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Abstract
In this paper, we present TECC, a system based on collab-

orative transmission control that mitigates the mismatch of
sending behavior between the inner and outer connections
to achieve efficient QUIC tunneling. In TECC, a feedback
framework is implemented to enable end hosts to collect more
precise network information that is sensed on the tunnel server,
which assists the inner end-to-end connection to achieve better
congestion control and loss recovery.

Extensive experiments in emulated networks and real-
world large-scale A/B tests demonstrate the efficiency of
TECC. Specifically, compared with the state-of-the-art QUIC
tunneling solution, TECC significantly reduces flow com-
pletion time. In emulated networks, TECC decreases flow
completion time by 30% on average and 53% at the 99th
percentile. TECC also gains a reduction in RPC (Remote
Procedure Call) request completion time of 3.9% on average
and 13.3% at the 99th percentile in large-scale A/B tests.

1 Introduction

Internet privacy has become a more and more serious concern
for all Internet residents today. Although policymakers have
been making regulations (e.g., GDPR [1]) on Internet privacy
stricter than ever to protect users from the abuse of their per-
sonal information, these regulations may only be respected
by legitimate organizations (e.g., large service providers such
as Google), not by malicious hackers on the Internet. There-
fore, many knowledgeable people resort to privacy-preserving
technologies to further secure their surfing on the Internet.

iCloud Private Relay [2] (PR) is a new privacy protec-
tion service announced by Apple at its developer conference
(WWDC) in June 2021, which aims to protect customers’ In-
ternet activities initiated via the Safari web browser. It uses
an architecture with two layers of proxies to guarantee that no
one in the middle can directly correlate the user and the target
service accessed by the user. In PR’s architecture, users’ traf-
fic is first routed to an Apple-controlled ingress proxy and the
ingress proxy then forwards the received traffic to an egress
proxy hosted by third parties (e.g., Cloudflare, Akamai, etc)
that finally initiates connections to the target hosts. As Apple
has a considerable amount of share on the global smartphone
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market and PR has a much lower entry barrier compared with
traditional privacy-preserving technologies such as Virtual
Private Networks (VPNs), Proxies, and The Onion Router
(Tor), a significant usage increase of PR is envisioned [3, 4].

To steer user traffic to an egress proxy via an ingress proxy,
a tunneling protocol called MASQUE (Multiplexed Appli-
cation Substrate over QUIC Encryption) is used in PR. In
this MASQUE use-case, a client first initiates a QUIC-based
HTTP/3 connection to a tunnel server (an ingress proxy) and
uses an extended HTTP CONNECT method [5] to open a
UDP tunnel towards a target server (an egress proxy). Af-
terward, the client can communicate with the target server
using QUIC (UDP-based) through the opened tunnel. This
ultimately leads to a QUIC-in-QUIC communication pattern,
as shown in Figure 1.

However, as disclosed by recent studies [4,6], such a QUIC-
in-QUIC communication pattern enabled by MASQUE faces
several performance challenges. MASQUE only provides a
tunneling mechanism and leaves the impact of tunneling on
the performance of end-to-end (E2E) connections unexplored.
There are also a few recent studies [7–11] that discussed using
MASQUE or similar QUIC tunneling schemes to enhance the
performance of E2E connections, e.g., accelerating the recov-
ery of packets lost at the last-mile wireless link. Nonetheless,
there remains a lack of systematic measurement of MASQUE,
which is of great importance for designing efficient QUIC
tunneling. To fill the gap, we first conducted a thorough mea-
surement study to dissect the performance of MASQUE in
depth. We then identify two fundamental problems that lead
to sub-optimal performance:

• Retransmission in the tunnel: While retransmission in the
tunnel is crucial for accelerated loss recovery, it may cause
duplicated retransmissions by both the tunnel server and
the server, leading to bandwidth waste and exacerbated
network congestion.

• Congestion control (CC) in the tunnel: CC in the tunnel
is necessary as it can reduce the tunnel’s retransmission
rate and alleviate network congestion. However, it causes
a sending rate mismatch between the inner and outer con-
nection, which can severely degrade E2E throughput.

To tackle these issues, we propose TECC which makes
the end hosts and the tunnel server collaboratively control
their transmission. In a nutshell, TECC works as follows:
network information collected on the tunnel server is fed back
to the server through the “Tunnel Server->Client->Server”
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Figure 1: The QUIC-in-QUIC communication pattern enabled
by QUIC tunneling

path, which aligns the server’s retransmission and sending
behavior with the tunnel server. At the same time, TECC
offloads the server’s CC to the tunnel server, reducing the
control loop from the original E2E path to the path between
the tunnel client and tunnel server.

We implement TECC and integrate it with the Taobao An-
droid app. Extensive experiments in emulated network envi-
ronments and real-world large-scale A/B tests demonstrate its
efficiency. To sum up, our contributions are:

• We conducted a set of experiments to systematically eval-
uate MASQUE. An in-depth analysis based on the results
reveals the impact of transmission modes (using QUIC
streams or datagrams for tunneling E2E packets), retrans-
mission, and CC on the performance of MASQUE.

• Motivated by our key observations on the fundamental
limitations of MASQUE, we propose a collaborative trans-
mission control system, TECC, which coordinates the re-
transmission and CC of the inner and outer connections
to achieve enhanced performance.

• We carried out extensive experiments in networks emu-
lated by Mahimahi [12] and large-scale A/B tests in which
over 10 million users were involved. Compared with the
vanilla MASQUE, TECC decreases the flow completion
time (FCT) by 30% on average and by 53% at the 99th
percentile in emulated networks. In production networks,
TECC reduces the FCT of RPC requests by 3.9% on aver-
age and 13.3% at the 99th percentile.

2 Background

2.1 MASQUE overview

MASQUE is a set of specifications developed at the IETF
MASQUE working group, which defines new tunneling mech-
anisms that can leverage QUIC to tunnel E2E UDP and IP
packets. Compared with previous tunneling mechanisms (e.g.,
TCP-based or IP-based tunneling), it benefits from the supe-
rior features of QUIC, e.g., 0-RTT connection establishment,
more accurate RTT estimation and loss detection, and elimi-
nation of head-of-line (HoL) blocking between independent
data streams.

Currently, there are two released RFCs in MASQUE: RFC
9297 of “HTTP Datagrams and the Capsule Protocol” [13]

and RFC 9298 of “Proxying UDP in HTTP” [5]. The former
defines HTTP Datagrams that are the carriers of E2E packets
in the tunnel. HTTP Datagrams can be used for conveying
multiplexed and potentially unreliable datagrams (e.g., UDP
or IP packets) inside an HTTP connection (a tunnel connec-
tion). Note, if the tunnel connection is based on HTTP/3 over
QUIC, HTTP Datagrams can be transmitted in two different
modes: stream mode and datagram mode. In the stream
mode, QUIC streams are utilized to reliably transmit HTTP
Datagrams, whereas QUIC datagrams [14] are leveraged to
unreliably convey HTTP Datagrams in the datagram mode.
The latter specification defines the signaling protocol to set
up UDP tunnels inside an HTTP connection. Specifically, de-
pending on the HTTP version of the tunnel connection, a tun-
nel client can request the tunnel server to open a UDP tunnel
via sending an extended HTTP CONNECT request [15,16] or
an HTTP Upgrade request [17] with the IP and port of the tar-
get server encoded in the request. If the tunnel server accepts
such a request, the tunnel is established and the packets of the
E2E connection can be transmitted over the opened tunnel. As
the tunnel server knows about the addresses of both the client
and server, it can forward E2E packets to the correct targets.
At the time of writing, there are also a few other specifications
under development, e.g., the signaling protocol to establish IP
tunnels [18] and the QUIC forwarding mode [19] to reduce
the wire and encryption overhead.

In this paper, we mainly focus on the QUIC-in-QUIC use-
case enabled by MASQUE UDP tunnels, which means both
the tunnel connection and the E2E connection are based on
QUIC. We refer to the stream mode and the datagram mode
as MST (MASQUE stream tunnel) and MDT (MASQUE
datagram tunnel) in the following paragraphs respectively.

2.2 The potential issues of MASQUE

Although the MASQUE specifications provide functional
mechanisms for QUIC-in-QUIC tunneling, the impact of such
tunneling mechanisms on the performance of the E2E QUIC
connection remains unclear.

First, the two tunnel modes, MST and MDT, could have
different impacts on the E2E performance. In MST, each UDP
tunnel uses one QUIC stream for the underlying transmission.
As the QUIC stream is reliable, if the tunneled E2E packets
are lost in the tunnel segment, they can be recovered by the
tunnel connection, which is faster than the E2E retransmis-
sion. This benefit is not provided by MDT as QUIC does
not retransmit QUIC datagrams in which E2E packets are
encapsulated. But, MST also has a disadvantage compared
with MDT. Due to the QUIC stream only delivering in-order
data to its upper layer, MST has a significant HoL blocking
problem where a lost packet leads to all subsequent packets
being blocked in the tunnel. In MDT, as the QUIC datagrams
are independently delivered to the upper layer, the HoL prob-
lem does not manifest. Consequently, there are some attempts
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(e.g., [7]) trying to combine the advantages of MST and MDT
by enabling retransmission for MDT (RMDT). Neverthe-
less, a quantitative comparison between these tunnel modes
is essential to understand how they perform in practice.

Second, in MST and RMDT, there may be excessive re-
transmissions as both the tunnel connection and the E2E con-
nection can retransmit packets lost in the tunnel segment.
Excessive retransmissions may exacerbate the congestion in
the tunnel and waste bandwidth. Applying CC on the tunnel
connection may alleviate this problem, but, it also introduces
two layers of nested CC, as the E2E connection also performs
CC. The nested CC may lead to unwanted sending behav-
ior mismatches between the tunnel connection and the E2E
connection.

3 A deep dive into MASQUE

In this section, we first evaluate the performance of differ-
ent tunnel modes. Then, the necessity of CC in the tunnel
is assessed. Finally, as both the tunnel connection and the
E2E connection have their own CC, the impact of nested CC
is studied. All experiments in this section are conducted in
networks emulated by Mahimahi [12].

3.1 The performance of MASQUE
Observation 1: HoL blocking in MST degrades through-
put and bloats packet delay. Retransmission in the tunnel
is crucial for reducing the complete time of short flows.

To evaluate the performance of different tunnel modes, we
transferred files of different sizes through MST, MDT, and
RMDT tunnels and calculated the average FCT of the E2E
transfers. In the experiments, the E2E RTT and the RTT of the
tunnel segment are 200 ms and 100 ms respectively. The loss
rate of the tunnel segment is 10%, which emulates a congested
link. As the E2E QUIC connection is certainly congestion-
controlled (using BBR [20]), the CC of the tunnel connection
is disabled in the experiments.

The results are shown in Figure 2a. As observed, MST
achieves better performance for short flows compared with
MDT, as MST can recover packets lost between the tunnel
client and the tunnel server faster than MDT via local retrans-
mission of the tunnel connection. However, as the file size
increases, the performance gain of MST is gradually dimin-
ished. The diminished return is a result of the HoL blocking
in MST as we will explain in the next paragraph. RMDT
does the same as MST regarding faster loss recovery, but it
performs better than MST as it does not suffer from HoL
blocking. We also measured the E2E packet delay of the three
tunnel modes, and the results are shown in Figure 2b. Com-
pared with that of MDT and RMDT, the packet delay of MST
is higher, which comes from the impact of HoL blocking.
Because RMDT also retransmits lost packets, the delay of
some packets appears longer from the server’s view, as these
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Figure 2: The performance of different tunnel modes

packets have been retransmitted in the tunnel connection. This
explains that the packet delay of RMDT is higher than MDT.

Analysis of HoL blocking in MST: When an E2E packet
is lost in an MST tunnel, all subsequent E2E packets that have
been sent via the tunnel are blocked in the QUIC stream and
thus cannot be decapsulated until the lost packet is retrans-
mitted by the tunnel connection. Consequently, the sender of
the E2E connection may consider all packets sent after the
lost packet as lost, which appears as a huge burst of packet
losses. The burst of losses misleads the sender to reckon that
it is in a persistent congestion event and it should significantly
cut off its sending rate. As there are more packets in large
transfers (thus more losses) and large transfers are more sen-
sitive to throughput, the impact of MST’s HoL blocking is
more evident. Note that the failure of timely decapsulation of
packets blocked in the QUIC stream also leads to increased
E2E packet delay. Using multiple QUIC streams for the un-
derlying transmission of an MST tunnel can alleviate the
impact of HoL blocking, but, our experience indicates that it
is still worse than RMDT. Specifically, we extend MST to use
a group of QUIC streams (MASQUE stream group tunnel,
MSGT). The packet delay of MSGT is between that of RMDT
and MST, as shown in Figure 2b.

In conclusion, the earlier retransmission in the tunnel pro-
vided by MST and RMDT is indeed useful, especially for
short flows. As MST suffers from the HoL blocking problem,
RMDT seems the more desirable tunnel mode in practice.

3.2 The necessity of CC in the tunnel
Observation 2: Applying CC on the RMDT tunnel signifi-
cantly reduces retransmissions and bandwidth waste. But,
the E2E throughput does not benefit from the reduction
in retransmissions.

In RMDT, packets lost in the tunnel could be retransmitted
by both the tunnel connection and the E2E connection. Thus,
there is a risk that the tunnel connection sends excessive
packets to exacerbate the congestion in the tunnel segment
as well as waste bandwidth resources. Ideally, enabling CC
on the tunnel connection can reduce such a risk and boost
performance.

We conducted experiments to compare the performance of
RMDT with BBR and RMDT without CC. In the experiments,
the E2E RTT and the RTT of the tunnel are 140 ms and 40 ms.
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Figure 3: The comparison between RMDT with and without
CC

The loss rate of the tunnel is 10% and the bandwidth bottle-
neck is put on the tunnel segment. The bottleneck bandwidth
is emulated by Mahimahi which replays traces collected from
real-world networks. More details about the traces can be
found in §5.1. The flow size in the experiments is 30 MB.

The average FCT and the overall retransmission rate (in-
cluding retransmissions of the tunnel and E2E connection)
are reported in Figure 3b. Indeed, RMDT with BBR signifi-
cantly reduces retransmissions compared to RMDT without
CC. When CC is disabled on the tunnel connection, all lost
packets are retransmitted immediately into the network that
may already be congested, which in turn triggers more re-
transmissions and aggravates network congestion. Despite
the reduced retransmissions, no significant gain in FCT is ob-
served in Figure 3a. We will see later that this is an outcome
of the side effects of nested CC.

3.3 The impact of nested CC
Observation 3: Nested CC causes mismatched sending
rates between the tunnel connection and the E2E con-
nection, leading to an increase in the queue length at the
tunnel server and bloated E2E smoothed RTTs (SRTTs).

Using the same emulated network environments as in §3.2,
we launched long-lived transfers to investigate the impact of
nested CC. Note that both the tunnel connection and the E2E
connection employed BBR as their CC algorithm. During the
transfers, the pacing rate and the SRTT of both the tunnel and
E2E connection were recorded. In addition, the sending queue
length of the tunnel connection (QLen) was also logged. We
present the result of one of the transfers in Figure 4, as the
conclusion drawn from the results is generic across different
runs.

In Figure 4, we can clearly observe that there is a sending
rate mismatch between the tunnel server and the server, lead-
ing to persistent queuing at the tunnel server and bloated E2E
SRTTs. When packets are sent from the server to the client,
the CC of the tunnel server controls the sending rate of the
tunnel connection. However, if the sending rate of the tunnel
server is lower than that of the server, the tunnel server will in-
evitably queue packets. The queuing time will increase as the
rate difference grows. At the 24th second, the tunnel segment
experiences a sudden drop in bandwidth without significant
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Figure 4: The impact of nested CC: the pacing rate and SRTT
of the tunnel and E2E connection are depicted.

changes in SRTT. The tunnel server can quickly detect this
drop in bandwidth and decrease the pacing rate accordingly,
whereas the server cannot. This is mainly because the increase
in SRTT prolongs the bandwidth updating cycle of BBR in
the E2E connection.

3.4 Summary and implication

Our experiment results indicate that RMDT with CC is the
more desirable tunnel mode in practice. First, it provides
better loss recovery via retransmission in the tunnel while
not suffering from the HoL blocking problem of MST. In
addition, it limits the risk of sending excessive retransmissions
to exacerbate network congestion in the tunnel segment by
applying CC on the tunnel connection. However, the two
layers of nested CC introduce sending behavior mismatches
between the tunnel connection and the E2E connection, which
ultimately leads to sub-optimal performance. This calls for
coordinating the sending behavior of the two connections to
eliminate such mismatches.

In fact, the tunnel server provides opportunities for the co-
ordination of the tunnel and E2E connection. As the tunnel
server is closer to the client than the server, it is able to sense
the network conditions of the tunnel segment, which is usu-
ally the bottleneck (the last-mile access link resides here),
in a more accurate and timely manner. The sensed network
conditions can be fed back to the server, which assists the
server in aligning its sending behaviors with the tunnel server.

4 TECC design and implementation

In this section, we present TECC, a collaborative transmission
control system, where the server updates its sending rate based
on the feedback from the tunnel server, enabling the efficient
coordination of the sending behaviors of the server and the
tunnel server.
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4.1 Overview

First, we present an overview of TECC as shown in Figure 5.
TECC is based primarily on the RMDT mode and includes
three components: the client, the tunnel server, and the server:

Client: Client application modules are mainly responsible
for sending and receiving E2E connection data packets. This
application uses the QUIC protocol, and the generated QUIC
packets will be sent to the tunnel module for encapsulation
preparation for entering the tunnel connection. Conversely,
QUIC packets received from the tunnel connection will also
be sent to the application module. The tunnel module will pass
the collected tunnel network info frames to the application
module, which will then encapsulate the frame into a QUIC
network info frame and pass it to the E2E server application
module.

Tunnel Server: The tunnel server mainly employs RMDT.
There are three main modules in the tunnel server as shown in
Figure 5. The data forward module is responsible for forward-
ing E2E packets to the client and the server. The retransmis-
sion module detects whether the tunnel packets are lost and
retransmits those lost packets. The network sampler module
is placed in the tunnel server in order to collect important
information about tunnel networks and transmission status.
The module subsequently generates and transmits network
info frames containing the collected information to the client.

Server: The server is mainly responsible for maintaining
E2E application modules, and its sending behavior is con-
trolled by the feedback information of the tunnel network.
When receiving network feedback information from the client,
it parses different network information and uses it for sending
rate updates.

4.2 Collaborative transmission control

TECC is based on the RMDT framework. The tunnel server
uses the tunnel connection to provide feedback on detected
tunnel network information, as well as its own sending and

queuing status to the client. After receiving the feedback,
the client inserts it into the E2E QUIC frame. Finally, the
server updates its sending rate through network feedback of
the QUIC frame. TECC achieves two major goals: 1) By
quickly collecting bottleneck bandwidth in the tunnel server,
the server can respond promptly to dynamic network changes.
2) Through feedback on the retransmission and queue status in
the tunnel server, the server can decrease its rate for draining
queues, thus reducing queuing delay.

4.2.1 Inaccurate CC in the server
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Figure 6: Illustration of retransmission with Tunnel

ACK packets play a vital role in providing network state
measurements for server congestion control algorithms. How-
ever, due to the impact of RMDT, these packets can in-
evitably suffer from delays. As shown in Figure 6, assum-
ing the RTT from the client to the server is Ts, and the tun-
nel is Tt . The retransmission detection time in the server
and tunnel is TRetrans and T ′Retrans, respectively. At the time
tsend = 0, the server transmitted packets with sequence num-
bers 1-4, but the packet with sequence number 1 was lost
in the tunnel link. If the tunnel server does not retransmit,
the server receives the ACK packet with sequence number 1
at tack = TRetrans +Ts. However, if the tunnel server retrans-
mits the packet, the server receives the retransmitted ACK
packet at t ′ack = 1/2(Ts−Tt)+T ′Retrans +Tt +1/2(Ts−Tt) =
T ′Retrans + Ts. However, since the server does not have the
knowledge of whether the tunnel server has retransmitted the
lost packets, the delays calculated for the packet(s) at the
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time t ′ack is Delay(t ′ack) = t ′ack− tsend = T ′Retrans +Ts. And for
packets retransmitted by the server, the delay is Delay(tack) =
tack−TRetrans = Ts. In addition, the delay in the tunnel server
also increases extra response time. Therefore, these can result
in an incorrect evaluation of delay by the server, which affects
the accuracy of the server-side congestion control.

4.2.2 Tunnel feedback

To solve the problem of inaccurate CC, we propose a collab-
orative feedback control framework that offloads the server-
side CC to the tunnel server. This framework proactively
perceives network information in the tunnel link close to the
client and provides feedback to the server for sending rate
estimation.

There are two main factors that affect the server’s network
assessment in the Tunnel Server: retransmission and conges-
tion control. Retransmission causes the lost packets in the
tunnel server to be delayed at least Tt after the client responds
with an ACK packet, and the signal of packet loss is trans-
formed into a signal of delayed packet delay. Therefore, we
need to collect the proportion of retransmitted packets in Tun-
nel Server r(t) at time t and the min RTT Tt of the tunnel
server. Meanwhile, the delay in ACK perception will lead to a
slower response of the server to the changes in the tunnel net-
work. Therefore, transmitting the tunnel server’s sending rate
Tr(t) can more quickly perceive the probe of the tunnel net-
work. The congestion control of the tunnel server makes the
queuing situation more severe. Therefore, recording the length
of the queue within the connection in the Tunnel Server q(t)
can explicitly reduce the server’s rate and empty the queue.

Feedback cycle: To determine the optimal tunnel feedback
cycle τ, we may need to conduct experiments and evaluate the
trade-offs between the accuracy of feedback and the overhead
of sending feedback messages. The RTT between the client
and the tunnel server is Tt . In our extensive experiments, set-
ting τ to Tt yields high accuracy at a low cost, therefore we
use Tt as the cycle τ for tunnel feedback.

4.2.3 Server’s pacing rate updating rule

The server in the cooperative scheme employs a pacing-based
CC algorithm to regulate its sending rate. It makes sense to
use the pacing mechanism in the tunneling scenario to prevent
the accumulation of tunnel server queues caused by burst traf-
fic. Therefore, we use the server’s sending rate Sr(t) at time t
as an indicator to control the sending of packets. In addition
to the sending rate, window-based congestion control can also
be supported, with the send control window, W (t) = Sr(t) ·Ts,
limiting the total number of packets sent in an RTT. In order
to better understand, the relevant parameters are presented in
Table 1.

The congestion control mechanism on the server is trig-
gered when it receives a feedback packet containing tunnel

Parameter Explanation

Sr(t) server’s sending rate
Tr(t) tunnel server’s sending rate
U(t) proportional parameter, U(t) ∈ [0,1]
rai additive increase part

q(t) queue length of the tunnel server
θ the time needed for the server to empty its queue
δ proportional parameter, approximately 1

r(t) retransmission rate of the tunnel server
max_p f maximum penalty factor on the queue

Table 1: Explanation of parameters

information frame from the tunnel server. After parsing the
tunnel information frame, server obtains the latest sending
rate Tr(t) of the tunnel server. To ensure that the tunnel server
and the server send packets at the same rate, we assign the
sending rate Sr(t) of the server to Tr(t).

If Sr(t) > Tr(t) and the bottleneck link is the link be-
tween the client and the tunnel server, the queue at the tunnel
server will be built up rapidly and grow gradually. However,
if Sr(t) < Tr(t), the tunnel server is limited by the number
of packets sent by the server and may not have enough pack-
ets to utilize the available bandwidth. Therefore, to avoid
queue creation while maximizing the utilization of bottleneck
bandwidth, it is important to ensure that Sr(t) = Tr(t).

Additionally, in traditional congestion control algorithms,
the sending rate rapidly increases at the beginning of con-
nection establishment to occupy the bandwidth. However,
by congestion control in tunnel, servers pacing as Tr(t) can
avoid the data limitation at the early stage of connection es-
tablishment to probe the bandwidth at the tunnel server. The
server pacing rate is:

Sr(t) =U(t) ·Tr(t)+ rai (1)

Due to bandwidth changes or response delays, the tunnel will
inevitably build up a queue. To ensure a consistent rate, it
will be impossible to empty the queue completely. Therefore,
we use U(t) ∈ [0,1], which changes in real-time according to
the tunnel link, as shown in Equation 1. Additionally, we use
the multiplicative-increase/multiplicative-decrease (MIMD)
strategy to enable the server to quickly respond to tunnel
link changes, and add an additive increase (AI) part to en-
sure fairness, which decouples link control and fairness. This
approach is inspired by HPCC [21].

4.2.4 Penalty for building up queue

In a tunneling scenario, a tunnel server hosts multiple E2E
connections simultaneously, which makes it more prone to
queuing than traditional E2E connections. This is due to a
reduced bandwidth of the tunnel link. Therefore, a penalty
mechanism for queue establishment is needed in the tunneling
scenario to reduce the sending rate and empty the queue in
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time. This ensures that the queue at the tunnel server remains
almost empty.

There are many traditional congestion control algorithms
that guarantee low queue length. For example, DCTCP uses
ECN markers to feedback on the queueing of the switch and
reduces the sending window by ECN feedback [22]. However,
these algorithms have limited transmission information and
their performance is limited by ECN thresholds, which makes
them inflexible. Additionally, HPCC algorithms can transmit
detailed intermediate link load information, which can detect
the network queueing situation promptly and accurately for
more precise regulation [21]. However, they have complex
software and hardware implementations, which makes them
difficult to deploy. In the tunneling scenario, the feedback
framework can easily feed back the network status and queu-
ing situation to the server for congestion control.

Server Tunnel Server Client

QLen 
Feedback

e2e Packet

tunnel
hdrUnsent queue

Forward

Retransmission lost pkt

Figure 7: Queueing in the tunnel server

Estimate server pacing rate based on QLen:The tunnel
server is responsible for transmitting E2E packets from the
server to the client in the downlink, which can result in the
buildup of the queue when the server’s transmission rate Sr(t)
surpasses the rate of transmission Tr(t). As shown in Figure 7,
the minimum observed queue length (QLen) within a feed-
back cycle τ is denoted as q(t), representing the QLen at time
t.

The server calculates the pacing rate to drain the queue as:

Sr(t) = Tr(t)− q(t)
θ

(2)

The parameter θ represents the time needed for the server to
empty its queue and is useful in preventing abrupt changes to
the sender rate. Usually, θ is set as a fraction of Ts. However,
setting a small θ value can lead to inadequate bandwidth for
packet probing in the tunnel server, while a large θ value may
cause a delay in clearing the queue. To find an appropriate
value of θ, we conducted lots of experiments with various
values of θ. Eventually, we discovered that it achieves better
performance when θ is around 2/3Ts. Therefore, our research
set θ = 2/3Ts.

Alleviate congestion caused by retransmissions: Al-
though retransmission from the tunnel server might decrease
the time required for loss recovery, it can increase congestion
on the tunnel link. This occurs because retransmitted packets
are inserted into the queue of the tunnel server. Therefore,
when determining the appropriate queue length, it is important
to consider the retransmission of lost packets.

Sr(t) = Tr(t)− q(t)+δr(t)Tr(t)
θ

(3)

The retransmission rate of the tunnel server is represented
by r(t). We assume that r(t) remains constant throughout
the feedback delay Ts +dq, resulting in r(t +Ts +dq) = δr(t),
where δ is approximately 1 (e.g., δ= 0.95). At time t+Ts+dq,
the queue length is the sum of retransmitted packets δr(t) ·
Tr(t) and the queue length q(t) at time t.

From Equation 1 and Equation 3, we get

U(t) = 1− q(t)+δr(t)Tr(t)
θTr(t)

(4)

When there is a sudden drop in the bandwidth of the tunnel
link, the queue will experience significant growth. Therefore
U(t) may decrease to near 0. In order to prevent a rapid de-
crease in the server rate, We place constraints on the variable
U(t) to remain within a specific range:

U(t) = max{1− q(t)+δr(t)Tr(t)
θTr(t)

,1−max_p f} (5)

The symbol max_p f represents the maximum penalty factor
on the queue to prevent the server rate from dropping too fast.
In later experiments, we set max_p f to 1/2.

Queue length noise filtering: To mitigate real-time queue
length fluctuations caused by measurement errors, network
delays, and other transient factors, we implement a queue
length noise filtering procedure. Such fluctuations may cause
the server to overreact and lead to substantial changes in
transmission rates, subsequently impacting client application
performance. We employ two primary methods. Firstly, we
perform multiple detections at the tunnel server to obtain an
accurate measurement of the queue length, allowing us to
filter out invalid information. Secondly, we use Exponentially
Weighted Moving Average (EWMA) to filter the queue ra-
tio U(t) before updating the server’s transmission rate. This
strategy ensures a smoother, more gradual adjustment of the
server’s send rate while minimizing the impact on client ap-
plications.

4.2.5 Retransmission trigger on the server

There are primarily two ways to trigger packet retransmission
on the server: timeout retransmission and fast retransmission.
The fast retransmission includes time-based fast retransmis-
sion and packet-based fast retransmission. The first type is
triggered based on a time threshold, which we set as 9/8 SRTT.
The second type is triggered based on receiving subsequent
packet ACKs, with an initial threshold value of 3. Due to the
retransmissions of the tunnel server, the SRTT of the server
should increase. Thus, to suppress duplicated retransmissions,
we increase the time-based fast retransmission threshold of
the server by Tt . Regarding packet-based fast retransmission,
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since retransmission by the tunnel server exacerbates the out-
of-order client ACK packets, the threshold for reordering in-
creases gradually as spurious retransmission by the server is
triggered, leading to a decrease in the probability of server
retransmission. Therefore, the server’s rate of duplicated re-
transmission is relatively small and does not exceed 1% in
our experiments.

4.2.6 Fairness

In tunnel scenarios, multiple flow connections go through the
same tunnel server to different servers on the same bottleneck
link. Unlike traditional E2E congestion control algorithms,
the bottleneck link detection for tunnel connections relies
on the sending rate of the tunnel server, which is dependent
on the information of the tunnel connections. However, be-
cause the pacing rate update rule uses MIMD strategy, fair-
ness cannot be provided among multiple competing tunnel
flows. To achieve fairness among multiple flows, we add an
additive-increase (AI) term to the update of pacing rate, mak-
ing it a multiplicative-and-additive-increase/multiplicative-
decrease (MAIMD) scheme. This approach theoretically pro-
vides better fairness among multiple competing flows [23–26].
The additive-increase (AI) is set as follows:

rai =
MSS

Ts
(6)

Sr(t) = U(t) ·Tr(t)+ rai = U(t) ·Tr(t)+
MSS

Ts
(7)

The server increases the pacing rate every time it updates
by one Maximum Segment Size (MSS) in one server round-
trip time, which is a small increase designed to control rate
convergence while preventing network congestion. Achieving
equilibrium requires that multiple competing tunnel flows
pass through the same bottleneck link, resulting in the bottle-
neck bandwidth being constant between flows. Consequently,
the server’s sending rate is then modified based on the bottle-
neck bandwidth such that the sending rates of multiple flows
can achieve equilibrium. By reaching equilibrium, fairness is
maintained among competing flows.

The server’s sending rate depends on the detected band-
width of the tunnel server. Therefore, TECC’s RTT fairness
depends on the tunnel server’s original congestion control
algorithm (wherein we have used BBR [20]). Consequently,
the collaboration approach and BBR have varying throughput
rates under different tunnel RTT flows [27]. In tunnel sce-
narios, the original congestion control algorithm’s unfairness
can be mitigated even further. In §5.4, we demonstrate this
through experiments including multiple tunnel flows with
various RTTs.

Algorithm 1 Sender algorithm
Data: Tunnel Server Feedback: Tr(t), q(t), Tt
Result: Server: Sr(t)

1 function UpdateSenderRate():
2 e(t)← q(t)+δr(t)Tr(t)

θTr(t)

3 U(t)←max{1− e(t),1−max_p f}
4 U ← (1− ewma_weight) ·U + ewma_weight ·U(t)

5 Sr(t) =U ·Tr(t)+ MSS
Ts

6 return Sr(t)

The sender’s sending rate must consider not only the tunnel
server’s sending rate but also the current queue length of the
tunnel server and fairness. Ultimately, the complete logic of
the sender’s sending rate is illustrated in Algorithm 1.

4.3 Implementation
This section mainly discusses the methods we deployed
TECC as well as the optimizations we made for large-scale
deployment.
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Figure 8: Data forwarding logic in the tunnel server: forward-
ing downstream/upstream E2E packets

Forwarding in the tunnel server: The packet forward-
ing mechanism in the tunnel server both encapsulates and
decapsulates the E2E packets and directs them to their re-
spective destination addresses, as shown in Figure 8. When
a client establishes a tunnel connection to the tunnel server,
the server’s IP and port are forwarded to the tunnel server as
well. After receiving the tunnel setup signal, the tunnel server
generates a mapping of the tunnel channel ID that associates
the client’s IP and port and the server’s IP and port. As a re-
sult, the E2E packets from the corresponding tunnel channel
ID are decapsulated and transmitted to the UDP socket that is
bound to the same server IP and port. Correspondingly, the
E2E packets from the equivalent socket are encapsulated into
the corresponding datagram. Furthermore, the tunnel server
facilitates updating forwarded information. If clients require
rebinding the forwarding mapping, they can retransmit the
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tunnel setup signal on the relevant tunnel server.
Retransmission: Retransmission plays a crucial role in

enhancing client performance in tunnels. In the downstream
link, retransmission can significantly decrease packet loss re-
covery time in the tunnel connection. Furthermore, the tunnel
server can preemptively detect packet loss from the client
in the upstream link, enabling packet loss recovery ahead of
time on the client side. We follow the retransmission mech-
anism in RMDT to eliminate blocking and ensure improved
performance. Datagram retransmission requires the tunnel to
track the lower-layer QUIC datagram’s delivery status closely.
Selective retransmission of data packets is adopted with indi-
cations of packet loss. The experiment in this paper mainly
focused on download scenarios that necessitate retransmit-
ting all data packets in the tunnel connection. Nevertheless,
some time-sensitive video scenarios permit partial packet
loss. Therefore, leveraging the client’s application informa-
tion allows us to retransmit crucial or time-constrained frames
selectively, thereby enhancing bandwidth utilization.

Feedback implementation in the tunnel: The feedback
in TECC relies on the support of both the QUIC protocol
stack and the tunnel protocol stack. To accomplish this, we
have developed the TUNNEL_INFO frame and QUIC_INFO
frame in the tunnel protocol and the QUIC protocol. These
frames are used to transmit feedback information from the
tunnel server to the tunnel client and from the app client
to the app server. Because both the tunnel client and app
client are deployed on our APP, the tunnel client can directly
transfer feedback information to the app client when receiving
feedback information.

Tunnel server selection: It’s important to select the appro-
priate edge tunnel server since users can experience better
performance by selecting the edge tunnel server closest to
them. In our app, the client obtains real-time information
about the tunnel server from our own DNS. The tunnel client
needs to obtain tunnel information, including the protocol ver-
sion and the tunnel server information from our DNS first. It
then establishes a tunnel connection to complete the transmis-
sion of the E2E connection through the tunnel packets. Our
DNS owns the information of all tunnel servers and selects
the tunnel servers that are close to the user and have sufficient
resources.

Load balancing: Load balancing (LB) in the tunnel server
is essential because the tunnel server has to handle a large
number of tunnel requests and forward massive E2E connec-
tion packets. In practical deployments, a bidirectional LB
strategy is required, which includes packets from the tunnel
client and the server. To achieve this, we use multiple work-
ers with NGINX. Due to the address migration in QUIC,
the QUIC CID is considered instead of traditional network
five-tuples [28]. Since "tunnel connection CID" and "E2E con-
nection CID" don’t follow the same generation rules, it can be
challenging to balance the packets to the same worker. There-
fore, during actual deployment, the CIDs in tunnel QUIC

connections and E2E QUIC connections follow the same con-
sistency encoding rules. This allows the same client’s tunnel
connection and E2E QUIC connection packets to be routed
to the same worker.

5 Evaluation

In this section, we present the evaluation of the TECC, which
consists of two parts: online evaluation and simulated envi-
ronment evaluation.

Online evaluation: In this part, we collected anonymous
data from mobile users who upgraded our app with "QUIC
Tunnel". To validate the improvement of TECC compared to
the MST, MDT, and RMDT, we conducted a series of large-
scale A/B experiments. The user scale of the experiment
exceeds ten million. The experimental results show that the
TECC significantly reduces completion time.

Evaluation in emulated networks: The Mahimahi-based
emulation environment was established to evaluate the perfor-
mance of the QUIC Tunnel. The test environment comprises
three principal containers: a client running HTTP/3 and the
tunnel stack, a tunnel server running the tunnel stack, and a
server running HTTP/3. Mahimahi emulates the links from
the client to the tunnel and from the tunnel to the server. We
presume that the link from the client to the tunnel is the bottle-
neck link, so all test cases mainly involve client requests for a
specific file. This download scenario is widely used in several
applications, such as web browsing and video downloading.

5.1 Experiment setup
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Figure 9: Bandwidth variation of different traces

Baseline: In the non-tunnel solution, the tunnel server acts
as an intermediate forwarding node based on iptables, for-
warding packets between the client and the server. MDT and
RMDT come from vanilla MASQUE and are detailed in Sec
2. We also compared the forwarding mode (MFT) suggested
by Apple to proxy QUIC in MASQUE similar to non-tunnel
methods [29]. Since the performance of the non-tunnel solu-
tion is similar to MFT, we will refer to both as MFT later. In
addition, the RTT between the tunnel server and the server is
set to 100ms.

Traces: We used five real-world mobile network traces,
four from cellular and one from Wi-Fi, namely: cellu-
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Figure 10: FCT of different solutions under various flow sizes
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Figure 11: FCT of different solutions under various delays
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Figure 12: FCT of different solutions under various loss rates
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Figure 13: FCT of different solutions in mobile networks

lar_driving (C1), cellular_outdoor (C2), cellular_home (C3),
cellular_subway (C4), wifi_office (W1). Among them, the
detailed bandwidth information for C3 and W1 is shown in
Figure 9. We also measured the performance at stable band-
width, the bandwidth was set to 10Mbps.

5.2 End-to-end performance

Flow size: Tunnel is an effective way to reduce the flow com-
pletion time, particularly for short flows. We run the request
for different size files from the server on 10Mbps bandwidth,
the result shown in Figure 10. The tunnel solutions, including
RMDT, and TECC, outperform non-tunneling MFT methods
in the case of short flows (flow length less than 10M). The
performance of MDT is similar to that of MFT. For short
flows, packet loss delays can seriously reduce the overall
flow completion time, while the tunnel’s early retransmission
mechanism can effectively reduce the packet loss recovery
time and improve overall performance. As the flow length
increases, the delay of a small number of lost packets has less
impact on the overall flow completion time, so the benefit of
the tunneling mechanism is relatively reduced. In TECC, the
end-tunnel cooperative scheme outperforms RMDT. RMDT
solves the HoL blocking problem by reducing the latency
of blocking but leads to low bandwidth utilization due to a
mismatch of the sending rate and bandwidth.

Client-Tunnel delay: The benefits of the tunnel vary with
the change of Client-Tunnel delay and lower delay results in
higher benefits. In our experiment, we transmitted thousands
of 30M files with various delays on a 10Mbps network, and
the results are presented in Figure 11. As the delay increases,
the benefits provided by the tunnel gradually decrease. Com-
pared to MDT, RMDT performs better and still has over 2%
optimizations even at 50ms. However, due to rate mismatch,
its performance declines when compared to MFT at higher de-
lays. TECC is significantly optimized when compared to the
others, and it still maintains good optimization effects even
at 60ms. These findings indicate that the TECC continues

to deliver certain optimization effects even in mobile edge
networks with high RTT.

Loss rate in Client-Tunnel link: The benefits provided
by the tunnel increase as the loss rate increases, especially
in tail optimization. We conducted experiments involving the
transmission of thousands of 30M files with varying loss rates
on a 10Mbps network, and the results are depicted in Figure
12. When the packet loss rate is low, the additional overhead
of the tunnel results in lower performance compared to MFT.
However, as the packet loss rate increases to over 5%, the
FCT of MDT and MFT are similar. Simultaneously, RMDT
and TECC display superior performance compared to MFT.
At the 99th percentile, when the packet loss rate exceeds 10%,
TECC can reduce FCT by over 21.7%. These findings suggest
that in mobile edge networks with a high loss rate, TECC can
provide significant throughput enhancements.

Mobile networks: TECC exhibits strong optimization
effects in mobile networks, achieving an average reduction of
over 15% at the 99th percentile. To evaluate the performance
of the tunnel in mobile networks with dynamic bandwidth
fluctuations, we conducted tests on a large number of 30MB
files under various mobile network traces. A comprehensive
introduction to the trace can be found in the appendix. The
result is shown in Figure 13. In terms of both average FCT
and 99th percentile FCT, TECC outperforms MFT and other
tunnel solutions across different network traces. In some cases,
the average FCT of TECC was reduced by over 30%, and the
99th percentile saw a reduction of more than 53%. Although
RMDT has limitations, they generally perform better than
MFT in mobile network environments. This evidence suggests
that TECC can perform well in different mobile network
scenarios.

5.3 Tunnel overhead

Compared to not using the tunnel, the tunnel incurs additional
overhead, primarily involving the setup delay in connection
establishment and the extra packet overhead of packet encap-
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Figure 14: Tunnel overhead in networks without random
losses
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Figure 15: Fairness among competing tunnel flows

sulation. Consequently, we respectively tested the overhead
of the tunnel under different client-tunnel delays and different
file request sizes, the result shown in Figure 14.

Setup delay: The setup delay of the tunnel is higher, but
overall it does not exceed 2%. Owing to the processing over-
head of the tunnel protocol stack and the delay in establishing
the tunnel connection, the setup delay is slightly elevated. As
the delay fluctuates, the increase in setup delay time remains
relatively constant, suggesting that the setup delay does not
exhibit significant changes with increasing delay.

Extra packet overhead: The tunnel incurs additional
packet overhead, which overall does not exceed 4% in long
flow. Due to the tunnel packet encapsulation in the QUIC data-
gram, TECC adds a datagram header, QUIC header, and other
QUIC frame overhead compared to UDP. With the increase
of data flow, the relative proportion of data packet overhead
gradually decreases, from only 5% in the 100K to 3% when
it reaches 10M.

5.4 Fairness

MFT (BBR) TECC (BBR)

Different Server Delay 0.8039 0.9916
Different Client Delay 0.6759 0.8620

Table 2: Jain’s Fairness Index among different RTT flows

Flows with the same RTT: First, we demonstrate that the
TECC can converge to fair bandwidth allocation for flows
with the same RTT upon arrival and departure. We first start
a client-to-server flow through a tunnel server, with a fixed

mean p95 p99 p999

MST 2.7% 1.9% 6.0% 17.5%
TECC 3.9% 4.5% 13.3% 36.0%

Table 3: Improvements of MST and TECC

10Mbps bandwidth in the tunnel link. Then, we incrementally
add a flow from a different client accessing a different server
through the same tunnel server. Finally, we start tearing down
flows one by one. As shown in Figure 15, without additive in-
crease, the MIMD strategy may exhibit throughput jitter upon
flow arrival, as flows in the startup phase of BBR [20] initially
preempt the bandwidth, leading to a rapid increase in through-
put for newly arrived flows. By adding an additive increase,
the competition flow can converge more smoothly, making it
less likely for existing flows in the link to be preempted by
new flows, resulting in better fairness. By calculating Jain’s
fairness index, the value is greater than 0.99, ensuring fairness
for TECC when tunnel flows with the same RTT enter the
same tunnel link.

RTT unfairness: In tunnel scenarios, including the two
delays of client-to-tunnel server and tunnel server-to-server
links, we conducted fairness experiments on flows with dif-
ferent delays in each link. For different server delays, we
launched 8 different flows with server delays of 10-80 ms on
the same 10Mbps bandwidth tunnel link, with a fixed client-to-
tunnel delay of 10ms. Based on the average throughput of the
8 flows after convergence, we calculated the corresponding
Jain’s fairness index values. We conducted the same experi-
ment for different client delay, with 8 different client delays
of 10-80, and the results are shown in Table 2. We compared
the cooperative solution’s CC with MFT. Each experiment
was run for 10 rounds, and the average index value was taken
in the table. As the results show, compared to MFT, the CC of
the cooperative solution can achieve RTT fairness on differ-
ent server delay, because the tunnel detection by the server is
mainly completed through the tunnel node, and the bandwidth
allocation and detection frequency are related to the tunnel’s
RTT, thus achieving fairness in flows with different server de-
lays. Different client delays are related to the original tunnel
detection congestion control algorithm (BBR [20, 27]), but
because the original end-to-end control loop is shortened to
the client-to-tunnel, the impact of different RTTs on through-
put is reduced, thus mitigating the RTT unfairness problem
of the original congestion control algorithm.

5.5 Real-world A/B tests
We compared the completion times for RPC requests from
over 10 million users who use vanilla MASQUE and TECC.
To investigate the reduction of FCT with TECC, we deployed
three different types of tunnels (MST, MDT, and TECC) to
users in the same region. At the same time, the tunnel server
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is deployed at the edge nodes closer to the selected users.
In order to measure the effectiveness of TECC, we used the
completion time of user requests with MDT as the baseline.
The recorded relative improvements of the MST and TECC
in reducing completion time are presented in Table 3.

MDT does not optimize the mobile edge network and is
equivalent to direct forwarding similar to MFT. Our results
demonstrate that, regardless of average or tail completion
times, both MST and TECC outperform MDT. Furthermore,
due to the HoL blocking problem and mismatch in CC actions
in MST, TECC achieved a 7.3% improvement in the 99th
percentile and an 18.5% improvement in the 999th percentile
compared to MST.

6 Discussion

Multiple E2E connections in tunnel: In real-world network,
it is common for a bottleneck link to transmit multiple net-
work connections simultaneously. These different connections
compete for bandwidth through their respective bandwidth
probing techniques. While using a tunnel to transport multi-
ple E2E connections, in addition to priority rules, the TECC
tunnel can dynamically control the bandwidth probing of each
E2E connection based on the type of each connection. This
can achieve better traffic fairness on mobile edge networks.

Congestion control in tunnel: The congestion control at
the tunnel server can prevent traffic congestion by restricting
the sending rate of packets. However, this may result in longer
delay of packets that have arrived at the tunnel server. In our
work, we only compared the results when using CC or not. It
is beneficial to design a CC framework which also considers
the sojourn time of packets at the tunnel server, to balance the
tradeoff between efficient congestion control and short delay.
This is left as our future work.

Potential enhancements for MASQUE: Presently, the
research efforts in the MASQUE working group primarily
concentrate on providing generic solutions to proxy differ-
ent protocols. However, employing these techniques maybe
degrade user performance. TECC is dedicated to address-
ing the performance issues of MASQUE’s generic solutions,
but achieving an effective universal standard necessitates the
support of MASQUE.

7 Related work

Last-mile performance optimization: For most applications
where remote servers are involved, optimizing the wireless
network close to the client is crucial for last-mile perfor-
mance. CDNs cache user-requested resources in edge servers
closer to user networks; however, the efficiency of CDNs
decreases for processing dynamic data [30–32]. An alterna-
tive method is Performance Enhancing Proxy (PEP), which
optimizes different feature links by breaking the E2E connec-

tion [33]. PEP mostly relies on TCP protocols to achieve per-
formance gains in mobile and satellite networks [34–36]; how-
ever, it is not applicable to the header encryption and ver-
ification mechanism of QUIC packets. Sidecar [37] pro-
posed an ACK-based protocol that enables the proxy to per-
ceive E2E encrypted data, but servers need to explicitly per-
ceive and communicate with the intermediate proxy, mak-
ing deployment more difficult and increasing communi-
cation overhead. TECC leverages QUIC tunnel’s own de-
tection and feedback mechanisms to mitigate PEP’s dam-
age to E2E connection semantics and ensure data pri-
vacy by sending feedback information to the sender in the di-
rection of the receiver.

Middlebox feedback for rate control: Feedback-based
middleware has gained widespread application in optimiz-
ing server congestion control algorithms [21, 26, 38–40].
Zhuge [38] shortened the control loop by increasing the delay
of ACK packets in wireless Access Points. ABC [26] con-
trols server window size by explicitly marking "accelerate"
or "brake" signals based on router’s perception of network
conditions. HPCC [21] obtains accurate load information and
rate control via in-network telemetry (INT). However, these
congestion control protocols are mostly based on router or
switch information package condition detection of a network.
In a tunnel, the middle server can actively detect network con-
ditions and control packet transmission rate, thus providing
servers with more rate information.

8 Conclusion

In this paper, we present TECC to optimize the E2E perfor-
mance of the QUIC tunnel. Deployed at the tunnel server
which is closer to the client, TECC provides faster and more
precise network feedback to assist servers with a more ac-
curate estimation of the available bandwidth. In emulated
networks, TECC decreases flow completion time by 30% on
average and 53% at the 99th percentile. TECC also gains a re-
duction in RPC (Remote Procedure Call) request completion
time of 3.9% on average and 13.3% at the 99th percentile in
large-scale A/B tests.
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