. As discussed in §4.4,
OctoSketch will send the whole bucket (key and counter) to
the aggregator, if the counter is large enough. In the aggrega-
tor, OctoSketch uses the same insertion logic as CocoSketch
to update its own aggregated sketch.
Elastic sketch [13]: There are two parts in the Elastic sketch:
a heavy part and a light part. The light part is a Count-Min
sketch. The heavy part is an array of buckets to record heavy
flow keys, where each bucket also contains a key and a counter
similar to that of the CocoSketch. Elastic sketch also does
not need an additional heap to record heavy flow keys. Oc-
toSketch for Elastic sketch should keep both the heavy part
and the light part in both workers and aggregator and does not
need the heap in the aggregator. To apply OctoSketch, the light
part’s insertion logic is the same as that of the OctoSketch-
optimized Count-Min sketch. For the heavy part, OctoSketch
will send the flow key and the counter to the aggregator if the
counter in the bucket is sufficiently large as shown in §4.4. In
the aggregator, OctoSketch uses the same insertion logic as
Elastic sketch to update its own aggregated sketch.

D Evaluation
D.1 Parameters
Sketch parameters: For Count-Min sketch and Locher
sketch, we use 3 arrays of 216 counters per array. For Co-
coSketch, we use 2 arrays as suggested in their paper, and
there are 216 buckets per array. For Elastic sketch, only one
Count-Min sketch array is used (3×216 counters) based on
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Figure 22: Cache hit ratio

the paper. For UnivMon, we use 6 Count sketches. We ensure
that sketch-merge and OctoSketch use the same configuration
(and memory) in the aggregator. As shown in §4, for OctoS-
ketch, the sketch in each worker can use a smaller counter
size without accuracy loss. In experiments, each counter in
the worker of OctoSketch is 8-bit, while each counter in the
worker of sketch-merge is 32-bit. Specifically, the Count-Min
sketch for sketch-merge in workers needs 768KB memory,
while it only needs 192KB memory for the workers of OctoS-
ketch. For the resource allocation policy in OctoSketch, we
set α = 0.25. We set the cycle of sketch-merge based on the
maximum frequency the aggregator can support.

D.2 Figures
Due to space limitations, we move the Figure 20 and 21 for
§7.2 to the appendix.

D.3 Case Study: Key-Value Cache
In this section, we show the benefit of OctoSketch for a key-
value cache. Similar to the [21], we run experiments on the
simulator of DistCache [7]. Specifically, the traffic is dis-
tributed over multiple workers, and the aggregator aggregates
the statistics over multiple workers. Once an object is detected
as a hot object on the aggregator, it is cached. If an object
is no longer recognized as a hot object, it will be offloaded
from the cache. We calculate the cache hit ratio while using
OctoSketch and sketch-merge for hot object detection.
Cache hit ratio over time (Figure 22a): OctoSketch can
achieve fast detection and a high cache hit ratio. With less
than 2M packets, the cache hit ratio of OctoSketch is higher
than 40%. However, sketch-merge needs more than 10M
packets to converge. It indicates that sketch-merge spends
much time detecting new hot objects which may lead to many
cache misses. In addition, due to the different detection rates
on hot objects, the cache hit ratio of OctoSketch is still 13%
higher than sketch-merge after 20M packets.
Cache hit ratio over skewness (Figure 22b): We also show
the final cache hit ratio on datasets with different skewness.
The cache hit rate is higher with larger skewness. The cache
hit ratio of OctoSketch is around 9% higher than that of the
sketch-merge when the skewness is larger than 1.5.
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