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Abstract
This paper introduces MuCache, a framework for extend-
ing arbitrary microservice applications with inter-service
caches. MuCache significantly improves the performance
of microservice graphs (commonly found in large applica-
tions like Uber or Twitter) by eliminating the need for one
microservice to call another when the relevant state has not
changed. MuCache is enabled by a novel non-blocking cache
coherence and invalidation protocol for graph topologies that
minimizes critical-path overhead. For this protocol, we prove
a strong correctness result: any execution observed by the
cache-enabled microservice application could have been ob-
served by the original application without caches. Our eval-
uation on well-known microservice benchmarks shows that
MuCache reduces the median request latency by up to 2.5×,
and increases throughput by up to 60%.

1 Introduction
Many of today’s largest web services, such as Uber, Lyft,
Twitter (now X), and Meta structure their applications as mi-
croservices to enjoy the benefits of developer agility, resource
provisioning, maintainability, fault tolerance, and other im-
portant metrics. Fortunately, these benefits can be reaped by
smaller companies and individual developers too; recent run-
times and service mesh frameworks like Dapr [3], Envoy [4],
and Istio [6] have been created to help design, deploy, and
manage microservices. In a microservice architecture, ap-
plications are decomposed into a call graph of services that
interact with each other and with end-users through API calls.
The ‘root’ of the microservice call graph is typically a client-
facing frontend service, while the ‘leaves’ are databases that
store service state. This call graph is dynamic in the sense
that it may be different for each request.

The call graphs of today’s services are complex. Services
like Airbnb and Uber consist of thousands of unique microser-
vices that support their functionality [5, 40]. Each user request
will flow through a substantial subset of these microservices.
A typical Twitter request, for instance, can traverse a call
graph that is 6 levels deep with significant fan-out at each
level [36], and requests to popular Facebook pages often in-
volve hundreds of servers [30]. Given the depth and breadth
of modern microservice call graphs and that each edge corre-
sponds to a network request, it is important to avoid making
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such calls whenever possible. One way to do so is by having
each microservice reuse the responses of the services it con-
tacts if it knows that a request will produce the same answer.
Caching the responses in this fashion improves both the la-
tency of the target request (if the branch would have been on
the request’s critical path) and the system’s throughput as a
whole (by freeing resources for other requests).

Response caching is, of course, a common technique in
system design that many services are already employing to
great effect. For example, a recent Alibaba analysis of its
storefront microservice architecture found that around 40%
of its call graphs have a depth of 3 because they hit a cache;
while requests that do not hit caches reach call graph sizes of
more than 40 [28]. Similarly, half of Twitter’s cache clusters
are used to cache intermediate computation results [38], and
a study of the cache clusters at Facebook [37] reported that
the cache-hit ratio for a specific cluster was more than 80%.

Unfortunately, adding caching to a microservice graph is
difficult, and is something that only well-resourced companies
can afford to do correctly. Indeed, no existing service mesh
provides support for inter-service caching, leaving mid-size
and small companies to deal with caching on their own.

The complexity of caching in microservices stems from the
fact that—unlike traditional cache coherence protocols where
one can reason about individual read and write operations to
a target object—microservice responses are a function of the
input request, the service’s state, and an unbounded number
of downstream services that are recursively called during the
processing of a request. The resulting web of dependencies
means that developers must carefully study the interactions
between all services in the system.

Consider, for example, a user’s home timeline in a social
network (e.g., [14, 36]). A cached timeline response can be
invalidated by changes to the user’s followees, the content of
contained posts, the security policies of users included in the
timeline, and tweaks to the ranking algorithm; these changes
can stem from requests that never touch the home timeline
mixer, modifications to objects from services several hops
downstream, and revisions to the control flow of dependent
services. Note that, depending on the nature of the change,
subtrees of the call graph may be cacheable even if the fi-
nal response is not, and effective caching approaches should
consider that distinction.

Given the benefits of caching and the absence of automated
tools that developers can use to help them with this task, what
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can developers do today? Broadly speaking, developers today
add caching by either (a) creating manual or application-
specific coherence protocols, which are error-prone and fail
to generalize; (b) focusing on the backend-storage layer [24,
30], which ignores the significant advantages of terminating
request call graphs early; or (c) giving up on consistency and
implementing simple TTL-based eviction mechanisms [1, 27,
33] that can produce stale responses.

In this paper, we propose MuCache, a framework that ex-
tends existing service meshes like Dapr to automatically pro-
vide microservice applications with inter-service caches that
improve performance. Users declare the read-only methods
of each service’s API, and then MuCache caches the results
of calls to these methods to avoid re-executing them if the
data has not changed. To keep caches coherent, MuCache im-
plements a novel lazy-invalidation cache coherence protocol
for dynamic graphs of services. This new protocol has two
important features. First, all cache accesses are non-blocking,
so requests never need to wait for other requests to finish.
This greatly reduces latency during cache hits and ensures
that in the event of a cache miss, the overhead of having had to
access the cache is both constant and small. Second, the proto-
col is provably correct and provides a very strong consistency
guarantee: all executions of a cache-enabled application are
equivalent to an execution of the original application without
caches. Note that optimal tuning of these caches (e.g., select-
ing the optimal cache size or eviction policy) is out of the
scope of this paper; instead, MuCache allows the developer to
use other tools to tune each cache separately without having
to worry about coherence.

Our experimental evaluation shows that MuCache achieves
a median request latency reduction of up to 2.5× and a 95th-
percentile tail latency reduction of up to 1.8× for well-known
microservice benchmarks and applications. Additionally, Mu-
Cache increases throughput by up to 60% and allows appli-
cations with MuCache to scale as well as the original im-
plementation. We also perform worst-case tests, artificially
reducing the cache hit rate to 0%, and the results indicate that
MuCache’s overheads are minimal.

MuCache is open-source at https://github.com/
eniac/mucache.

2 Background

In this section, we briefly review microservice architectures
and the graphs that are formed by their interconnections.
Microservices. Applications today often comprise various
services, each of which handles an incoming request, per-
forms some task, and returns a response. This microservice
paradigm has many benefits over prior (monolithic) architec-
tures in which all functionality exists within a single compo-
nent. For example, microservices are modular, so they can
be implemented in any language and with any features so
long as they expose an appropriate API (e.g., REST). This
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FIGURE 1—MuCache’s Architecture. (C) denote caches, (CM)
cache managers, (W) wrappers, and (D) the datastores. Wrappers
are interceptor functions in the sidecar of each service. Solid arrows
denote baseline communication while dashed arrows and blue com-
ponents denote additions by our system. RO means read-only.

also allows teams to design, develop, deploy, scale, and op-
timize each microservice independently. Furthermore, each
microservice can manage its own datastore, ensuring data
sovereignty, which is important for fault tolerance and when
regulations place strict access control requirements on data.
Microservice graphs. Today’s microservice applications col-
late information from multiple backend sources and distill it
into a single user interface with the help of intermediate pro-
cessing functions. Such a design naturally leads to a directed
graph of microservices that collectively implement the appli-
cation’s behavior. In this graph, the vertices are microservices,
and the edges represent calls between them.

A drawback of this approach is that it incurs higher commu-
nication costs and response latency compared to monolithic
systems. Whereas in a monolithic system, all invocations
would typically be local function calls that leverage a ma-
chine’s fast memory and native data structures, in a microser-
vice graph, the caller needs to create the request (e.g., an
HTTP request with a serialized JSON payload) and send it
over the network to the callee (which may include compres-
sion and encryption), who must then deserialize it and execute
it—potentially having to call further microservices. The re-
sponse will incur similar overheads. For long chains of calls,
the additional latency can be in the order of 100ms.

3 Goals and Overview

Given the prevalence of microservice architectures and the
high costs associated with inter-service communication, we
wish to design a general caching layer that avoids having one
microservice call another whenever such a call is unnecessary,
e.g. when the request is similar to a prior request and the state
of the callee has not changed. While there is a vast design
space that one could consider for achieving this high-level
goal, we are grounded by a set of pragmatic requirements:
• Correctness: The cache should not introduce behaviors

that are not part of the original application.
• Non-blocking and low overhead: The cache should not

require blocking on the critical path, and any overhead
should be minimal.

• Dynamic graphs: It should support microservices where
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FIGURE 2—(Left) Moview Review application fragment. (Right) An example execution of this application. Each line corresponds to a different
component, and arrows denote communication. (C) components are caches and (CM) cache managers.

the call-graph varies per-request and is not known a priori.
• Sharding: It should support microservices that are de-

ployed with multiple shards to enable scaleout.
• Application and datastore agnostic: It should not require

any modifications to application logic or backend datas-
tores for easier adoption.

• Incremental deployment: It should provide benefits even
when only deployed on a subset of the microservice graph,
e.g., if subgraphs are managed by different organizations.

3.1 Overview of MuCache

To meet the above requirements, we design and implement
MuCache, a new caching framework for microservice graphs;
we depict its architecture in Figure 1. In this figure, MuCache
extends an application that consists of two microservices,
Service1 and Service2, each of which has its own datastore
and exposes a set of available methods that clients or other
services can call. We refer to these methods as endpoints,
borrowing from REST terminology. Throughout the paper,
when a Service1 calls a Service2, we refer to Service1 as the
upstream and Service2 as the downstream.

MuCache extends each service with wrappers (W), a cache
manager (CM), and a cache (C). The wrappers are a shim
layer that intercepts all communication among services and
their datastores. MuCache’s wrappers are implemented on top
of Dapr [3], a distributed application runtime that orchestrates
service invocations and datastore accesses through its API.
Dapr supports many datastores through the same API, so
our wrappers inherit this compatibility without additional
effort. The cache manager saves and deletes entries from
the cache to maintain coherence by tracking all inter-service
communication and datastore accesses through the wrappers.
It is deployed as a separate executable on the same node with
the service. Microservices are often sharded across multiple
instances to support larger workloads; in such cases, each
shard has its own cache manager and cache. MuCache does
not impose any configuration restrictions on the cache which
can be configured to have any eviction policy, cache size,
etc. MuCache acquires knowledge of the graph topology in a
decentralized way: each cache manager only knows about its
immediate predecessor cache managers.
Workflow. To deploy MuCache, developers must first declare
the read-only (RO) endpoints that do not mutate the datastore.
If developers use REST APIs, MuCache can automatically

Page

Page.C

Page.CM

MR.CM

Rev.Stor.

(2)

(1) (5)

(7)

(8)

RS.CM

(3)

…

(4)

(6)

(1) Write(id, v)
(2) Cache.get(get_revs(id)) 
       -> revs
(3) Cache.get(get_revs(id))
       -> revs
(4) Inv(id)
(5) Inv(call)
(6) Inv(get_revs(id))
(7) Cache.delete(get_revs(id))
(8) Cache.get(get_revs(id))
       -> None

FIGURE 3—An example execution of the movie review application
that includes an invalidation.

infer this by treating ‘GET’ endpoints as RO. The cache will
then store the responses of successful requests to the RO end-
points of other services. For example, the cache of Service1
would store the return values of requests to /endpoint1 of
Service2. The cache manager of Service2 would then track all
of the keys that were read during each RO call, and whenever
one of these keys is modified by a write, it sends messages
to all of its caller’s cache managers (in this case, the CM of
Service1) to invalidate the relevant cache entries.

As a concrete example, consider Figure 2 (left), which
shows a fragment of a movie review application (Cf.
IMDB) [24]; clients request the page of a specific movie
from the Page service, which in turn calls the MovieReview
and Plot service to compute its results. The right side of Fig-
ure 2 shows one example execution. The first time Page tries
to get the plot for movie id, it does not find it in the cache
(1) and then invokes Plot. After the call returns, the cache
manager of the Plot service informs the cache manager of
Page to save the return value of this call (5). For a subsequent
call with the same arguments (7), the return value is found in
the cache, and the Plot service is never contacted. Figure 3
shows an execution where some other user adds a new review
to the movie id (1). While the write happens, different users
successfully access the page of that movie from the cache (2),
(3). The invalidation is propagated in the background between
cache managers, until it invalidates all affected saved cache
entries, including the one in the cache of Page.

We note that most of the processing to update and inval-
idate caches in MuCache is done off the critical path. With
reference to Figure 2, the only operations in the critical path
are steps (1), (2b), and (4b), all of which are local accesses.
In particular, (1) is an access to a local cache, and (2b) and
(4b) involve communication with a co-located cache manager.
Furthermore, MuCache supports sharding without any com-
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(1) call(“write”, k, v)
(2) call(“write”, k, v)
(3) call(“read”, k)
(4) call(“read”, k)

S1

S3

S4

FIGURE 4—An application exhibiting a “diamond” pattern.

munication between shards on the request processing critical
path—cache managers of different shards only communi-
cate invalidation in the background. At the same time, the
invalidation delays in MuCache are very small (ms)—orders
of magnitude smaller than standard values of TTL used in
practice to evict cache items (seconds to hours) (§7).
Correctness. The correctness condition for MuCache is based
on classical refinement modulo reordering, i.e. that all behav-
iors exposed by a cache-enabled application are equivalent to
a behavior of a cache-free version after potentially reordering
independent observable events. The execution in Figure 3 is
correct because it could have been observed from the original
application if the write (1) had happened right after (2) and
(3) since they are independent requests from different clients.

Guaranteeing correctness is challenging for call graphs
with more than one path between the same two services, i.e.,
when a request accesses the same backend service twice in
its lifetime. Figure 4 shows such an example of a ‘diamond’
pattern. In this example, a service S1 first calls S2, which in
turn calls S4 that writes to its store. Then S1 calls S3, which
calls S4 trying to read from the same value that was written
by S2. It is possible that S1 could find the result of a previous
call to S3 in its cache, reading a stale value, leading to an
execution that would not be observable without caches. Since
microservice call graphs are dynamic, this pattern cannot be
identified and prevented statically (before execution). Mu-
Cache addresses this at runtime by keeping track of visited
services during request processing, not checking a cached
entry if it depends on a service that has already been visited.
Summary. We conclude this section by describing how Mu-
Cache satisfies the previously stated requirements:
• Correctness: We prove that MuCache does not introduce

behaviors that are not part of the original application (§5).
• Non-blocking and low overhead: Cache managers do all

processing in the background and the wrappers only send
messages to them, never blocking for a response.

• Dynamic graphs: MuCache tracks dependencies to guar-
antee correctness in the presence of dynamic call graphs.

• Sharding: MuCache supports sharding without any addi-
tional communication on the critical path.

• Application and datastore agnostic: MuCache does not
require any modification to the application or datastore
code because wrappers intercept all communication.

• Incremental deployment: Developers can gradually declare
read-only endpoints to get incremental benefits.

4 MuCache Protocol

Figure 5 shows the complete MuCache protocol for the wrap-
pers of a single service shard and its cache manager in Python-
like pseudocode. The wrapper of each service communicates
with its associated cache manager through an ordered mes-
sage queue (using SendToCM). Downstream cache managers
also issue Save/Inv events to upstream ones through the same
queue. Cache managers in different shards of the same ser-
vice also communicate with each other when broadcasting
invalidations using SendToShardCM.

The code on the left depicts wrapper logic run before
a request starts processing (preReqStart), when a request
has finished processing (preReturn), when a request reads
from a key (preRead), before a request performs a call to
another service (preCall), and after a request writes to a key
(postWrite). The code on the right depicts cache manager
logic, which processes events in the message queue sent by
the wrappers and cache managers of other services.
Wrapper. The wrappers keep two types of state. The first
is a global (per service shard) readsets map from request
identifiers to sets of keys and call arguments, which keeps
the dependencies of each pending read-only (RO) request.
The second is the per-request context ctx, which is carried
around while a request is processed. ctx contains (1) the
id of the request (ctx.call_id); (2) the hash value of the
request’s arguments (ctx.ca); (3) the caller of the request
(ctx.caller); (4) the visited services of the request and
its subrequests (ctx.visited); and (5) whether the current
request is read-only and, therefore, cacheable by its caller
(ctx.isRO). Wrappers send a Start(ca) message to their as-
sociated cache manager before a request starts processing and
then maintain the request readset when a read or a subrequest
is performed. Once the request is complete, the entire readset,
along with the call arguments, the caller, the return value,
and the visited services are sent to the cache manager as
an End(ca, rs, caller, ret, vs) message. Wrappers also
send Inv(k)messages to cache managers after a datastore key
k is modified. preCall checks the cache before invocation
and returns directly upon cache hits.
Cache manager. The cache manager controls the contents of
the cache. The cache manager contains two global (per service
shard) state components: saved and history. The saved map
acts as an inverted index of wrappers’ readsets by mapping
keys (or call arguments) to the corresponding service that
has read (or called) them. When a key or a set of calls is
invalidated, the cache manager looks up saved to locate all
the affected upstream services and asks them to invalidate the
set of relevant calls that they have cached by sending them
Inv messages. The second state component, history, is a
sequence of calls and invalidations used to determine whether
a call can be safely cached upstream. When a request with
readset rs is complete, the cache manager scans the history
in reverse chronological order for invalidations that intersect
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1 global readsets : map(Key, set(Key | CallArgs))
2

3 def preReqStart(ctx):
4 if ctx.isRO:
5 cid, ca = ctx.call_id, ctx.ca
6 readsets[cid] = set()
7 SendToCM(Start(ca))
8

9 def preReturn(ctx, ret):
10 if ctx.isRO:
11 cid, ca = ctx.call_id, ctx.ca
12 rs = readsets.pop(cid)
13 caller = ctx.caller
14 vs = ctx.visited
15 SendToCM(End(ca, rs, caller, ret, vs))
16

17 def postWrite(ctx, k, _v):
18 SendToCM(Inv(k))
19

20 def preRead(ctx, k):
21 if ctx.isRO:
22 cid = ctx.call_id
23 readsets[cid].insert(k)
24

25 def preCall(ctx, ca):
26 if ctx.isRO:
27 cid = ctx.call_id
28 readsets[cid].insert(ca)
29 # Check if ca refers to a read-only endpoint and if
30 # the visited services are disjoint with the cache
31 # item subtree
32 if ca.isRO and visited_disjoint(ctx, ca):
33 return cache.get(ca)
34 return None

1 # Tracks which keys and calls will invalidate
2 # which cache entries upstream
3 global saved : map(Key | CallArgs, map(Service, CallArgs))
4 # Sequence of calls and invalidations
5 global history : list(Call(CallArgs) | Inv(Key | CallArgs))
6

7 def startHandler(ca):
8 history.append(Call(ca))
9

10 def endHandler(ca, rs, caller, ret, vs):
11 # Checks if there are any invalidations
12 # to the readset since the call start
13 if empty([for Inv(k) in history.invs_after(Call(ca))
14 if k in rs]):
15 SendToCM(caller, Save(ca, ret, vs))
16 saved.store(rs, ca, caller)
17

18 def invHandler(k):
19 match type(k):
20 case Key:
21 history.append(Inv(k))
22 case CallArgs:
23 history.extend([Inv(ca) for ca in k])
24 # Inform CMs of same-service shards
25 SendToShardCMs(Inv(k)) # (see Sec. 4.1)
26 # Ask all affected callers to invalidate
27 affected = saved.pop(k)
28 for caller, cas in affected:
29 SendToCM(caller, Inv(cas))
30

31 def saveHandler(ca, ret, vs):
32 save_visited(ca, vs)
33 cache.set(ca, ret)

FIGURE 5—(Left) The wrapper code of the protocol that intercepts the start of request processing, returns, writes, reads, and calls. (Right) The
cache manager code that processes work queue items sent by the wrappers and other cache managers.

S1

S1.C

S1.CM

S2

S2.CM

(1)

(4)

(5)

(6)(2) (1) Call(ca)

(2) Return v

(3) End(ca, …)

(4) Inv(ca)

(5) Cache.delete(ca)

(6) Cache.save(ca) -> v(3)

FIGURE 6—A bug that would occur if invalidate messages were
allowed to overtake saves.

with rs since the call started. If there is no such invalidation,
it asks the upstream cache manager to save the result. The
cost of this scan is proportional to the product of request
rate and average request duration, which is typically a small
number. For example, a service handling 10,000 requests
per second, each lasting 100 milliseconds, requires scanning
several thousand items.
Saving a new cache entry. A naive method of saving a new
entry involves the caller immediately saving it to the cache
upon the result’s arrival, rather than awaiting an explicit Save
message from the callee’s cache manager. This is not correct,
as it allows the bug shown in Figure 6 where the invalidation
message by the S2 cache manager “overtakes” the save done
by S1, leading to the cache entry never being invalidated.
Thus, it is necessary for Invs and Saves to not be reordered.
MuCache achieves that by issuing them sequentially through
the cache manager.
Invalidating an entry. Invalidations are triggered when a key
used in a cached result is modified. Naively, the cache man-

S.T1

S.T2

S.CM

(s) (e)
(w)

(i)

S.T1

S.T2

S.CM

(s) (e)

(w) (i)

(r) Read(k)

(w) Write(k, v)

(s) Start(ca)

(e) End(ca, …) 

(i) Inv(k)

(r)

(r)

FIGURE 7—Possible imprecisions in invalidation. The three lines
represent two service threads processing requests and the cache
manager.

ager could track the exact order of all reads and writes to pre-
cisely track invalidations. Since requests are being processed
concurrently, this would require coordination across different
service threads, which would significantly slow down request
processing along the critical path. MuCache relaxes the track-
ing of reads and writes in two ways that do not jeopardize cor-
rectness, but reduce the synchronization overhead. First, all
reads of a request are gathered by the wrappers (preRead) and
are only sent to the cache manager at the end of the request
(the rs argument in the End message). To ensure correctness,
the cache manager then assumes that all reads happened at
the start of the call, considering the call invalid if a write
happened in its duration even if it happened before the reads
(Fig. 7, Left). Second, writes are intercepted in a non-atomic
fashion after they have been completed (postWrite). This
could allow for a call to start and complete in between the
actual write and postWrite, leading to its cached response
being unnecessarily invalidated (Fig. 7, Right).
Evicting an entry. There are two types of evictions in Mu-
Cache. First, a cache could fill up with entries and needs to
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evict an entry to make space for new ones; in this case, the
eviction is safe without any additional work since the proto-
col is robust to re-invalidations (i.e., it is safe to invalidate a
cache entry that was previously evicted). Second, the cache
manager might need to reclaim space if it is keeping track of
the dependencies of many calls. It reclaims space by evicting
a key or call from its saved dependencies and consequently
sends invalidation messages to all affected calls upstream as
if the key were invalidated (see inv(k) in Figure 5).
Garbage collection. The cache manager has two state com-
ponents that grow during execution: (1) the history and (2)
the dependencies. It keeps the history bounded by remov-
ing completed calls when processing an End request, adding
minimal overhead. The protocol preserves correctness in the
presence of multiple pending calls with the same arguments
by removing the latest occurrence of a call start (potentially
overapproximating the duration of the other calls). When the
cache manager reaches a memory limit, it deletes some of its
saved dependencies as long as it informs the upstream caches
to evict relevant entries (similarly to a normal invalidation).
The current implementation evicts dependencies following an
LRU policy, though other choices could be used.
Sharding. MuCache supports sharded service deployments
by attaching a cache manager to each shard; the only require-
ment being that read-only calls with the same arguments are
always processed by the same shard (e.g., by load balancing
these calls based on a hash of the call arguments). This guar-
antees that a single cache manager is the sole authority for
the invalidations of each read-only call, ensuring that they
will be the only ones to send cache-save and cache-invalidate
messages for that call. The only change in the protocol is that
a cache manager processing an invalidate due to a write needs
to broadcast it to all cache managers of the other shards of the
same service, so that they can invalidate their relevant calls
(see L.25 in Figure 5). It is important to note that broadcasts
only happen upon users’ writes; transitive invalidations propa-
gated upstream do not trigger broadcasts. Broadcasting out of
the critical path is safe because, similarly to the single-shard
protocol, overapproximating the write duration might lead to
additional invalidations but not fewer. MuCache, therefore,
does not add any latency overhead on the request processing
critical path to support sharded services.
Handling Dynamic Call-graphs. Microservice applications
can exhibit a diamond pattern (Figure 4) where a request
performs multiple subrequests to the same service through
its lifetime. In such applications naive caching could lead
to executions that cannot be observed without caches. Mu-
Cache addresses this by keeping track of the visited services
in two locations. First, each request keeps visited services in
its context (ctx.visited); whenever a subrequest ca returns,
the parent request adds all the visited services of the subre-
quest (ca.visited) to its own visited services (ctx.visited).
Second, when saving a cache entry for call ca, the cache

manager also stores the services, S’, that were visited during
the processing of ca. Before checking the cache, the wrap-
per checks if the downstream service has ever visited a ser-
vice in S’ that has also been visited by the current request
visited_disjoint(ctx, ca); if so, it does not retrieve the
return value from the cache to preserve correctness. MuCache
tracks visited services using a binary encoding that keeps its
size small—less than 1 KB for 1000 services.

5 Protocol Correctness
To demonstrate the correctness of MuCache, we show that
clients cannot differentiate a MuCache-enabled application
from the original without caches. We give semantics to mi-
croservice applications (with and without caches) using ob-
servable execution events and traces. Events are indivisible
actions (steps) that can be performed by a microservice ap-
plication; examples of events include reading from a key in
the datastore and receiving a response from a completed sub-
request. An application can be uniquely described by the set
of traces (event sequences) that can be observed in it. Two
traces are said to be equivalent modulo reordering when all
events in one trace exist in the other trace but potentially in a
different order. Reorderings are necessary for our correctness
theorem to allow reads and writes to proceed concurrently (as
in Figure 3). In this section, we informally describe three as-
sumptions that are central to our formal development, the first
two hold for all microservice applications, and the last one is
a requirement of MuCache. We then state our main theorem
and give the high-level intuition for the proof. The complete
formal development and proof can be found in Appendix A,
which is available in the supplementary material.
(A1) Always enabled requests. Requests in a microservice
application only block when waiting for subrequests that they
have invoked to finish executing and there is no blocking
communication across independent requests. In other words,
if a trace can be observed in an application, then we can pick
and execute any pending request, or any of its subrequests,
until it produces an execution event, and the new trace will
also be part of the application’s set of traces.
(A2) Reordering independent events. Two events are depen-
dent when the first event affects the execution of the second:
some examples include two events that are part of the same
request, or a write and a read event to the same key in a ser-
vice datastore. The complete definition of dependent events
is given in Appendix A. We assume that due to multithread-
ing, independent events commute; that is, reordering any two
consecutive independent events in an application trace results
in a trace that can also be observed by the application.
(A3) Linearizable datastores. We assume that the datastore
of each service is linearizable [26]: operations on an object
take place atomically, in an order consistent with the oper-
ations’ real-time order. For instance, if a write completes
before a read begins, then the read must observe the effects
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of the write and complete after it. This is necessary due to
the requirement that MuCache does not modify the under-
lying datastore and can only observe writes to the datastore
before or after they are completed. If we were to use a non-
linearizable datastore a write could take effect after it returns,
making it impossible to track which calls it invalidates.

Theorem 1 (Protocol Correctness). For all traces in a cache-
enabled application, there exists a trace in the original appli-
cation without caches, such that all the client events in the
two traces are equivalent modulo reordering.

Proof intuition. To show the theorem, we prove a stronger
lemma, namely that for all cache-enabled traces, we can con-
struct an original trace where (1) all request subtraces are the
same (modulo the missing requests due to cache hits), and (2)
that the application state is the same at the end of both traces.
The proof proceeds by induction on the length of traces and
has three phases: (1) given a trace in the cache-enabled ap-
plication that ends with a cache-hit, it uses assumption (A2)
to move writes that happened before the cache-hit but would
later invalidate its entry to the end of the trace (together with
their dependencies); (2) it then uses the inductive hypothesis
to construct a trace in the original application for the prefix
up to the cache-hit; and (3) it uses assumption (A1) to fill in
all subrequest events that are missing due to the cache-hit,
and then it fills in the writes and all their dependencies (A3),
ending up with a trace that satisfies the requirement.

6 Implementation
The MuCache implementation comprises roughly 2k LoC of
Go [12], including the wrappers that intercept invocations and
state accesses, and the cache manager that makes invalidation
and saving decisions. Communication between wrappers and
the cache manager happens with ZeroMQ [16] and between
cache managers with HTTP. Our current implementation uses
Redis [9] as the cache, but any in-memory store could be used
in its place. We use 32-bit FNV-1a [11] algorithm to compute
the hash values of call arguments.
Batching. Cache managers instruct their upstream counter-
parts to save or invalidate cache entries by sending HTTP
requests that might become a bottleneck when the load is
high. To increase throughput at high loads without affecting
correctness, MuCache allows batching requests that are sent
upstream. At low loads, batching increases the time it takes
for an invalidation to propagate through the system based on
the batching timeout, which is currently set to 1ms. Batching
also enables the simplification of upstream requests by can-
celing out operations at the sender, i.e., invalidates and saves
override previous invalidates and saves on the same key. This
reduces the size of requests and the number of operations
upstream cache managers have to process, while incurring
minimal cost since it requires a single pass over the batch.
General support. MuCache is designed to not be limited

to a single communication protocol, cache, or datastore. Our
wrappers are built on top of Dapr [3], a service mesh extended
to also support state accesses through its API. Dapr supports
custom middlewares that can be used to intercept invocations
and state accesses. It also provides a common abstraction for
many service communication protocols and different storage
backends, allowing us to implement our wrappers once and
inherit support for all the alternatives.
Dependencies between client requests. MuCache’s caching
protocol treats client requests as independent and allows them
to be reordered, processing reads and writes from different
clients without synchronization. However, this might not al-
ways be desirable, e.g., when a client request expects to see
the effects of a previous request. To support this, we extend
MuCache’s dependencies (Sec. 4) to client requests. Specifi-
cally, when a client request is complete, visited services are
included in the result, and passed to the subsequent request
of the same client (if one is performed), allowing MuCache
to avoid violating dependencies across client requests.
Supporting third-party services. Microservice applications
often perform requests to third-party services that might not
be extensible with MuCache, e.g., if they are owned by a dif-
ferent organization. To support such applications, MuCache
allows declaring requests to third-party services as read-only
using a TTL, saving their values to the cache on return, but
invalidating them when the TTL has passed instead of wait-
ing for a downstream cache manager. This setup provides
caching benefits with at least as strong guarantees as if all
the caches in the application were configured with a TTL,
however for the complete subtrees of the microservice graph
that are MuCache-enabled the guarantees are stronger.

7 Evaluation
Our evaluation aims to answer these high-level questions:
• (Q1) Throughput and latency benefits: Does MuCache

provide throughput and latency benefits compared to other
caching alternatives? Does it scale with sharding? How do
cache sizes affect its performance? How are its benefits
affected by the application call-graph? (§7.3)

• (Q2) Costs: What are the costs of deploying MuCache?
What is its CPU and memory usage, total network costs,
and its latency overhead on the critical path? Does the
cache manager throughput become a bottleneck? (§7.4)

• (Q3) Invalidation: How fast can MuCache invalidate
cache entries? (§7.5)

Before we answer these questions, we describe the experimen-
tal setup (§7.1) and our methodology and baselines (§7.2).

7.1 Experimental Setup

We deploy a Kubernetes [7] cluster on CloudLab [2] m510 ma-
chines that have 8-core 2.0 GHz CPUs, 64GB RAM, 256GB
NVMe SSDs, and 10GB NICs. Machines run Ubuntu 20.04.
The average round-trip time between servers is 0.15ms. Ex-
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cept for sharding experiments, we utilize a single Kubernetes
cluster where the number of worker nodes is equal to the
number of services, plus one node acting as a control plane.
Each service is deployed via Dapr [3] and is affinitized to a
single node. We use Redis [9] configured with an LRU evic-
tion policy as the cache. Unless otherwise noted, MuCache is
configured with a sending batch size of 20 and a 1 ms timeout.
Cache manager dependencies are stored in a LRU cache, with
the maximum number of entries being proportional to the
user cache size. In our experiments, the cache manager stores
100 dependencies per 1 MB of user cache (e.g., a user cache
of 20 MB allows the storage of 2,000 dependencies).

7.2 Applications, Method, and Baselines

Throughout our evaluation we perform experiments on four
open-source microservice applications, as detailed in Figure 8,
along with four synthetic ones. Workloads are adapted from
the original testbeds, including the dataset and request distri-
bution. Cache sizes are set relative to the application working
data set; small enough that they do not fit the entire work-
ing data set but big enough so that there is a non-negligible
amount of cache-hits.
SocialMedia. A social network application (Cf. Twitter or
Facebook) that provides three main endpoints, viewing a
user’s homepage timeline (RO), viewing a user’s personal
timeline (RO), and composing a post. The workload ratio is
60% homepage, 30% user timeline, and 10% compose post.
The cache size for each service is set to 20 MB. When there
are no new posts and each timeline contains 10 posts, the total
cacheable posts are around 20 MB.
MovieReview. A movie review application (Cf. IMDB or
Rotten Tomatoes) that offers two main endpoints: viewing the
page of a movie (RO) and creating a review. The workload
ratio is 90% viewing a page and 10% creating reviews. The
cache size for each service is set to 70 MB.
HotelRes. A hotel reservation application (Cf. Booking or
Airbnb) that offers two main endpoints: searching for hotels
in a specific area (RO) and making a reservation. The work-
load ratio is 80% searching for hotels and 20% making a
reservation. The cache size for each service is set to 20 MB.
OnlineBoutique. An online store application (Cf. Amazon
or Walmart) that offers multiple endpoints, retrieving the
store homepage (RO), updating the currency rate, viewing a
product (RO), adding a product to the cart, and checking out.
The workload ratio is 75% read-only (homepage, viewing
products, and carts) and 25% non-read-only (updating the
currency, updating the cart, checking out). The cache size for
each service is set to 80 MB.
Synthetic Benchmarks. Figure 9 shows four synthetic ap-
plications: ProxyApp, a two-service app where a stateless
frontend forwards requests to the backend, which in turn
reads/writes to a key-value store; and three applications that
extend ProxyApp with archetype call-graph patterns—chain,

Benchmark Services LoC RO/NonRO Sources

1 SocialMedia 6 532 90/10 [10, 24, 32]
2 MovieReview 12 913 90/10 [13, 24]
3 HotelRes 6 608 80/20 [24]
4 OnlineBoutique 9 1,088 75/25 [8]

FIGURE 8— Real-world applications used in our evaluation.

FIGURE 9—Shapes of synthetic benchmark call-graphs.

fan-out, and fan-in. ChainApp has four stateless services and
a stateful backend. FanoutApp has a single frontend forward-
ing requests to four backends. FaninApp has four separate
frontends, each forwarding requests to one backend.
Method. We measure throughput and latency (median and
95th percentile) using the wrk2 [15] HTTP benchmarking
tool. Experiments include a 30-second cache pre-warming
period, followed by a 60-second testing period. Each experi-
ment is run three times, and the average is reported. We run
MuCache and the baselines with the same CPU resources;
that is, MuCache’s cache managers are not given extra cores
but share resources with the application.
Baselines. We compare MuCache to the following baselines.

BC (Backend Cache): A baseline that lacks inter-service
caching and only caches data from the backend datastore.

TTL: A baseline that reflects the current best practices for
automated inter-service caching [1, 27, 33]. Caching occurs at
both the backend and intermediate services. Upon invocation,
the caller saves the result in the cache asynchronously without
communicating with any cache manager. The caches can then
evict an entry when they become full or, in the case of an inter-
service cache, when a configured time-to-live (TTL) timer
has expired. Cached data can be inconsistent and arbitrarily
stale (depending on the TTL and access pattern).

TTL-∞: A special case of TTL that serves as an upper bound
on the performance achievable by TTL implementations;
cache entries never expire and are only evicted when the
cache reaches maximum capacity.

7.3 (Q1) Throughput and Latency Benefits

We first measure the throughput and latency of a set of real-
world applications with and without MuCache (§7.3.1). We
then compare it against different TTL baselines (§7.3.2), we
evaluate whether it limits throughput scalability in the pres-
ence of sharding (§7.3.3), and we evaluate whether configur-
ing caches with different sizes and whether different applica-
tion call-graphs affect MuCache’s benefits (§7.3.4–7.3.5).
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FIGURE 10—Latency and throughput of real-world applications (described in Figure 8).

7.3.1 Real-world applications

We evaluate MuCache’s benefits on throughput and latency on
the four open-source microservice applications. We compare
MuCache against (1) BC to evaluate performance benefits
over not having inter-service caches, and (2) TTL-∞ to eval-
uate how close MuCache is to an implementation that caches
results but provides no consistency guarantees.
Results. Figure 10 shows the results, where the X-axis is
request rate, and the Y-axis shows latency in ms. MuCache
reduces median latency by up to 1.8× in HotelRes, 2.5× in
MovieReview, 1.5× in SocialMedia, and 2.1× in OnlineBou-
tique. The tail latency between MuCache and BC is similar,
except for OnlineBoutique, where MuCache reduces tail la-
tency by up to 1.8× by avoiding many invocations from the
Checkout service, such as retrieving product information, get-
ting shipping quotes, etc. Furthermore, MuCache improves
throughput by 1.6× in HotelRes, 1.5× in MovieReview, and
1.4× in SocialMedia, while achieving similar throughput in
OnlineBoutique. Compared to TTL-∞, MuCache’s median
latencies are up to 1.2× higher before saturation, and Mu-
Cache’s throughput is around 0.95×.
Take away. MuCache outperforms BC in terms of median and
tail latency, and throughput across all workloads. MuCache
also performs close to the upper bound TTL-∞. Improve-
ments in median latency can be attributed to cache hits, while
improvements in throughput are due to lower utilization of
backend services.

7.3.2 Comparison with TTL baselines

Tuning TTL values for caches in real systems is complex and
depends on the application requirements; suggested values
could range from seconds to hours [18, 23]. To simulate that
in a shorter experiment, we vary TTL from 100 ms to 10 s—
values under 100 ms lead to negligible cache hits, and a TTL
of 10 s is already a large fraction of the total experiment (60 s).
Results. Figure 11 shows the results. As the TTL increases
from 0.1 to 10 s, median latency drops from 18.2 ms to
10.9 ms, tail latency drops from 29.3 ms to 10.9 ms, and
throughput increases from 2,489 to 3,470 rps. MuCache out-
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FIGURE 11—HotelRes: Latency and throughput of MuCache com-
pared with various TTL.

performs TTL-1s (1.3× lower median latency), but is outper-
formed by TTL-10s (which performs similarly to TTL-∞).
Take away. Getting comparable performance to MuCache
with a TTL-based caching approach requires setting the TTL
to a high value (>1 s)—orders of magnitudes higher than
the MuCache invalidation times (on the order of ms per call-
graph depth as shown in Section 7.4.3). Furthermore, finding
an appropriate TTL value is challenging for developers, as this
value has implications for the correctness of the application.
In contrast, MuCache requires no tuning of expiration times,
and invalidations happen automatically and correctly.

7.3.3 Sharding Scalability

We evaluate the scalability of MuCache by deploying So-
cialMedia to multiple shards. We provision a fixed pool of
machines and restrict each shard to a fixed CPU usage of
2 cores (1 running the service, 1 running the Dapr sidecar)
to have multiple shards on a single machine. Each shard is
deployed with its own cache manager. We compare against
BC to determine whether MuCache limits scalability.
Results. Figure 12 shows the maximum throughput of the
SocialMedia when deployed using 1, 2, and 4 shards, with and
without MuCache. MuCache scales as well as BC (achieving
1.44×, 1.38×, and 1.37× the throughput of BC).
Take away. MuCache does not limit scalability for sharded
applications as the only cost occurs in the background; when
the cache manager of a shard broadcasts received writes to all
cache managers that belong to the same service shards.
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FIGURE 12—Throughput of MuCache and BC when sharding the
services in SocialMedia.
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FIGURE 13—HotelRes: Impact of different cache sizes on latency
(left Y-axis) and combined cache hit rate (right Y-axis).

7.3.4 Cache size effect

To evaluate how MuCache responds to the cache size of each
service, we measure latency and cache hits on HotelRes with
a fixed load of 1K req/s while varying the cache size from
16 MB to 1024 MB. TTL-∞ acts as an upper-bound baseline.
Results. Figure 13 shows the results. Increasing the cache
size lowers the median latency of MuCache from 9.9 ms to
8.2 ms and tail latency from 22 ms to 13.6 ms; it also increases
the cache hit rate from 5% to 91%. Similarly, in TTL-∞, the
median latency decreases from 9.9 ms to 7.3 ms, tail latency
from 21.6 ms to 10.6 ms, and cache hit rate from 5% to 100%.
Take away. Caching with MuCache reduces mean and tail
latency. Furthermore, the reductions achieved by MuCache
are close to those achieved by TTL-∞ across all cache sizes.

7.3.5 Application call-graph effect on performance

To evaluate how the application call-graph pattern affects the
benefits of MuCache, we use the three synthetic applications
in Figure 9. We use a synthetic workload with 50% cache hit
rates and compare against BC.
Results. Figure 14 shows the results. For ChainApp, Mu-
Cache’s median latency is 2.6–3.1× lower than that of BC,
while its tail is comparable before reaching saturation. Its
maximum throughput is 1.5× higher. For FanoutApp, the
median latency and maximum throughput of MuCache are
similar to that of the BC, but its tail latency is up to 1.6×
lower. In FaninApp, MuCache improves median latency by
1.1–1.3× and 95th percentile latency by up to 1.9×; maxi-
mum throughput is 1.75× higher than BC.
Take away. MuCache provides different benefits depending
on the call-graph shape. For long call-chains MuCache re-
duces latency by avoiding network hops; for fan-out it slightly

1 3 5 7

5
10
20
50

100
200

L
at

en
cy

(m
s)

Chain

1 1.5 2 2.5 3

Request Rate (krps)

Fanout

2 6 10 14

Fanin

BC 50/95th MuCache 50/95th

FIGURE 14—Latency and throughput of the graph shape mi-
crobenchmarks (Fig. 9).

Benchmark Average (MB) Max (MB) Cache Size (MB)

1 HotelRes 0.08 0.27 20
2 MovieReview 0.07 0.31 70
3 SocialMedia 0.02 0.09 20
4 OnlineBoutique 0.1 0.45 80

FIGURE 15—Cache manager state and cache size for each service.

improves tail-latency but not median latency since the fron-
tend has to wait for the slowest path to respond; and when the
backend is the bottleneck it improves throughput by reducing
the number of requests that reach the backend.

7.4 (Q2) MuCache costs and overheads

In order to evaluate the costs of MuCache, we measure its
CPU, memory, and network usage (§7.4.1), its latency over-
head on the critical path (§7.4.2), and the cache manager’s
throughput and whether it can be a bottleneck (§7.4.3).

7.4.1 Memory / CPU / Network costs

We evaluate MuCache’s memory cost on all four applications
and its CPU and network usage on HotelRes. We evaluate
MuCache’s network usage by measuring data transfer be-
tween nodes using iftop. We measure the memory cost of
each cache manager instance as the average size of its state
(history and dependencies) and CPU cost as the average CPU
usage of each service during the experiment. We use standard
cache sizes and load (2K req/s for HotelRes, 2.5K req/s for
MovieReview, 1K req/s for SocialMedia, and 3.5K req/s for
OnlineBoutique) for 300 seconds.
Results. Figure 15 shows the cache manager state size and the
cache size across services. The average size of the CM state
across services ranges from 0.1–0.4% of the cache size per
service. Garbage collection plays an important role in keeping
the memory usage low: without GC, the CM state in HotelRes
goes up to 5 MB in 1 minute. Figure 16 shows the average
CPU usage of each service during the experiment. Usage is
broken down between the service logic, the Dapr sidecar, and
the cache manager. The average CPU usage across services
with and without MuCache is 4.2 and 5.1 cores respectively.
The average CM CPU usage across services is 0.5 cores. The
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FIGURE 17—Latency distribution w.r.t. hit-rate for ProxyApp. Solid
and dashed lines show the latencies when the hit rate is 0% and 60%
respectively. Split in 70th percentile for clarity.

average network usage per service without MuCache is 9.0
MB/s, while the average with MuCache is 6.6 MB/s, of which
cache managers use 2.9 MB/s.
Take away. Memory costs are low compared to the cache
size (<0.4% on average). The CPU usage of MuCache is
13% of the total service CPU on average while at the same
time reducing the total CPU usage of the whole application
due to some backend services being less utilized because of
cache hits in the frontend. Though cache managers use some
bandwidth to save/invalidate caches, MuCache reduces the
total network usage by 27% due to local cache hits.

7.4.2 MuCache latency overhead

We evaluate MuCache’s latency overhead by focusing on
ProxyApp, which performs minimal work, to measure the
worst-case overhead. We create a synthetic workload with
0% and 60% cache hit rates and compare against (1) BC to
evaluate the overhead over no caches when there are no hits,
and (2) TTL-∞ to evaluate the wrapper overhead.
Results. Figure 17 shows the complete request latency distri-
bution. We report overheads as absolute values because they
are constant and independent of the work that the services
do. For a hit rate of 0%, MuCache’s median latency (4 ms) is
0.5 ms higher than BC and 0.3 ms higher than TTL-∞, while
the 95th-percentile (5.7 ms) is 0.9 ms and 0.5 ms higher re-
spectively. When the hit rate is 60%, MuCache’s median and
95-th percentile latencies are 0.15 ms and 0.5 ms higher than
TTL-∞. When the hit rate is 60%, MuCache median latency
is 1.4 ms better than BC (3.5 ms to 2.1 ms).
Take away. Even in a worst-case scenario (an application that

Batch Size 1 2 5 10 20 50

Throughput (krps) 19.2 26.5 44.5 74.7 75.2 74.6

FIGURE 18—Batching effects on cache manager throughput.

Chain Size 2 3 4 5

Mean invalidation time (ms) 3.94 6.13 8.41 10.66

FIGURE 19—Invalidation time for different chain sizes.

performs minimal work), MuCache imposes a low (∼10%)
latency penalty on cache misses.

7.4.3 MuCache’s throughput

To determine whether MuCache’s cache manager can be a
bottleneck, we measure the its maximum throughput on the
ProxyApp and load the backend’s cache manager directly be-
cause the backend service becomes the bottleneck otherwise.
The load is 80% read-only requests and we vary the batch
size of the HTTP sending buffer between cache managers.
Results. Figure 18 shows the throughput in terms of the
number of events the cache manager processes per second.
Without batching, the cache manager has a throughput of
∼19K events per second, while gradually increasing the batch
size up to 20 improves it to ∼75K events per second.
Take away. The cache manager has a reasonably high
throughput and is not the bottleneck even for an application
with minimal computation. To further increase throughput,
developers may deploy multiple shards for each service.

7.5 (Q3) Invalidation time

We evaluate the time needed for invalidations to reach the root
of the call-graph, namely the frontend service, by measuring
the observed inconsistency window [19], the elapsed time
between the write happening in the backend and the inval-
idation becoming visible in the frontend. The invalidation
time in our experiment is determined solely by the depth of
the call graph. To measure the increase in invalidation time
per hop, we conducted experiments on a microservice chain
consisting of 2 to 5 services, which represents the typical
depths of call-graphs in the applications that we studied.
Results. Figure 19 shows the results. For a two-service ap-
plication, the invalidation time is ∼4 ms; for a five-service
application it is ∼10 ms. Each additional service in the chain
increases invalidation time by ∼2.2 ms.
Take away. MuCache’s invalidation time is ∼2.2 ms per
call-graph hop—orders of magnitude smaller than the typical
invalidation times observed in TTL-based approaches (which
range from seconds to hours [18, 23]).

8 Related Work
Caching in microservice applications. Several works study
cache usage in real-world microservices, including work from
Alibaba [28], Twitter [38], and Facebook [37]. These papers
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confirm that caches are heavily used in microservice applica-
tions and provide significant performance benefits, but only
mention manual, ad-hoc, or inconsistent coherence schemes
and do not propose an automatic way to manage these caches.
Caching frameworks for web services. There is a lot of
work on caching frameworks for web services for both static
and dynamic data. These frameworks focus on three key as-
pects: (1) content admission, (2) cache size management, and
(3) invalidation and data freshness (for a more detailed clas-
sification see a recent survey [29]). The first two aspects are
orthogonal to our work since we do not focus on optimizing
the performance of a cache given a specific workload, but
rather propose a general system for keeping caches coherent
in a microservice setting. To the best of our knowledge, all
frameworks that focus on invalidation (e.g., [21, 22, 31]) are
designed as a single cache layer on top of a database without
taking into account the inter-service caching.
Cache coherence protocols. There is extensive literature on
cache coherence protocols (see survey [34]), none of which
considers inter-service caching. Lazy caching [17] exploits
the fact that writes do not always require exclusivity (M or
E in MOESI [35]), allowing cores to perform concurrent
buffered writes, albeit blocking reads to ensure that depen-
dencies are not violated. Our work extends this insight by
avoiding all blocking communication on the request’s criti-
cal path—allowing writes downstream without immediately
informing the upstream caches and without blocking on reads.
Incremental computation. Caches are also used to enable in-
cremental and reactive computation: some examples include
Reactive Caching [20], Noria [25], and Diamond [39]. Reac-
tive Caching proposes caches for graphs of single-threaded
services to support reactive computation, i.e., writes down-
stream are propagated upstream to refresh the results. Noria is
an incremental stream processing engine that uses caches for
fast propagation of updates in a dataflow. Both differ from our
work in two ways: (1) they only provide eventual consistency
that violates dependencies when there are multiple paths be-
tween two services (see Fig. 4); and (2) they do not support
true multi-threading, as Noria limits writes to a single thread
and Reactive Caching only supports single-threaded services.
Diamond is a system that automates data management for
distributed reactive applications by providing reactive trans-
actions to clients. Similarly to MuCache, Diamond reactively
informs clients about data invalidations in the backend store,
but in contrast to MuCache it does not support service graphs.

9 Discussion and Limitations
Supporting transactions and non-KV stores. Our imple-
mentation does not currently support transactions or non-KV
stores. Supporting single-service transactions would require
that the wrappers perform the postWrite after the transaction
has completed to overapproximate the time that the write
operation completed. Supporting multi-service transactions

would be more challenging since caches should not violate
transactional guarantees, which would require additional syn-
chronization in the protocol. Supporting non-KV stores, such
as relational databases, would require monitoring the depen-
dencies of read-only calls and determining when to invalidate
cache entries, which could be done by leveraging the expres-
sive semantics of SQL (as in the case of Noria [25]).
Supporting weaker consistency datastores. The correctness
of MuCache depends on the datastores being linearizable;
MuCache needs to be sure that after a write has completed,
it has taken effect in the database. Being able to determine
the order of reads and writes by intercepting the datastore ac-
cesses is necessary so that MuCache is database-agnostic (see
requirements in Section 3). Supporting weaker consistency
datastores would likely require a more intrusive design with
modifications to a datastore—tightly integrating wrappers in
the store to provide additional metadata to the cache managers
about the precise order of reads and writes—forfeiting the
generality of being database-agnostic.
Application debuggability. Extending an application with
MuCache provides performance benefits and does not affect
the application behavior but adds complexity to the end-to-
end deployment and therefore increases the effort required
to maintain and debug it. This is an inherent software en-
gineering challenge—the bigger a codebase is, the harder
it is to maintain it. A direction for future work that could
help address this is to integrate MuCache with existing dis-
tributed tracing and debugging tools for microservices, so that
engineers have visibility on MuCache’s state and actions.
Write-intensive workloads. Even though a service might
offer a read-only endpoint, its workload might be write-
intensive, leading to overheads without the accompanied ben-
efits if extended with MuCache. Developers can currently
manually detect such cases and avoid declaring those end-
points as read-only, but it would be interesting to explore
whether MuCache can be extended with an adaptive moni-
toring mechanism that only enables caching if the read-write
ratio of a service is above some threshold.
Sharding. MuCache requires hard affinity sharding of read
requests to ensure correctness, i.e., all read-only calls with
the same arguments need to be processed by the same shard.
Write requests have no such limitation and can be dispatched
to any shard. An interesting avenue for future research would
be to lift the requirement for hard affinity, allowing for more
flexible load balancing and autoscaling.
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A Detailed Protocol Correctness

Preliminaries. We start with some basic notation:

• nS denotes a service name

• ca denotes the arguments of a service call, including
the name of the service (which can be extracted using
name(ca)) and the endpoint.

• i ∈ R denotes request identifiers (each request has a
unique i). The service name and the arguments to the
request can be extracted using name(i) and ca(i). We
will define a binary relation sr ⊆ R×R that determines
when a request is spawned by another request. We can
also define sr∗ as the reflexive transitive closure of sr.
There is also a client(i) predicate, which returns true for
requests that are initiated by a client.

• v denotes a return value

• k denotes a key that indexes values in the state of a
service

• rs(i, t) is a function that returns all of the keys that a
particular request (and all of its subrequests) have read
in trace t. We will often ignore t when it is obvious
which trace we refer to.

Events and traces. We will describe microservice applica-
tions and their executions using traces, i.e., sequences of
events that describe application actions. We are only inter-
ested in events that describe interactions between services
and other services and actions on their states. We call the set
of all events Σ, and we now define all events in it.

• Reqi(ca) denotes the start of processing of a single re-
quest with id i and arguments ca.

• Reti(v) denotes that a request with id i has finished
processing and is returning value v.

• Readi(k, v) denotes that request with id i performed a
read of key k from its state and returned v.

• Writei(k, v) denotes that request with id i performed a
write with value v to key k of its state.

• Calli(ca, i′) denotes that request with id i performed a
call to another service with arguments ca and the request
id of that internal request is i’.

• Respi(v, i
′) denotes that request with id i received a

response with value v from a finished call with id i’.

We represent the set of all events for a request with identi-
fier i as Σi and the set of all read (or write) events as ΣR (or
ΣW ). We also define a set of output events ΣO = {Reti(v) :
∀i, v}∪{Readi(k, v) : ∀i, k, v}∪{Writei(k, v) : ∀i, k, v}∪

{Calli(ca, i′) : ∀i, ca, i′} that are events that are determined
by the program when processing a single request, and input
events ΣI = {Reqi(ca) : ∀i, ca} ∪ {Respi(v, i

′) : ∀i, v, i′}
that are events that are given as inputs to the processing of a
single request. Finally, we can define the set of client events
ΣC = {Reqi(v) : ∀i, client(i)} ∪ {Reti(v) : ∀i, client(i)}
We can now describe complete executions of microservice
applications using traces t, i.e., sequences of the above events.
We can project all events of a trace t from a particular set Σ
using t[Σ], e.g., t[ΣW ] are all the write events in a trace. Note
that this projection creates an ordered sequence of events by
maintaining the trace order.
Applications and Assumptions. We can now define the be-
havior of a microservice application P ∈ P using its execu-
tion traces, JP K ⊆ Σ∗, and state some assumptions on these
traces. First of all, an application determines the processing
of each request using the step : P×R × Σ∗ × (ΣO ∪ {⊥})
relation, that determines the next step of the processing of a
request, or ⊥ if the request is waiting for a response or hasn’t
started yet. Now we define what it means for a trace to be
well formed.

Property 2 (Well-formed traces). All traces t ∈ JP K are well-
formed, i.e., for each trace t the following properties hold:
(1) Reqi(ca) are the first events for any request i and Reti(v)
are the last; (2) for each i ∈ t there exists a unique Reqi(ca)
and at most one Reti(v); (3) a Reqi(ca) always comes after
a Calli(ca, i′) except in the case of client requests; (4) a
Respi(v, i

′) always comes after a Calli(ca, i′) and Reti′(v);
(5) for all Calli(ca, i′), sr(i, i′); and for all prefixes t′ =
t0.e with e ∈ ΣI , either step(P, i, t0, e) or step(P, i, t0,⊥);
(6) for all e ∈ ΣC for any i ∈ t, s.t. client(i) holds, then
∄Calli′(ca′, i) ∈ ΣC .

The last requirement relates the step relation with the traces,
i.e., each event in the trace is the result of stepping a request
or a request start or response. We also know that the events in
a trace are equivalent up to an injective renaming of request
identifiers.

Property 3. For any microservice application P , for all
traces t ∈ JP K and for all i ∈ t, then for any i′ /∈ t we can
construct a new trace t′ = t [i 7→ i′], s.t. t′ ∈ JP K.

In addition to the above, we also know that requests are
always enabled in microservice applications, i.e., a pending
request can always take a step.

Definition 1 (Pending Requests). We say that a request
Reqi(ca) is pending in a trace t iff Reti(v) does not exist
in t.

Property 4 (Request Step Always Enabled). For any mi-
croservice application P , for all traces t ∈ JP K, and for all
pending requests Reqi(ca) for some i, there exists a trace
t′ ∈ JP K such that t′ = t.ei, where ei ∈ Σi′ and sr∗(i, i′).
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Property 4 means that requests are always enabled to take
a step, sometimes through their subrequests. This is a valid
assumption for microservice applications since they are mul-
tithreaded, and therefore a single request can not block other
requests from proceeding, and a request can only block while
waiting for a response from its subrequests. Note that this
assumption requires that the network does not drop requests,
i.e., calls eventually lead to request starts and that returns
eventually lead to response events.

We also know that the values of read events depend on the
latest write to the same key or the original value.

Property 5 (Read return value). For all applications P , re-
quest identifiers i and traces t s.t. step(P, i, t,Readi(k, v))
holds, then either ∃i′,Writei′(k, v) = last(t[ΣW (k)]) or
v = ⊥.

Intuitively, this means that writes are immediately visible to
reads, thus that the underlying stores are linearizable, which
is a valid assumption for most key value stores.

We can now define read-only calls, that is calls that never
perform writes (even in their subrequests).

Definition 2 (Read-only requests). Given an application P
a request with request identifier i and call arguments ca,
i.e. ca(i) = ca, is read-only for this application iff for all
traces t ∈ JP K, and for all i′ such that sr∗(i, i′), it holds that
t[ΣW ∩Σi′] = ∅. We define a predicate RO(i) that holds for
read-only requests.

State. We represent the state of an application as σ ∈ D.
Concretely, a state σ is a tuple of maps from keys to values,
one for each service. We define the function S : Σ∗ → D
that returns the state of an application after the trace t. Due to
Property 5 the state at each point in the execution depends on
the prefix of write events and the starting state. We assume
that all executions start from the same starting state σ0.
Caching. Up to this point we have established all important
properties of microservice applications without mentioning
caches. A cache-enabled application P̃ can be similarly de-
fined by its execution traces, JP̃ K ⊆ Σ̃∗, where Σ̃∗ is a su-
perset of the set of events of applications without caches, i.e.
Σ ⊆ Σ̃. The additional cache related events are defined as
followed:

• CacheHiti(ca, v) denotes a cache-hit that replaces a
Respi′(v, i) for some i′ (also conforming to its well-
formedness conditions Property 2).

• Save(nS , i, v) denotes that the cache of service nS has
saved the value v for request i with call arguments ca(i).

• Inv(nS , i, i
′) denotes an invalidation of the cache of ser-

vice nS with ca(i′) from a write with identifier i.

Essentially, a cache-enabled application P̃ is a transformation
of a regular microservice application P . We know that our

protocol does not affect the stepping of requests other than
allowing some calls to return immediately with call hits. We
can also lift the step relation to account for cache-enabled
applications. The lifted step relation describes the logic of our
cache coherence protocol.

Property 6 (Cache Stepping). For any application P the
transformed P̃ can step, i.e. step(P̃ , i, t, e) holds, if

• step(P, i, t, e) when e ∈ Σ or

• e = Save(nS , i
′, v) and ∃Reti′(v) ∈ t or

• e = Inv(nS , i
′, i′′) and ∃Writei′(k, v) ∈ t with k ∈

rs(i′′).

• e = Inv(nS , i
′, i′′) and ∃Inv(nS , i

′, i′′′) ∈ t with
ca(i′′′) ∈ rs(i′′).

• e = CacheHiti(ca, v) and ∃Save(name(i), i′, v) ∈ t
and ∄Inv(name(i), i′′, i′′′) ∈ t and ca = ca(i′) =
ca(i′′′) between the save and the cache-hit.

Intuitively, Property 6 means that the cache-enabled appli-
cation does not affect the next steps of any specific request
other than sometimes finding a result in the cache.

Definition 3 (Dependency). We say that event e′ ∈ Σi′ is a
dependency of e ∈ Σi in a trace t if e′ is after e and if either:

• i = i′, i.e. the two events are part of the same request

• e = Calli(ca, i′) and e′ = Reqi′(ca) i ̸= i′ and
sr∗(i, i′), i.e., the second event is a part of a subrequest
of the first event

• e = Reti(v) and e′ = Respi′(v, i), i.e., the events are a
pair of return and handle response.

• e = Writei(k, v) and e′ = Readi′(k, v′) or e =
Writei(k, v) and e′ = Writei′(k, v′) or e = Readi(k, v)
and e′ = Writei′(k, v′), i.e., read and write events to
a key k are dependencies of a prior write to the k and
write events are dependencies of a prior read.

• e = Reti(v) and e′ = Save(nS , i, v) for some nS

• e = Writei(k, v) and e′ = Inv(nS , i, i
′) for some nS

• e = Inv(nS , i
′, i′′′) and e′ = Inv(nS , i

′, i′′) with
ca(i′′′) ∈ rs(i′′).

• e = Save(name(i), i′, v) and e′ = CacheHiti(ca, v)
where ca(i′) = ca

• e = Save(nS , i
′, v) and e′ = Inv(nS , i, i

′′) for some i
and ca(i′) = ca(i′′)

We will use deps(e) to refer to all the transitive depen-
dencies of an event e. We now state a final assumption on
application traces, namely that two independent events can
be commuted.
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Property 7 (Commute independent events). For any trace t ∈
JP K with t = t0.e.e

′.t1 and e′ ̸∈ deps(e), then t′ = t0.e
′.e.t1

can also be observed by the application, i.e. t′ ∈ JP K.

This holds because in microservice applications indepen-
dent requests do not affect each other except through reads
and writes to the same key in the same service datastore.

We are now ready to state the main theorem that describes
the correctness of our protocol.

Theorem 8 (Protocol Correctness (corresponds to Theo-
rem 1)). For all traces t in a cache-enabled application JP̃ K,
there exists a trace t’ in the original application without
caches JP K, such that their respective client events are equiv-
alent (but potentially reordered), i.e., ∀i t[ΣC(i)] = t′[ΣC(i)].

This makes sense because correctness is only relevant from
the perspective of the clients and not all of the internal events
that an application performs. Actually, the cache implemen-
tation does not contain the same traces because some calls
return immediately on cache-hits without triggering all the
internal events. In order to prove this theorem, we show that
something stronger holds, a lemma that is stated below. Be-
fore stating it, we need to define what it means for an event
in the cache-enabled event set to be equivalent to the original
one.

Definition 4 (Equivalent events). Equivalence between a
cache-enabled event ec and an original event e (denoted with
ec ≃ e) is defined as followed:

• if e ∈ Σ and ec ∈ Σ are the same event or

• ec = CacheHiti(ca(i′), v) and e = Respi(v, i
′)

We can lift the equivalence relation of events to account
for sequence of events in a straightforward way.

Lemma 1. Given an arbitrary trace t ∈ JP̃ K we can construct
a trace t′ ∈ JP K such that (i) the states at the end of the traces
are the same for both traces, i.e. S(t) = S(t′), and (ii) for
all i, t[Σi] ≃ t′[Σi] modulo the missing events due to the
cache-hits.

At a high-level the proof proceeds by constructing a t’ from
t in the missing events and also by moving some write events
later in the trace. Theorem 8 follows directly from Lemma 1
since client events will be the same in both traces.
Proof sketch. We will proceed by induction on the size of
traces and for the inductive case we will focus on the only
interesting scenario where the trace t ends with a cache-hit
event CacheHiti(ca, v), because these are the only events for
which the effects of our cache-subsystem are observed by the
rest of the application. For illustrative purposes we extend
traces with the state of all services σn between each event.

t = t0|σn
.CacheHiti(ca, v)

For this cache-hit to have happened, the step relations implies
that there must exist some Save(nS , i

′, v) before it, such that
name(i′) = nS . Similarly, for the cache save to have happened,
there must have been a completed request with call arguments
ca = ca(i′).

t = · · · .Reqi′(ca)|σ1
. · · · .Reti′(v)|σ2

. · · · .
· · · .Save(nS , i

′, v)|σ3
. · · · |σn

.CacheHiti(ca, v)

Given Property 2 (extended in a straightforward way to sup-
port cache events), we know that t[Σi′ ] can be produced by
the step relation. The inductive hypothesis and the fact that t
is finite ensure the equivalence of the traces even in the pres-
ence of cache-hits for subrequests of the original request. We
will now do a case analysis on the existence of a Write(k, v1)
where k ∈ rs(i′) between Reqi′(ca) and CacheHiti(ca, v).
No such write exists. If no such write exists, then σ1|rs(i′) =
σ2|rs(i′) = . . . = σn|rs(i′). Then, we can construct a trace
t1 ∈ JP K using the inductive hypothesis and by replacing
CacheHiti(ca, v) with Calli(ca, i′′) for some fresh i′′ (due to
Property 6).

t1 = . . . |σn.Calli(ca, i′′)

Then, given that σ1|rs(i′) = σn|rs(i′) and that Properties 5 and
3 hold, we can construct the same request steps tc as in the
original trace (t[Σi′ ] [i

′ 7→ i′′]) using the step relation, ending
up with a trace t2 ∈ P such that:

t2 = t1.tc.Respi(v, i
′′)

Since CacheHiti(ca, v) ≃ Respi(v, i
′′) and read-only re-

quests do not modify the state, we are done with this case.
Write exists. We now need to focus on the case where a
write Write(k, v1) with k ∈ rs(i′) exists between Reqi′(ca)
and CacheHiti(ca, v). We can first show that the write is be-
tween Save(nS , i

′, v) and CacheHiti(ca, v), because if it was
earlier, it would have been processed by the cache manager,
prohibiting Save(nS , i

′, v) to have happened. However, there
could be an invalidate between the cache save and the cache-
hit that has originated from a previous write in another service
between Reqi′(ca) and Save(nS , i

′, v). We can now use Prop-
erty 7 to move all writes together with their dependencies to
the end of the trace to get a trace tw.

tw = · · · .Save(nS , i
′, v)|σ3 · · · |σn.CacheHiti(ca, v). · · · .twd

where twd contains all the writes and their dependencies. This
is possible because CacheHiti(ca, v) is not a dependency of
the writes between the save and the cache-hit; if it was, there
must have been a subcall to the service where the write hap-
pened, which would have been caught by our dependency
tracking (see Section 4). Second, all i′ events are not depen-
dencies of the writes between Reqi′(ca) and Save(nS , i

′, v)
because (1) i′ is read-only (so it cannot have performed those
writes or subcalls that performed those writes), and (2) the
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FIGURE 20—A bug that would occur if preReqStart does not
wait until the Start event is added in the CM workqueue.

write happened after the call to start i′.
We can now follow the same reasoning as in the no-write-

exists case. We first use the inductive hypothesis on the prefix
until the cache-hit and Property 6 to get the following trace:

t1 = · · · |σn.Calli(ca, i′)

We then construct the original trace that caused the save using
the step relation (like in the no-write-exists case) to get

t2 = · · · |σn.Calli(ca, i′). · · · .Respi(v, i
′)

Finally, given that both prefixes and states are the same for tw
and t2, we can use Property 4 to step all the writes and their
dependencies to acquire the same exactly events as the suffix
of tw, proving that the states are the same and the traces for
each request in the end are equivalent.

B MuCache protocol design details
B.1 Waiting for events to be added in the queue

It is crucial that the caller waits until the event is added to
the queue when sending a Start message, otherwise the bug
shown in Figure 20 could occur. In this scenario, thread T1
of a service S starts processing a RO request ca before wait-
ing for the Start(ca) event to be added to the workqueue.
In the meantime, another thread T2 of S performs a write
which invalidates the results of the call ca. However, since the
Start(ca) event was added in the cache manager workqueue
after the Inv(k), the cache manager does not detect the inval-
idation.

238    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	1 Introduction
	2 Background
	3 Goals and Overview
	3.1 Overview of MuCache

	4 MuCache Protocol
	5 Protocol Correctness
	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Applications, Method, and Baselines
	7.3 (Q1) Throughput and Latency Benefits
	7.3.1 Real-world applications
	7.3.2 Comparison with TTL baselines
	7.3.3 Sharding Scalability
	7.3.4 Cache size effect
	7.3.5 Application call-graph effect on performance

	7.4 (Q2) MuCache costs and overheads
	7.4.1 Memory / CPU / Network costs
	7.4.2 MuCache latency overhead
	7.4.3 MuCache's throughput

	7.5 (Q3) Invalidation time

	8 Related Work
	9 Discussion and Limitations
	A Detailed Protocol Correctness
	B MuCache protocol design details
	B.1 Waiting for events to be added in the queue


