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Abstract
The emerging programmable networks sparked significant

research on Intelligent Network Data Plane (INDP), which
achieves learning-based traffic analysis at line-speed. Prior
art in INDP focus on deploying tree/forest models on the data
plane. We observe a fundamental limitation in tree-based
INDP approaches: although it is possible to represent even
larger tree/forest tables on the data plane, the flow features
that are computable on the data plane are fundamentally lim-
ited by hardware constraints. In this paper, we present BoS
to push the boundaries of INDP by enabling Neural Network
(NN) driven traffic analysis at line-speed. Many types of
NNs (such as Recurrent Neural Network (RNN), and trans-
formers) that are designed to work with sequential data have
advantages over tree-based models, because they can take
raw network data as input without complex feature compu-
tations on the fly. However, the challenge is significant: the
recurrent computation scheme used in RNN inference is fun-
damentally different from the match-action paradigm used
on the network data plane. BoS addresses this challenge by
(i) designing a novel data plane friendly RNN architecture
that can execute unlimited RNN time steps with limited data
plane stages, effectively achieving line-speed RNN inference;
and (ii) complementing the on-switch RNN model with an
off-switch transformer-based traffic analysis module to fur-
ther boost the overall performance. We implement a prototype
of BoS using a P4 programmable switch as our data plane,
and extensively evaluate it over multiple traffic analysis tasks.
The results show that BoS outperforms state-of-the-art in both
analysis accuracy and scalability.

1 Introduction

The emerging programmable network hardware (e.g., P4
switch [5], NetFPGA [36] and SmartNIC [13,37,54]) sparked
significant research on Intelligent Network Data Plane (INDP).
Compared with other AI-assisted networking designs which

*Equal contribution. # Corresponding author.

deploy learning models on either end-hosts (e.g., congestion
control [1, 63]) or network control plane (including auxiliary
servers) (e.g., routing control [29, 72]), INDP is forwarding-
native since it deploys learning models directly on network
data plane. Thus, the key merit of INDP, as first summarized
in [71], is that it enables intelligent network traffic analysis at
line-speed based on data-driven learning models rather than
empirical rules/protocols.

The initial exploration of INDP begins with extracting fine-
grained flow information from the programmable data plane
to support a variety of overarching applications, such as covert
channel detection [61], RTT measurement [45], traffic clas-
sification [4], and DDoS mitigation [30]. Yet, the subtle dis-
tinction between these early approaches and the native INDP
paradigm is that they fail to directly deploy learning models
on the data plane due to various hardware constraints. For
example, the lack of support for floating-point arithmetic on
P4 switches makes it significantly more difficult to execute
model inference on the data plane than on general-purpose
processors like CPUs and GPUs.

The community since then make substantial progress on re-
alizing tree-based INDP [7,24,57,58,68,69,71], based on the
insight that the decision making process in tree-models can be
implemented using match-action tables on the programmable
data plane. State-of-the-art (SOTA) in this regard is NetBea-
con [71] which designs a novel ternary table encoding mech-
anism to efficiently deploy fairly large tree/forest models on
programmable switches. Further, the recent art [43, 50–52]
embrace neural networks by deploying binarized Multi-Layer
Perceptron (MLP) on SmartNIC. Yet, the capacity of Smart-
NIC (e.g., 2×40 GbE for Netronome Agilio CX [37]), which
co-locates with an end-host, is several orders of magnitude
smaller than the in-network programmable switches (e.g.,
6.4 Tbps for Barefoot Tofino 1 switch).

In this paper, we propose Brain-on-Switch (BoS) to ad-
vance state-of-the-art of INDP in two fundamental ways. First,
BoS enables the use of Neural Network (NN) in INDP. NNs
have several advantages over tree-based models for traffic
analysis. For instance, Recurrent Neural Network (RNN), a
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type of NN designed to work with sequential data, outper-
forms tree-models in both efficiency (e.g., not requiring com-
plicated feature computations on the fly, consuming fewer
hardware resources to maintain per-flow state, etc.) and ac-
curacy (especially when handling more complex tasks, such
as multi-class traffic classification). Second, BoS is architec-
turally complete in the sense that it can accommodate full-
precision and advanced models in INDP. Hardware limitations
(e.g., lack of floating-point number support) on switches force
model binarization [2, 51, 58], which, unfortunately, reduces
performance. Although prior art (e.g., IIsy [68], [49]) men-
tioned the hybrid analysis concept of forwarding certain flows
to large tree-based models deployed at the endpoint for reeval-
uation, they lack the fundamental design to precisely control
the amount of such escalated flows processed off-switch. In
contrast, BoS proposes a novel approach to accommodating
advanced off-switch models (e.g., transformer-based models)
into INDP to improve the overall analysis performance, while
ensuring that the vast majority of traffic (e.g., over 95% of
flows) is still analyzed at line-speed on the data plane.

Concretely, BoS has the following innovative designs:
(i) A novel binary RNN architecture that retains full-

precision model weights during on-switch inference (i.e., only
activation functions are binarized), realized by encoding the
complex layer forward propagation functions as match-action
tables. Compared to the fully-binarized MLP model [51], our
binary RNN exhibits substantial performance advantages.

(ii) A sliding-window based computation scheme to execute
unlimited RNN time steps using limited forwarding stages on
switches. BoS overcomes various switch hardware limitations
in realizing the critical operations essential to this compu-
tation scheme, such as the read/write of a ring buffer like
data structure, and an argmax like operation to make compre-
hensive inference decisions by aggregating the intermediate
analysis results as a flow proceeds.

(iii) An analysis-escalation module to accommodate full-
precision transformer-based models in BoS. The key design
is two-fold: accurately identifying the flows for which on-
switch analysis confidence is insufficient, and designing an
Integrated Model Inference System (IMIS) to enable fast off-
switch inference for escalated flows.
Contributions. The major contribution of this paper is the
design, implementation and evaluation of BoS, the first INDP
design that enables NN-driven traffic analysis at line-speed.
We implement a prototype of BoS and evaluate it extensively
using several use cases. The experimental results show that
BoS outperforms SOTA in analysis accuracies by non-trivial
margins, achieving up to ∼19% higher F1-scores than tree-
based NetBeacon [71] and up to ∼40% higher than binary
MLP based N3IC [51]. We further perform thorough system-
level evaluations, demonstrating that BoS is scalable to handle
high network loads (flow concurrency), attributing to the co-
design of the on-switch binary RNN and off-switch IMIS.
Finally, we evaluate hardware resource utilization by BoS.

2 Background and Motivation

Programmable Network Data Plane. The emerging of
Protocol-Independent Switch Architecture (PISA) enables
flexible data plane programmability, empowering fast innova-
tions of networking designs. In PISA, the switching pipeline
can be programmed via P4 [5], a domain-specific program-
ming language. A PISA pipeline consists of a parser for
header parsing, multiple match-action stages for header fields
and metadata manipulating, and a deparser for header reassem-
bling. In general, the actual packet processing logic is imple-
mented using these match-action stages. PISA also supports
components for stateful storage, such as registers.

Despite the programmability mentioned above, PISA has
the following limitations. First, only simple operations like
add, subtract, shift and bit-wise operations are supported, ex-
cluding floating numbers, multiplication, division and com-
plex comparisons. Second, the resources (such as the number
of stages, SRAM, TCAM) are limited. For instance, on Bare-
foot Tofino 1, each pipeline has 12 stages, 120 Mbit SRAM
and 6.2 Mbit TCAM [71]. Finally, each register can only be
accessed once through an atomic operation for each packet.
RNNs and Transformers. RNN [31] is designed to process
sequence data of varying lengths by maintaining an inter-
nal state (i.e., the hidden state). Specifically, given the input
xt ∈ Rm at time step t, the hidden state ht ∈ Rn is calculated
as ht = tanh(W [xt ,ht−1] + b), where W and b are trainable
parameters. As ht encodes the current input xt and the histori-
cal information ht−1 at the same time, RNN can capture the
relationships between the data points in a sequence. The algo-
rithm used to calculate the hidden states is called a recurrent
unit, and the two most popular recurrent units are LSTM [17]
and Gated Recurrent Unit (GRU) [8].

Transformers [56] excel at modeling sequential data. Re-
cently, several traffic analysis approaches [11, 26, 28, 59, 66]
treat the bytes of packets as words or images, and introduce
a variety of transformer-based models to achieve impres-
sive traffic classification performance. In addition, the self-
supervised pre-training paradigm used in transformer-based
traffic analysis requires a small amount of labeled data.
Motivation. Our community make substantial progress [7,
24, 57, 58, 68, 69, 71] on realizing Intelligent Network Data
Plane (INDP) by embedding decision tree models in the for-
warding pipeline of programmable switches. Their key insight
is that the decision making process in tree/forest models (i.e.,
comparing a value to a threshold and then moving on to the
next tree node until a leaf node is reached) is very similar
to the match-action table paradigm used on the data plane.
For instance, state-of-the-art NetBeacon [71] designs a novel
coding algorithm to effectively represent multiple tree models
using ternary matching tables.

We forecast a performance ceiling in further innovating
tree-based INDP designs. Specifically, tree models often rely
on advanced feature engineering (i.e., extracting various types
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Figure 1: The BoS architecture enables NN-driven traffic analysis in INDP.

of statistics/properties/attributes from raw data) to boost ac-
curacy. However, the features that are computable on the data
plane at line-speed are fundamentally limited due to hardware
constraints. For instance, flow features such as the s.t.d., fre-
quency, and percentile of packet lengths are critical to tree
models [40, 71]. Yet, computing these features is either im-
possible or difficult, often requiring ad-hoc tricks to estimate
these statistics. For instance, prior art [71] estimates s.t.d. of
packet lengths upon receiving certain packets (i.e., the 2k-th
packet in each flow), indicating it can only execute inference
at these locations. The limitation is obvious: an inference
error obtained on the 2k-th packet cannot be corrected until
the arrival of the 2k+1-th packet.
Design Goals. Therefore, philosophically, it is worth ask-
ing: can we expand the boundaries of INDP to a new type
of learning models that is not limited by the availability of
flow features on the data plane. In this paper, we address this
research question concretely by enabling NN-driven traffic
analysis in INDP. Unlike tree/forest models, many types of
NNs (such as RNNs and transformers) that are designed to
process sequential data can directly take raw network traf-
fic data as input, eliminating the requirements of computing
complex features on the data plane on the fly. However, the in-
corporation of NNs into INDP presents significant challenges.
For instance, the recurrent computation scheme in RNN is
fundamentally different from the match-action paradigm on
the data plane, making it more difficult to realize on-switch
RNN inference. Additionally, existing transformer-based traf-
fic analysis approaches [11,26,28,59,66] simply treat network
traffic as another form of sequential data, without construct-
ing appropriate systems to analyze the network flows online
while they are traversing the data plane.

To address these challenges, we architect BoS, the first
NN-driven INDP system. A recent art N3IC [51] explores to
deploy binary MLP models on SmartNIC, which is more com-
putationally flexible, yet with much lower throughput than
programmable switches. We focus on programmable switch
based INDP in this paper (although we also compare the traf-
fic analysis accuracy of BoS with N3IC in our evaluations).
Concurrent with BoS, Broadcom unveils the early-stage de-
velopment of their novel NN inference switching chip [6],
underlining the significance of INDP.

3 Design Overview

We plot the architecture of BoS in Figure 1. The overarching
traffic analysis logic in BoS centers around (i) a data plane
friendly RNN inference architecture and (ii) a co-design with
an Integrated Model Inference System (IMIS) to accommo-
date full-precision transformer-based traffic analysis models.
The key designs toward hardware friendliness are two-fold:
(i) realizing the online forward propagation of RNN layers via
offline-trained input-output-mapping tables, and (ii) executing
unlimited recurrence of RNN time steps via a sliding window
mechanism that recurrently processes fixed-length packets
segments. The key to co-design with IMIS is accurately identi-
fying the flows that do not receive sufficient confidence from
the on-switch analysis, and to only escalate these flows to the
off-switch IMIS, so that BoS still processes the vast majority
of traffic on-switch (e.g., over 95% flows). Nevertheless, we
optimize the system design of IMIS so that a single instance of
IMIS can process ten million packets per second while main-
taining low inference latencies (see § 7.3). This ensures the
off-switch IMIS is unlikely to be the bottleneck of BoS.

4 Data Plane Friendly RNN Architecture

4.1 Raw Packet Sequences as Input Features

The on-switch RNN uses raw flow sequences as the input
features, i.e., the packet length sequence and the inter-packet
delay (IPD) sequence. When a packet in the flow arrives at
the switch, we extract its length and get IPD based on the
subtraction of timestamps. Through feature embedding, these
metadata are mapped into an embedding vector, which is
stored in a sequence for subsequent model inference.

Using raw sequences as input features has several key ad-
vantages over using statistical flow features (such as the mean
and s.t.d. of packet lengths). First, the availability of criti-
cal flow features is greatly limited on switch (explained in
§ 2). Second, storing per-flow statistical features on switch
is expensive: NetBeacon [71] consumes 2.5x storage to store
features as evaluated in § 7.2. Finally, feature engineering,
without careful designs, could result in overfitting problem.
For instance, we notice that some features (e.g., the num-
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ber of packets with packet size in [48,64)) are heavily task-
specific [3, 71], and features like port number can lead to
overfitting on host configurations.

4.2 Binary RNN Architecture

As shown in Figure 2, architecturally, the binary RNN model
in BoS consists of three building blocks: feature embedding,
RNN cell and output layer. In the feature embedding, the
length and IPD of each packet are passed through two dif-
ferent embedding layers, respectively, and then fed into a
fully-connected layer to obtain an embedding vector. Taking
the embedding vector sequence of per-flow packets as input,
the RNN cell performs sequence analysis based on GRU [8].
In each time step of GRU calculation, the current embedding
vector and the previous hidden state (i.e., output activations
of GRU) are used as input, and the output is used to update
the hidden state. Finally, the hidden state of the last step is
passed through the output layer (i.e., a fully-connected layer
with softmax) to obtain the analysis result.

Each GRU calculation contains 3 Hadamard product oper-
ations and 3 multiplications with nonlinear functions, which
cannot be natively implemented on programmable switches
due to hardware constraints. To cope with this challenge, we
perform binarization on neural network activation functions
to enable hardware-friendly model deployment. Specifically,
we set all activation functions in the feature embedding and
the RNN cell to Straight-Through Estimator (STE) [64]. STE
performs a sign function in forward propagation, which makes
all neural network activations +1 or -1. And in backward prop-
agation, STE estimates the incoming gradient to be equal to
the clipped outgoing gradient.

Prior art N3IC [51] performs binarization on both weights
and activations of an MLP model, and then implements fully-
connected layer forward propagation on the SmartNIC using
XOR and customized population count (popcnt) operations.
The popcnt operation, unfortunately, is not friendly to the
switch pipeline: realizing a single popcnt operation for a 128-
bit string takes 14 switch stages. Yet, one 128bit-to-64bit
fully-connected layer in an MLP model requires 64 popcnt

Table 1: Binary RNN v.s. Binary MLP

Prior Work
Binary

Activations
Full Precision

Weights
Stage

Consumption⋆
Model

Accuracy†

Binary MLP (N3IC [51]) " % High Low
Binary RNN " " Low High

⋆ Estimated if we were to implement the binary MLP on a programmable switch.
† See § 7.2 for quantitative results.
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operations. More crucially, as evaluated in § 7.2, full model
binarization results in significant performance degradation.
In Table 1, we summarize the key differences between our
binary RNN and the binary MLP in N3IC [51].

4.3 Data Plane Native Model Inference

We now present the data plane native RNN inference.
Forward Propagation. The key to retain full precision model
weights in our RNN models is to avoid direct computations
of the layer forward propagation on the data plane. To this
end, BoS realizes forward propagation based on match-action
table lookup. Specifically, since all activations are binarized
to +1 or -1, the input and output vectors of any neural network
layer (e.g., the embedding layer, FC layer and GRU layer in
Figure 2) are essentially bit strings. Therefore, regardless of
what computations are executed in a neural network layer, we
can realize equivalent input-output-relationship by recording
an enumerative mapping from input bit strings to output bit
strings as a match-action table. Thus, in the online forward
propagation through any layer, BoS uses input bit string as the
key to match the output bit string stored in the corresponding
table on switch. The caveat of this design is that the number
of required entries N in each table is determined by the num-
ber of input bits, i.e., N = 2input bit-length. We recognize this
constraint and demonstrate, via experiments (§ 7.2), that BoS
can deploy efficient RNN models under this constraint.
RNN Time Steps. As shown in Figure 3(a), a straightforward
way to implement RNN time steps is to store the RNN hidden
state for each flow sequence. Upon packet arrival, we read the
previous RNN hidden state, perform layer forward propaga-
tion, and then update the hidden state. Unfortunately, due to
hardware constraint, each register can only be accessed once
when a packet traverses the switching pipeline. Therefore, we
need to expand RNN time steps in serial stages, as shown
in Figure 3(b), where the read/write of hidden states spread
across multiple stages. Alternatively, we can store a sequence
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of embedding vectors corresponding to packet sequence of a
flow, as shown in Figure 3(c). In online forward propagation,
BoS calculates the embedding vector for each packet, updates
the sequence in storage and executes all RNN time steps for
this flow sequence in serial stages. We adopt this solution in
the final prototype as it consumes fewer hardware resources.
Sliding Window Mechanism. Since the number of switch
stages is limited, expanding the RNN time steps into serial
stages would also limit the total number of time steps exe-
cutable in our model. To address this problem, BoS designs a
novel sliding window mechanism that can recurrently apply
RNN inference on fixed-length flow segments. Therefore, the
number of RNN time steps executable on a flow is no longer
limited by switch stages. Specifically, in online traffic analy-
sis, BoS uses a window with fixed-size S to extract a segment
of S packets from the flow, executes S RNN time steps on
this segment to obtain an intermediate inference result ri, and
swifts the window by one packet to obtain a new segment, and
repeats the process. Therefore, BoS can continuously execute
RNN time steps as the flow proceeds.

The key to fulfill the sliding window design is to properly
aggregate these intermediate results. Specifically, upon receiv-
ing the jth packet, suppose that the binary RNN has processed
g full segments. Then the inference result for the jth packet
shall consider all the g intermediate inference results. In the
case of multi-class traffic classification, one simple strategy
is to select the majority class from these intermediate results.
More crucially, we can co-design the aggregation algorithm
with an off-switch module to improve the overall traffic anal-
ysis accuracy, as described below.

4.4 Analysis Escalation

Although BoS primarily relies on binary RNN to ensure line-
speed traffic analysis, we still want to embrace full-precision
and more advanced models (e.g., transformers) to handle
corner cases. For instance, in multi-class traffic classification,
it is possible that none of the classes dominates (e.g., the
numbers of flow segments for different classes are close to
each other). In this case, adopting the majority voting policy
may reduce classification confidence.

To this end, BoS adopts an off-switch traffic analysis mod-
ule co-located with the programmable data plane. We recog-
nize two challenges in accommodating this analysis module.
First, the aggregation algorithm must be carefully designed to
ensure that it can accurately capture ambiguity, while avoid-
ing consistently escalating flows (i.e., only a small fraction of
flows should be escalated to the co-located analysis module
in order to preserve line-speed analysis for the vast majority
of traffic). Second, the analysis module adopts a transformer-
based model to improve accuracy. However, due to the com-
plex computations required for inference, it is non-trivial to
scale the online analysis throughput to maintain the high
speed of network forwarding.

The Escalation Mechanism. To address the first challenge,
we measure the classification confidence in the aggregation
algorithm. Specifically, for each extracted packet segment in a
flow, the binary RNN predicts an intermediate inference result,
which is a vector of probabilities, one for each class. Suppose
that upon receiving the jth packet of the flow, the binary RNN
has processed g packet segments for the flow (i.e., the arrival
of the jth packet will form the {g+1}th segment). Then, our
algorithm aggregates all g+1 intermediate inference results
by accumulating the per-class prediction probabilities. The
class with the largest cumulative probability is selected as the
inference result for the jth packet.

Whether a flow should be escalated is determined by the
number of ambiguous packets in the flow. Upon receiving the
jth packet, suppose the largest cumulative probability among
all classes is CPRm and the total number of intermediate re-
sults is wincnt, then the classification confidence for the jth

packet is quantified as CPRm/wincnt. The packet is consid-
ered ambiguous if its confidence is below a predefined confi-
dence threshold. We use Tconf to represent the vector of con-
fidence thresholds, one for each class. The flow is escalated
when the number of ambiguous packets in the flow exceeds a
predefined escalation threshold Tesc.

Tconf and Tesc are learned based on the distributions of
the classification confidences of the training samples. Con-
sider the example in Figure 4. For the VoIP class in the IS-
CXVPN2016 dataset (see detailed descriptions in § 7.1), we
plot the CDF of the confidence scores for both correctly classi-
fied packets and misclassified packets. The confidence scores
are quantized because they are eventually computed on the
data plane (see § 5.2). An appropriate Tconf should escalate as
many misclassified packets as possible without affecting cor-
rectly classified packets. To this end, we design the following
loss function to train our binary RNN.

Suppose pi is the RNN’s prediction probability for class i
and y is the ground-truth class. The classic cross entropy (CE)
loss is CE =− log(py). The CE loss solely considers to im-
prove the model’s ability to predict the correct class. Our loss
is defined as L1 =−(1− py)

γ log(py)−λ∑i̸=y pγ

i log(1− pi),
which adds another item to explicitly negate the model’s pre-
diction on the non-ground-truth classes. The factor λ balances
the two items, while the modulating factors (1− py)

γ and pγ

i
down-weight easy samples and focus on hard samples, as pro-
posed in the Focal Loss [27]. Intuitively, this loss enhances the
confidence differences between misclassified and correctly
classified packets by reducing pi(i ̸= y) while retaining high
py. Since our aggregation algorithm chooses the class with
the largest accumulative probability, a simplified version of
the above loss function is to only reduce the maximum pre-
diction probability among all the non-ground-truth classes,
i.e., L2 = −(1− py)

γ log(py)−λpγ

false log(1− pfalse), where
pfalse is the largest pi among all the non-ground-truth classes.
We thoroughly evaluate these loss functions in § 7.3.

Once Tconf is determined, we set Tesc to control the amount

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    423



5 6 7 8 9 10 11 12 13 14 15
Quantized Confidence

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 P
ac

ke
ts

C
la

ss
ifi

ed
 a

s 
V

oI
P

Tconf

Correctly classified
Misclassified

91

92

93

M
ac

ro
-

-F
1 

(%
)

12 14 16 18 20 22
Escalation Threshold

2
4
6
8

Es
ca

la
te

d
Fl

ow
 (

%
)

Tesc

Figure 4: The selection of Tconf and Tesc.

of escalated flows. As shown in Figure 4, we select a Tesc

to ensure that no more than 5% flows are escalated to the
co-located analysis module for further analysis.
Integrated Model Inference System. To address the second
challenge, we design an IMIS that enables fast online inference
for a full-precision transformer-based model. As illustrated by
Figure 1, IMIS orchestrates four types of stateful and single-
threaded tasks (called engines) to realize a non-blocking traf-
fic processing pipeline. We describe the transformer model
training and the architecture of IMIS in § 6.

4.5 Integrated Analysis Logic

Algorithm 1 summarizes the complete logic of our online traf-
fic analysis in BoS. Because our binary RNN model leverages
flow-level data for inference, BoS designs a dedicated flow
manager to store per-flow state. When a packet P is received,
the flow manager first checks if per-flow state for P has al-
ready been allocated. If not, the flow manager allocates new
per-flow storage for the packet. The packet then enters the
normal flow-aware inference pipeline based on the retrieved
flow state. Due to the limited capacity of the switch, when
the flow manager cannot allocate storage for a new flow, BoS
falls back to analyzing the packets of that flow using a tree
model trained only using per-packet features (e.g., packet
length, TTL, Type of Service, TCP offset). This tree model is
deployed on the data plane alongside our binary RNN model.
The detailed design of the flow manager is deferred to § A.1.4.

We elaborate on one key design that has not been thor-
oughly discussed yet. In line 24, we periodically reset the
window counter and per-class results every K packets. This
effectively clears the contributions of very ancient flow seg-
ments (i.e., more than K +1 packets apart) when aggregating
the intermediate inference results. This design rationale is
that if we obtain a sub-flow fsub by extracting a continuous
and sufficiently long sequences of packets (starting from any
position) from a flow f , it is very likely that fsub and f are
classified as the same class. Thus, clearing the results of very
remote segments will not affect traffic analysis results. On
the contrary, without periodical reset, the per-class results
CPR would be consistently accumulated. To prevent buffer
overflow, we need to allocate more bits to store CPR, which,
unfortunately, results in significant hardware resource con-
sumption (see § 5.2). Note that the periodical reset does not
clear the embedding vectors for the previous S−1 packets.

Algorithm 1: Integrated Traffic Analysis Logic
Define :WIN[0 . . .S−1] sliding window; N No. of classes;

CPR[0 . . .N−1] per-class results; Tconf[0 . . .N−1]
the per-class confidence threshold; Tesc the
escalation threshold

1 if FlowManager(packet P ) fails then
2 Fall back to use the per-packet model, and exit

3 Retrieve the flow state for P
4 if P is matched by the EscTable then
5 Forward P to IMIS, and exit ▷ Escalated flows

6 pktcnt← pktcnt+1 ▷ Count packets
7 ev← FeatureEmbedding(P .length,P .IPD)
8 WIN[pktcnt % S]← ev ▷ Slide the window
9 if pktcnt < S then ▷ The first S−1 packets

10 Pre-analysis packet handling ▷ See § A.1.6
11 else
12 h← 0⃗
13 for i← 1 to S do ▷ RNN time steps
14 evi←WIN[(pktcnt+ i) % S]
15 h← RNNCell(evi,h)

16 PR← OutputLayer(h) ▷ Intermediate result: a
probability vector

17 CPR← CPR+PR
18 Class← argmax(CPR) ▷ Measure confidence
19 wincnt← wincnt+1 ▷ No. of windows
20 if CPR[Class]< Tconf[Class]∗wincnt then
21 esccnt← esccnt+1 ▷ Ambiguous packets

22 if esccnt ≥ Tesc then
23 Initiate escalated analysis for subsequent packets

24 if pktcnt % K = 0 then Reset(wincnt,CPR)

5 Model Realization on the Data Plane

5.1 Embedding Vector Storage and Retrieval

As shown in Figure 3(c), the RNN cell takes the embedding
vectors of the packets in each sliding window (with length
S) as input. Consider the flow segment starting with the kth

packet and ending with the {k+S−1}th packet. Upon arrival
of the {k+S−1}th packet, the current flow segment is full and
is ready to execute all S RNN steps simultaneously, i.e., using
the embedding vector of each packet as the key to obtain
the matched output in each GRU table (S tables in total).
Thus, before a segment is full, we need to temporally hold
the embedding vectors for prior S−1 packets. We design
a ring buffer with S−1 bins (registers) to store embedding
vectors. In particular, the kth packet in the segment is stored in
the {k % (S−1)+1}th bin (indexed from 1) of the ring. The
embedding vector of the {k+S−1}th packet eventually takes
the bin occupied by the kth packet, which will be out-of-scope
upon the arrival of the {k+S}th packet. The second benefit of
the ring buffer design is that all bins are mutually independent,
so that they can be accessed in parallel.

The efficient storage of embedding vectors leads to a chal-
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Figure 5: Storage and retrieval of embedding vectors.

lenge in reading these vectors. Specifically, given a flow seg-
ment, the embedding vector of the first packet in this seg-
ment is not always stored in the first bin of the ring buffer.
Therefore, it is incorrect to statically align the ring buffer
with GRU tables, i.e., using the value stored in the kth bin
as the input key of the kth GRU table. Instead, the input
of the ith GRU (for i ∈ [1,S− 1]) should be read from the
{(k−S+ i)%(S−1)+1}th bin. However, when declaring a
lookup table for GRU on switch, the storage locations of its
keys must be static and predetermined. Thus, to realize the
above dynamic mapping, we need to first read values from the
ring buffer to several intermediate variables (called metadata),
and then dispatch the metadata to the proper GRU tables, as
shown in Figure 5.

5.2 Intermediate Results Aggregation
As described in § 4.4, the key operation in our RNN inference
is to select the largest cumulative probability from all interme-
diate inference results, i.e., executing an argmax operation.
Ternary-Matching Based Design. Argmax is not a primi-
tive available on the switch. We realize argmax based on an
efficient data plane design of number comparison. Intuitively,
number comparison can be accomplished by either condi-
tional statements or exact-matching table matching. Neither
of them, however, is scalable (see § A.1.1).

In BoS, we propose a scalable ternary-matching based de-
sign. Suppose argmax compares n numbers each with m bits.
The key of a table entry consists n segments, each with m
ternary bits (i.e., 0, 1, or ∗). The value represents the winner
(i.e., the largest number). Starting from the most significant
bit (MSB), to generate the lth bit for each key segment, there
are 2n possible cases. Consider a case C(l,k) where the lth bits
of the first k (k∈[1,n-1]) segments are 1 and the lth bits of the
remaining segments are 0. Clearly, the segments whose lth

bits are 0 will not be the winner, so that we can stop further
enumerating the lower bits (i.e., the {l+1}th,{l+2}th, ...,mth

bits) for these segments. Thus, among all 2(m−l)·n sub-cases
of the case C(l,k), we do not need further enumerations for
2(m−l)·k of them, achieving a 2(m−l)·(n−k) reduction ratio. Take
C(1,1) as an example: it represents the case where the first (i.e.,
the most significant bit, MSB) of the first segment is 1 and the
MSBs for other remaining segments are 0. Thus, all 2(m−1)n

sub-cases for C(1,1) have clear winners and are collapsed into

Inputs:

n: number of keys; m: bit width of each key  

Procedure Generate(n, m):

T = {1...n} ▷ initial input, all the numbers can be the winner

▷ For explanation purpose, entry is represented as a 2-D array

entry = array[1..n][1..m] ▷ array of ternary bits (0, 1, *) 

Work(T, 1)

Procedure Work(S, L): ▷ S: possible winners in this iteration

for num ∈ 𝑇\S⇒ entry[num][L] = ‘*’ ▷ cases cannot win

if L = m ⇒ Output(S), return ▷ base case: last bit

for 𝜙 ⊂ 𝑆′ ⊂ 𝑆:  ▷ cases similar to 𝐶(𝐿,|𝑆′|)
for num ∈ S\S′⇒ entry[num][L] = ‘0’

for num ∈ S′⇒ entry[num][L] = ‘1’

Work(S’, L+1) ▷ Recursive resolve

for num ∈ S⇒ entry[num][L] = ‘*’ ▷ case 𝐶(𝐿,0) & 𝐶(𝐿,|𝑆|)
Work(S, L+1)  ▷ Recursive resolve

Procedure Output(S):  ▷ S: possible winners in this iteration

a = list(S) in INCREASING order ▷ indexed from 1

for i = len(a) downto 2:  ▷ winning case for a[i≥2]

for k ∈ [1..i-1] ⇒ entry[a[k]][m] = ‘0’

entry[a[i]][m] = ‘1’

for k ∈ [i+1..len(a)] ⇒ entry[a[k]][m] = ‘*’

install(entry, winner=a[i])

for num ∈ S ⇒ entry[num][m] = ‘*’  ▷ winning case for a[1]

install(entry, winner=a[1])
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3:
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11:
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15:

16:
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Figure 6: The procedure to generate a ternary-matching table
to realize argmax on the data plane.

one key (e.g., 1∗∗∗,0∗∗∗,0∗∗∗ if n=3,m=4).
Based on the above protocol, we derive the number of

required table entries F(n,m) as (see details in § A.1.2).

F(n,m) = 2∗F(n,m−1)

+
n−1

∑
i=1

(
n
i

)
F(i,m−1) for n,m≥ 2

F(n,1) = 2n for n≥ 2; F(1,m) = 1 for m≥ 1.

(1)

Further Optimizations. We make two subsequent optimiza-
tions to further reduce F(n,m). First, the two special cases
C(l,n) (i.e., the lth bits in all n segments are 1) and C(l,0) (i.e.,
the lth bits in all n segments are 0) can be further merged.
Specifically, for all 2m−l sub-cases of C(l,n), their winners re-
main the same if we modify the lth bits of all n segments to
0; and similarly for 2m−l sub-cases of C(l,0), their winners
remain the same if we modify the lth bits of all the n segments
to 1. Thus, C(l,0) and C(l,n) can be merged by modifying the
lth bit as an wildcard asterisk in each segment. We handle this
merged case lastly in the current enumeration of the lth bit
(see lines 13 and 14 in Figure 6), so that these wildcard aster-
isks will not interfere with previous cases with higher priority
(see lines 9 to 12 in Figure 6). With this optimization, F(n,m)
is reduced as F(n,m) = F(n,m−1)+∑

n−1
i=1

(n
i

)
F(i,m−1).

The second optimization is reducing the base case F(n,1).
By reversely encoding the one-bit number comparison (see
Figure 7), F(n,1) is reduced to n from 2n. Combining both
optimizations, we obtain F(n,m) = nmn−1.
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Figure 7: The reverse encoding for F(n,1).

6 Implementation

Our BoS prototype1 includes: 1500 lines of Python code for
model training, 1900 lines of P4 code for on-switch RNN, and
3300 lines of C++ code for IMIS. To evaluate the prototype,
an additional 1600 lines of code are developed.
Model Training. We train a binary RNN to analyze flow
segments extracted by the sliding window. Given the window
size S and a flow sample (P1,P2, . . .) in the training dataset,
we slice this flow into all possible packets segments (e.g., con-
secutive S packets like (P1, . . . ,PS) and (P2, . . . ,PS+1)) where
the label of each segment is the flow label. For each segment,
we use its packet length sequence and IPD sequence as inputs,
and train the binary RNN to predict its label correctly. Recall
that our binary RNN outputs vector of probabilities, one for
each class. The training process is to maximize the prediction
probability on the ground-truth class.

We use YaTC [66], a recent masked autoencoder
(MAE) [16] based traffic transformer with multi-level flow
representation, in IMIS to analyze escalated flows. YaTC only
uses the first 5 packets of a flow for analysis. For each packet,
it extracts the first 80 header bytes and 240 payload bytes as
inputs. We first determine the two thresholds in § 4.4 to col-
lect the escalated flows in the training set, and then fine-tune
the pre-trained YaTC model [66] to obtain our final model.
On-Switch RNN Implementation. We implement a proto-
type on our Tofino 1 programmable switch. The top part of
Figure 8 shows the workflow of all the components in our
prototype. The left-bottom table in Figure 8 lists the hyper-
parameters of our prototype, and the right-bottom table lists
the detailed per-stage arrangement of our components. Due
to space constraints, we defer the detailed description of our
prototype to § A.2.1. Although the hardware resources on the
Tofino 1 are very limited (e.g., only 12 stages), we manage to
implement a prototype that supports all four traffic analysis
tasks evaluated in § 7.1. The on-switch RNN is programmable
in runtime via the control plane (see § A.3).
IMIS Implementation. The core design of IMIS is a non-
blocking traffic processing pipeline. As illustrated in Fig-
ure 1, architecturally, IMIS is designed around stateful, single-
threaded tasks, which we call engines. The parser engine uses
DPDK [18] (version 20.11) APIs to consistently collect the
packet bytes from the escalated traffic; the pool engine takes
the stream data as input and organizes it into per-flow state;
the analyzer engine calls the pool engine to collect a batch
of fresh per-flow data, and uses CUDA (version 11.7) [38] to

1Available at https://github.com/InspiringGroup-Lab/Brain-on-Switch

interact with an auxiliary GPU to accelerate model inference;
and the buffer engine stops packets without inference results
to wait in memory, and sends those who have inference results
to NIC. The pool engine is the key to dynamically coordi-
nate the speeds of the parser engine and analyzer engine, thus
achieving a non-blocking packet processing pipeline. The
detailed architecture of the IMIS system is deferred to § A.2.2.

7 Evaluation
7.1 Experiment Setup

Testbed Setup. We deploy our binary RNN model using one
pipe of a Barefoot Tofino 1 programmable switch. One server
generates network traffic to an inbound port of the switch
based on the pcap files we created for various traffic analysis
tasks and traffic loads. Each flow is either analyzed by the on-
switch RNN or redirected from one specific switch port to an
off-switch server that deploys IMIS. For the flows analyzed on-
switch, we develop a dedicated on-switch module to collect
their analysis statistics online. Scaling the on-switch analysis
of BoS beyond a single pipe of the switch is feasible given
proper flow management. We discuss this in § A.3.
Tasks. We evaluate BoS using the following four tasks.
(i) Encrypted traffic classification on VPN: this task clas-
sifies network traffic encrypted by VPNs. We use the IS-
CXVPN2016 [12] dataset, a six-class classification task
(Email, Chat, Streaming, FTP, VoIP, P2P). (ii) Botnet traffic
classification: this task classifies botnet traffic collected from
the IoT systems. We use the BOTIOT [22] dataset, a four-
class classification task (Data Exfiltration, Key Logging, OS
Scan, Service Scan). (iii) Behavioral analysis of IoT devices:
this task classifies traffic generated by IoT devices in differ-
ent working states. We use the CICIOT2022 [10] dataset,
a three-class classification task (Power, Idle, Interact). (iv)
P2P application fingerprinting: this task classifies network
traffic generated by P2P applications. We use the PeerRush
dataset [40], a three-class classification task (eMule, uTorrent,
and Vuze). We supplement additional details regarding the
processing of these datasets in § A.4.
Network Load. We would like to evaluate BoS under dif-
ferent network loads. Similar to prior art [51, 61, 71], we use
the number of new flows arrived in each second to represent
the network load. Specifically, for each testing flow in a task,
we extract its raw packets from the pcap file while preserving
the inter-packet delays. Given the total number of flows in
this task, and a desired network load, we calculate the total
time period required to replay these flows, and then uniformly
release these flows within this period. If the period is too
short, we replay these flows multiple times in a loop to create
consistent loads throughout our test.

The actual network load varies in different deployment.
We make load estimations based on prior measurements. In
2015, Meta [42] reported that its external-facing web server
generates 500 new flows per second (median). Meanwhile,
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Figure 8: The breakdown of our on-switch RNN implementation on a Tofino programmable switch.

Table 2: Experimental settings.

Datasets
(Tasks)

ISCXVPN
2016

BOT
IOT

CICIOT
2022

Peer
Rush

Training Flows 7801 7835 5332 30770
Testing Flows 1951 1961 1335 7694

Classes 6 4 3 3
Class Ratio⋆ 2:6:1:5:9:3 1:1:4:19 1:4:1 2:1:1

Best Loss L1 L1 L2 L1
λ,γ 0.8, 0 0.5, 0.5 3, 1 1, 0

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 0.01 0.005 0.005 0.005

RNN Hidden States† 9 bits 8 bits 6 bits 5 bits
Per-packet Model Acc. 0.596 0.327 0.759 0.684

Network Load Low Normal High Scaling

No. of flows / s 1000 2000 4000 up to 7.8M
⋆ See § A.4 for the accurate numbers of flows in each class.
† We evaluate BoS under different binary RNN model sizes in § A.6.

CISCO [9] measures that Internet traffic grows 3-fold from
2016 to 2021. Combining these measurements, we estimate
that 2000 new flows per second are a reasonable network load
that BoS may face in practice. In our scaling test (see § 7.3),
we stress test BoS with up to 450,000 new flows per second
on our testbed (a 225x increase from the normal load, and
30-300x over NetBeacon [71]).
Metrics. We use packet-level macro-F1 (the average of F1-
score for different classes) as the accuracy metric, and further
report the breakdown of the Precision / Recall of each class.

7.2 End-to-end Performance
In this section, we report the end-to-end performance of BoS
for different tasks. The main experimental settings are sum-
marized in Table 2. In § 7.3, we evaluate BoS under a variety
of settings. We also compare BoS with two recent art NetBea-
con [71] and N3IC [51]. N3IC deploys the binary MLP on a
SmartNIC. For fair comparison, we simulate the switch-side
traffic management logic and the binary MLP inference in
software to obtain the traffic analysis results for N3IC. The
detailed descriptions about the reproduced versions of the two
art are given in § A.5.
Accuracy. We summarize the analysis accuracy results in
Table 3. Across all evaluated tasks, BoS achieves significantly

better performance than NetBeacon and N3IC, with an aver-
age F1-score improvement of 0.13 and 0.31, respectively. On
more challenging tasks with more classification classes, the
improvement is even greater, up to 0.19 and 0.42, respectively.
We observe the binary MLP performs the worst because the
accuracy loss caused by binarizing all model weights is sig-
nificant. In fact, on the ISCXVPN2016 and CICIOT2022
datasets, the F1-scores of N3IC are even lower than these of
our fallback tree-based model (0.596/0.759). Constrained by
the availability of flow features, NetBeacon can only execute
model inference at discrete locations. Thus, an inference error
affects all its subsequent packets until it is corrected by the
next inference point. This fundamentally limits its F1-scores,
especially for more difficult tasks. In contrast, BoS retains
full-precision model weights in the on-switch RNN model and
continuously produces fresh inference results as a flow pro-
ceeds. Together with the co-located IMIS, BoS produces more
accurate analysis results than existing arts, achieving over
0.920 F1-score in all tasks. We observe very minor declines
of F1-scores in BoS as the network load increases, demonstrat-
ing the effectiveness of our flow management (note that we
use the same flow management module for other two systems
as well). The minor accuracy loss is because a small frac-
tion of flows (e.g., 2.77%/1.43%/2.05%/5.22% in the normal
network load case) fall back to using the per-packet model.

Hardware Resource Utilization. We report the stateful
SRAM and stateless SRAM/TCAM usage by BoS on the pro-
grammable switch in Table 4. The stateful SRAMs are con-
sumed to maintain per-flow states, which mainly consist of the
flow management information (e.g., TrueID and timestamp,
see § A.1.4), the embedding vectors (EV) for binary RNN
inference, and the cumulative probability counter (CPR) for
each class. In our prototype, the hardware consumption for
the first two parts is task-irrelevant, and one task uses roughly
8.85% of SRAM. The consumption for the last part depends
on the number of classification classes in a task, and the four
tasks use roughly 5.63%/3.75%/2.81%/2.81% of SRAM, re-
spectively. The embedding vectors stored for each flow take
8× (S−1)+8 bits (64 bits in our prototype). Compared with
existing approaches [51, 71] that require online feature com-
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Table 3: Analysis accuracy for BoS and other two closely related art.

Methods BoS NetBeacon [71] (Tree-based Models) N3IC [51] (Binary MLP)

Network Load Low Normal High Low Normal High Low Normal High

Encrypted Traffic Classification on VPN (ISCXVPN2016)

Email 0.935 / 0.933 0.936 / 0.925 0.933 / 0.923 0.309 / 0.514 0.315 / 0.524 0.320 / 0.525 0.347 / 0.326 0.354 / 0.339 0.367 / 0.350
Chat 0.903 / 0.818 0.902 / 0.818 0.901 / 0.814 0.739 / 0.935 0.739 / 0.933 0.742 / 0.925 0.336 / 0.655 0.336 / 0.654 0.342 / 0.656

Streaming 0.926 / 0.941 0.926 / 0.939 0.926 / 0.910 0.963 / 0.919 0.962 / 0.904 0.962 / 0.874 0.741 / 0.608 0.742 / 0.603 0.743 / 0.581
FTP 0.973 / 0.928 0.973 / 0.926 0.973 / 0.922 0.946 / 0.659 0.946 / 0.655 0.947 / 0.654 0.563 / 0.396 0.567 / 0.396 0.575 / 0.397
VoIP 0.968 / 0.958 0.968 / 0.958 0.968 / 0.957 0.938 / 0.882 0.939 / 0.881 0.939 / 0.882 0.883 / 0.783 0.884 / 0.782 0.886 / 0.787
P2P 0.905 / 0.927 0.903 / 0.928 0.876 / 0.930 0.810 / 0.959 0.798 / 0.959 0.778 / 0.960 0.578 / 0.739 0.577 / 0.742 0.565 / 0.748

Macro-F1 0.926 0.925 0.919 0.786 0.784 0.780 0.565 0.567 0.568

Botnet Traffic Classification on IoT (BOTIOT)

Data Exfiltration 0.964 / 0.974 0.951 / 0.973 0.899 / 0.971 0.691 / 0.845 0.684 / 0.847 0.658 / 0.848 0.514 / 0.879 0.508 / 0.881 0.506 / 0.879
Key Logging 0.960 / 0.946 0.961 / 0.962 0.959 / 0.902 0.921 / 0.425 0.921 / 0.419 0.918 / 0.399 0.055 / 0.033 0.058 / 0.033 0.052 / 0.031

OS Scan 0.996 / 0.996 0.995 / 0.989 0.995 / 0.966 0.838 / 0.963 0.841 / 0.963 0.844 / 0.945 0.831 / 0.693 0.830 / 0.677 0.831 / 0.672
Service Scan 0.993 / 0.992 0.986 / 0.973 0.979 / 0.978 0.928 / 0.876 0.927 / 0.870 0.917 / 0.858 0.845 / 0.663 0.830 / 0.664 0.840 / 0.663

Macro-F1 0.978 0.974 0.955 0.785 0.782 0.769 0.547 0.542 0.541

Behavioral Analysis of IoT Devices (CICIOT2022)

Power 0.926 / 0.887 0.924 / 0.882 0.921 / 0.882 0.819 / 0.726 0.820 / 0.724 0.817 / 0.724 0.639 / 0.750 0.640 / 0.750 0.640 / 0.748
Idle 0.922 / 0.943 0.921 / 0.942 0.918 / 0.941 0.810 / 0.938 0.808 / 0.938 0.806 / 0.936 0.618 / 0.640 0.620 / 0.642 0.622 / 0.646

Interact 0.934 / 0.946 0.934 / 0.948 0.934 / 0.943 0.871 / 0.786 0.873 / 0.786 0.872 / 0.784 0.651 / 0.504 0.655 / 0.506 0.661 / 0.510
Macro-F1 0.926 0.925 0.923 0.822 0.821 0.820 0.629 0.631 0.633

P2P Application Fingerprinting (PeerRush)

eMule 0.943 / 0.949 0.918 / 0.949 0.898 / 0.950 0.846 / 0.954 0.821 / 0.955 0.805 / 0.954 0.734 / 0.866 0.730 / 0.867 0.723 / 0.875
uTorrent 0.949 / 0.924 0.950 / 0.912 0.941 / 0.894 0.882 / 0.870 0.885 / 0.858 0.885 / 0.831 0.734 / 0.789 0.735 / 0.790 0.738 / 0.783

Vuze 0.946 / 0.962 0.945 / 0.947 0.941 / 0.930 0.910 / 0.810 0.907 / 0.790 0.904 / 0.793 0.821 / 0.626 0.826 / 0.622 0.826 / 0.616
Macro-F1 0.945 0.937 0.925 0.877 0.866 0.858 0.755 0.755 0.752

Table 4: Hardware resource utilization.
Datasets
(Tasks)

ISCXVPN
2016

BOT
IOT

CICIOT
2022

Peer
Rush

SRAM

Flow Info. (stateful) 5.21% 5.21% 5.21% 5.21%
EV (stateful) 3.65% 3.65% 3.65% 3.65%

CPR (stateful) 5.63% 3.75% 2.81% 2.81%
FE (stateless) 2.19% 2.19% 2.19% 2.19%

GRU (stateless) 3.02% 1.56% 0.73% 0.73%
Total⋆ 23.44% 20.10% 18.33% 18.33%

TCAM Argmax (Total) 1.74% 1.04% 0.69% 0.69%
⋆ Including other components not listed, e.g., packet counters for each flow.

putation, their per-flow storage consumption depends on the
used flow features. For instance, NetBeacon [71] engineers 7
important features for the P2P application fingerprinting task,
which consumes roughly 150 bits.

The stateless SRAM is used to implement the lookup ta-
bles for feature embedding (FE) and GRU layers in our binary
RNN. Specifically, the SRAM consumption of GRU layers
depends on the number of bits used for storing RNN hidden
states. Using the default bitwidth in Table 2, the four tasks
use roughly 3.02%/1.56%/0.73%/0.73% of SRAM, respec-
tively, for GRU layers. Additionally, each task uses 2.19%
of SRAM for feature embedding. In total, the four tasks use
23.44%/20.10%/18.33%/18.33% of SRAM, respectively.

BoS uses TCAM to implement the argmax operation. Com-
pared with NetBeacon [71], BoS consumes SRAM of similar
size and 20x less TCAM (note that the ternary matching in
TCAM is 6x more expensive than exact matching with SRAM,
in terms of required silicon resources [51]).

7.3 BoS Deep Dive

Analysis Escalation. In this segment, we study the trade-off
between the amount of escalated flows and the overall macro-
F1, demonstrating that our loss functions defined in § 4.4
achieve a better trade-off than the classic cross entropy loss.
As described in § 4.4, the escalation threshold Tesc controls
the amount of escalated flows. Using the setting in Table 2, we
train the binary RNN with our losses and cross entropy loss,
respectively, and measure the overall macro-F1 with different
amount of escalated flows under the normal network load
(2000 flows/s). The results are plotted in Figure 9, and the
best parameters (λ,γ) of our losses in each task are presented.
We make the following key observations. (i) Regardless of
the used loss functions, the overall macro-F1 scores for all
tasks improve as the percentage of escalated flows increases
from 0% to 5%. This demonstrates the necessity for accom-
modating the off-switch analysis model to compensate for
on-switch analysis. (ii) For the same amount of escalated flows,
our losses outperform the cross entropy loss by significant
margins across all tasks. This shows that our loss designs
can more effectively identify the ambiguous packets that re-
quire additional reevaluation. This is crucial to improve the
overall system performance without consistently escalating
flows. (iii) The performance of our two losses L1 and L2 is
task-dependent. In general, L1 outperforms L2 in three tasks,
yet L2 requires less training epochs to converge.
System Performance of IMIS. In this segment, we stress test
the performance of off-switch IMIS upon a burst of concurrent
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Figure 9: [Testbed] The trade-off between percentage of escalated flows and the overall accuracy.
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Figure 10: [Testbed] The inference throughput and latency of the off-switch IMIS.

flows. We run the IMIS with 8 parallel analysis modules. We
evaluate four different levels of flow concurrency (2048, 4096,
8192, and 16384 flows) with three different aggregate inbound
rates (5.0, 7.5 and 10.0 million packets per second). The
complete inference pipeline for a packet P in IMIS has six
phases: (1) P is fetched from the NIC by the parser engine; (2)
its metadata is organized by the pool engine; (3) its metadata is
sent to the analyzer engine; (4) the analyzer engine generates
the inference result; (5) the result is collected by the buffer
engine; (6) P is dispatched to NIC by the buffer engine.

The transformer model in IMIS performs inference on the
first five packets of each flow. Given that the average length
of the escalated flows in each tasks is 801, 255, 167, and 138
packets, respectively, the vast majority of packets in these
escalated flows are directly forwarded to the buffer engine
after being collected from the NIC, experiencing very minor
latency (less than 1ms). In the following, we only consider
the latency for the packets that traverse the entire inference
pipeline. The CDFs of the end-to-end latencies are plotted in
Figures 10(a) to (c). When the number of concurrent flows
is below 4096, the maximum end-to-end latency imposed
by IMIS is less than 2 seconds even for 10.0 Mpps inbound
rate (equivalently 41 Gbps as the packet sizes we send are
512 B). Considering that BoS typically escalates less than 5%
of flows, the flow concurrency levels experienced by the IMIS
are expected to be low in most deployments. In Figure 10(d),
we further report the breakdown of the end-to-end latency
(i.e., the time intervals between two consecutive phases in
the inference pipeline) under 8192 concurrent flows and an
inbound rate of 5.0 Mpps. We observe that the major latency
occurs between the second and third phase, when the packets
are waiting to be collected by the analyzer engine. The net
inference time spent in the analyzer engine is about 0.6 s.

Scaling Test. We stress test BoS in high-throughput scenarios
with high flow concurrency and high flow throughput. Specif-
ically, because all the original network traces are collected
in low bandwidth networks (e.g., tens of Mbps), we create
high-throughput network traces by concurrently packaging a
large number of flows (while ensuring each flow has a unique
identifier) and accelerating the packet replay speeds (by re-
ducing the inter-packet delays). Then we replay these pcap
files to generate traffic on our testbed. Figure 11 presents the
scaling test results, where we progressively increase the flow
concurrency to saturate the physical capacity of the NIC on
our traffic generator. The results demonstrate that BoS can
comfortably handle this level of scale, as the macro-F1 scores
remain nearly identical compared to the results in Table 3.

To evaluate BoS at even larger scales, we build a simula-
tor to emulate the entire workflow of BoS. The accuracy of
the simulator is validated by replicating the experimental set-
tings of Table 3 and Figure 11. The accuracy results obtained
through the simulation are almost the same as those collected
from our testbed. We subsequently employ the simulator to ex-
plore significantly larger scales, progressively increasing flow
concurrency to up to 7.8 million flows per second, and the
aggregate throughput to over 1.6 Tbps. The results depicted in
Figure 12 reveal a sublinear decline in the macro-F1 scores of
BoS, culminating in a ∼11.6% reduction at the largest scale.

Fallback Alternative. The default handling of the flows with-
out dedicated per-flow storage is to analyze their packets using
a tree-model trained trained only on per-packet features (see
§ A.1.5). Alternatively, a subset of the flows without dedicated
per-flow storage can be forwarded to a new instance of off-
switch IMIS dedicated to handling these flows. In Figure 11
and 12, we report the macro-F1 when forwarding a certain
percentage of flows without per-flow storage to a dedicated
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Figure 11: [Testbed] Scaling test of BoS when we progressively increase the aggregate throughput to 100 Gbps.
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Figure 12: [Simulation] Scaling test of BoS when we progressively increase the aggregate throughput to 1.6 Tbps.

IMIS. When the flow concurrency is high (i.e., Figure 12), this
method exhibits reasonable accuracy advantages over falling
back to use the per-packet model.

8 Discussion and Related Work
Hardware Dependency. BoS is generic in the sense that
all its core designs (e.g., retaining full-precision RNN model
weights, using sliding windows to compute unlimited RNN
step times) are all realizable using match tables. Since table
matching is the universal primitive for any data plane, we
expect our designs, with lightweight adaptation, are also de-
ployable on other types of programmable data plane devices.
ML-driven Traffic Analysis. Our community has proposed
various ML-powered traffic analysis designs, such as intrusion
detection [15, 19, 33], website fingerprinting [11, 41, 46, 65],
and encrypted traffic classification [39, 47, 48, 55]. However,
it is difficult to directly apply their models in INDP due to the
hardware constraints on the data plane.
Advances in the Programmable Data Plane. The flex-
ibility of programmable switches encourages a number of
customized applications on the data plane, including net-
work telemetry and monitoring [34, 35, 45], network secu-
rity [60, 62, 67, 71], and network functions [20]. Addition-
ally, [23, 44] use programmable switches to accelerate ML
training, and [25, 53, 70] design auxiliary modules within a
switch or leverage off-switch FPGA. Our work focuses on
enabling NN-driven INDP using only commodity hardware.
Deployment. BoS is an application-specific system de-
signed for high-throughput and low-latency NN-driven traf-
fic analysis. Therefore, we have not discussed co-deploying

other networking functions with BoS on the same pro-
grammable switch. Although BoS consumes multiple stages,
the SRAM/TCAM consumption per stage is small (see Ta-
ble 4). Thus, networking functions orthogonal to BoS (e.g.,
the ECMP in [14]) can be co-deployed with BoS in parallel.
Additionally, the latest Tofino chips have almost doubled the
number of stages and TCAM/SRAM resources compared to
the Tofino 1 chip we use. Thus, we envision that networking
functions that may depend on BoS’s analysis results (e.g., the
traffic policing in [14]) may also be co-deployed with BoS.

9 Conclusion
In this paper, we present BoS, the first INDP design that en-
ables NN-driven traffic analysis at line-speed. The key novelty
of BoS is to realize complex RNN computations using a set
of novel data plane native operations, and meanwhile to ac-
commodate a transformer-based traffic analysis module via a
carefully designed flow escalation mechanism. We implement
a prototype of BoS and evaluate it thoroughly on four traffic
analysis tasks. The results demonstrate that BoS advances
SOTA in both traffic analysis accuracy and scalability.
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A Appendix

A.1 Model Realization on the Data Plane
In this segment, we supplement additional design details re-
garding deploying our binary RNN on the programmable data
plane.

A.1.1 Intuitive Number Comparison

The foundation to realize argmax is number comparison.
There are two types of approaches to compare numbers on the
programmable data plane. The first is based on conditional
statements. Specifically, a simple statement to compare numA
and numB is

if (num_A > num_B) act_A; else act_B;

which, unfortunately, is not compiled because the condition
is too complex. We could avoid complex condition by the
following statement

tmp = num_A - num_B;
if (tmp > 0) act_A; else act_B;

which takes at least two switch stages. More crucially, it is
difficult to scale statement-based approaches to compare n
numbers since it would take n× (n−1)/2 differences.

The alternative approach is designing a match-action table
which takes the numA and numB as keys (e.g., the concate-
nation of their bits) and performs actA or actB according to
the lookup result. Meanwhile, we can easily extend width of
keys to realize the comparison of multiple numbers, which
is exactly the argmax operation. Yet, the drawback is the
explosion of required table entries: to obtain the maximum
number among n values, each with m-bits, it takes 2nm entries
to enumerate all possible key-value combinations.

A.1.2 Ternary-Matching Based Design

In § 5.2, we discuss the implementation of argmax operation
with ternary matching. We define the problem as following
conditions and restrictions.

1. There are n numbers of m bit(s) each, where n,m≥ 1.

2. There is a predefined order to determine which number
to select when there is a tie for maximum value.

3. Only one ternary matching is allowed, i.e., the calcula-
tion before matching is prohibited.

We denote the number of table entries as F(n,m). Based
on the basic optimization in § 5.2, we get the following recur-
rence relationship of F(n,m).

F(n,m)= 2×F(n,m−1)+
n−1

∑
i=1

(
n
i

)
F(i,m−1),n≥ 2,m≥ 2

(2)

We explain the meaning of the above equation as follows.
The entries should cover all possible combinations of the
n numbers. We consider all the combinations in different
categories classified according to the combination of most
significant bits (MSBs). Among all 2n categories, there are(n

i

)
categories where i numbers are with MSB = 1 and n− i

numbers are with MSB = 0 (i∈ [1,n−1]). In these categories,
we do not further consider those n− i numbers with MSB = 0,
and only focus on the possible combinations of the i numbers
with MSB= 1, which are sub-problems with n′= i,m′=m−1
and require

(n
i

)
F(i,m− 1) entries in total. In the other two

categories (all MSB= 0 or all MSB= 1), we continue to focus
on the possible combinations of all the n numbers, which
are both sub-problems with n′ = n,m′ = m− 1 and require
2×F(n,m−1) entries in total.

After the two optimizations described in § 5.2, the recur-
rence relation of F(n,m) is given as follows.

F(n,m) = F(n,m−1)+
n−1

∑
i=1

(
n
i

)
F(i,m−1),n≥ 2,m≥ 2

(3)

F(n,1) = n,n≥ 1 (4)

F(1,m) = 1,m≥ 1 (5)

By solving this iterative formula, we obtain F(n,m) =
nmn−1. We provide the derivation process from Equation (3)
as follows. First, let F(0,m) = 0,m≥ 1, which is consistent
with the Equation (4). Then the Equation (3) can be written
as:

F(n,m) =
n

∑
i=0

(
n
i

)
F(i,m−1),n≥ 0,m≥ 2 (6)

Then, we transform the formula and get:

F(n,m) =
n

∑
i=0

n!
i!(n− i)!

F(i,m−1),n≥ 0,m≥ 2 (7)

F(n,m)

n!
=

n

∑
i=0

F(i,m−1)
i!

1
(n− i)!

,n≥ 0,m≥ 2 (8)

We denote F(n,m)
n! as mgn, and 1

n! as hn. Then we construct
the generating function of mg and h.

mG(x) = ∑
n=0

mgnxn = ∑
n=0

F(n,m)

n!
xn,m≥ 1 (9)

H(x) = ∑
n=0

hnxn = ∑
n=0

xn

n!
= ex (10)
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Table 5: The no. of entries required for different m,n.

No. of Entries Opt 1 & 2 Opt 2 only Opt 1 only Base Design 2mn

n=3,m=16 768 2949123 863 4587523 2.81e14
n=4,m=8 2048 44028 2788 76028 4.29e9
n=5,m=5 3125 10245 5472 21077 3.36e7
n=6,m=4 6144 10890 13438 26978 1.68e7

We can obtain the recursive relations between mG and
m−1G from Equation (8).

mG =m−1 G×H,m≥ 2 (11)

And for m = 1, we have

1G(x) = ∑
n=0

1gnxn = ∑
n=0

F(n,1)
n!

xn

= ∑
n=0

n
n!

xn = ∑
n=1

1
(n−1)!

xn

= x ∑
n=0

1
n!

xn = xex

(12)

With the mathematical induction, we can get

mG(x) = xemx,m≥ 1 (13)

Compared with the Equation (9) and we can get

F(n,m) =m G(n)(0) = (xemx)(n)
∣∣∣∣
x=0

= (nmn−1 +mnx)emx
∣∣∣∣
x=0

= nmn−1,n≥ 1,m≥ 1

(14)

We can verify the result using mathematical induction.

F(n,m−1)+
n−1

∑
i=1

(
n
i

)
F(i,m−1)

=
n

∑
i=1

(
n
i

)
i(m−1)i−1

= n
n

∑
i=1

(
n−1
i−1

)
(m−1)i−1

= n
n−1

∑
i=0

(
n−1

i

)
(m−1)i

= nmn−1 = F(n,m)

(15)

In Table 5, we list the number of entries required for differ-
ent combinations of m and n. The results demonstrate that our
design, augmented by two optimizations, significantly reduces
table consumption for achieving the argmax operation.

A.1.3 Packet Counters

Because the number of packets in a flow is unknown in ad-
vance, statically allocating a fixed width of bits for packet

counters may result in buffer overflow. Meanwhile, as de-
scribed in § 5.1, we need to perform modulo operations on
packet count (i.e., pktcnt % (S−1)) when storing embedding
vectors. Thus, packet counting in BoS is designed based on
two parallel counters: the first counter increases from 1, and
stops at S (the sliding window size). For the ith packet, it re-
turns i if i < S, otherwise it returns S. The second counter
increases from 0 and cycles back to 0 after S− 2, simulat-
ing the modulo operation. Thus, when the number of arrived
packets in the flow exceeds S, the first counter essentially be-
comes a flag indicating that index for the ring buffer (storing
embedding vectors) can be read from the second counter.

A.1.4 Flow Management

BoS relies on stateful storage to maintain per-flow state.
Prior art [4, 61] relies on the control plane to allocate non-
conflicting storage indices for different flows. To achieve line-
speed traffic analysis, BoS relies on the readily available hard-
ware hashing to allocate flow storage indices. In particular, the
storage index for flow f is computed as H ( f (5-tuple) % N),
where H is the hash function, and N represents the total num-
ber of continuous per-flow storage blocks allocated for main-
taining per-flow state.

Both hash and modulo operations may result in flow index
collisions, i.e., two different flows (with different 5-tuples)
may receive the same storage index. To avoid confusions,
BoS stores a tuple {TrueID, timestamp} alongside the storage
index, where TrueID represents the actual flow identifier2 and
timestamp represents the latest packet arrival time for the flow.
When storage indices collide, BoS allows the new flow to take
the occupied storage only if the existing flow is timed out (i.e.,
the stored timestamp is earlier than a predefined threshold).
Otherwise, the new arrived flow falls back to use the per-
packet tree model trained using only per-packet features, or
falls back to IMIS; see discussions in § 7.3.

When developing the prototype of BoS, we observe a possi-
ble corner case for flow management. Specifically, the switch
has multiple forwarding pipes, each of which has several
processing stages. To support more complex RNN models,
we can simultaneously use the stages in both the ingress
and egress pipes. However, if multiple ingress pipes could
be mapped to the same egress pipe (e.g., traffic entered from
both pipe A and pipe B may exit from pipe A), we would need
to deploy a flow management module in both the ingress and
egress pipe, because flows that do not collide in their ingress
pipes may collide in the egress pipe. We have not encountered
this corner case even in our scaling experiments (see § 7.3),
and therefore we only deploy the flow management module
in the ingress pipe.

2To avoid resubmitting or recirculating packets, the read and write of the
tuple need to be finished in an atomic operation. This restricts the length of
TrueID so that we cannot directly use 5 tuple as the TrueID. Thus, we leverage
a different hash function H ′ to calculate the TrueID as H ′( f (5-tuple)).
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A.1.5 Per-packet Fallback Model

When the flow manager cannot allocate storage for a new
flow, BoS falls back to analyzing the packets of that flow
using a tree model trained only using per-packet features.
Specifically, we use a 2×9 Random Forest model (2 trees with
max depth 9), and use the same per-packet features as in [71]
(e.g., packet length, TTL, Type of Service, TCP offset). We
apply the coding mechanism from NetBeacon [71] to deploy
this tree model on the data plane alongside our binary RNN
model.

A.1.6 The Pre-analysis Issue

As discussed in § 4.3, we employ a sliding window mech-
anism in our binary RNN inference where the model con-
tinuously processes packet segments. The length of the seg-
ment is a hyper-parameter S (set to 8 in our prototype). As
a result, the very first S−1 packets of a flow cannot form a
complete segment. This results in the pre-analysis issue: the
inference results on these packets may be inaccurate because
the model simply has not observed enough information. Any
model-driven (or data-driven) traffic analysis approach has
this limitation.

To avoid premature inference results caused by the pre-
analysis problem, BoS regards the first S−1 packets of a flow
as pre-analysis packets, and only starts to produce inference
results for the Sth and subsequent packets (i.e., any inference
result output by BoS is based on at least one full segment).
The protocol for forwarding these pre-analysis packets should
be application-specific. For instance, in security-oriented task,
BoS can forward pre-analysis packets via a dedicated low pri-
ority queue so that a strategic adversary cannot overwhelm the
network by sending very short flows (less than S packets). In
other tasks (e.g., an inbound gateway on a campus/enterprise
that loads balance different types of traffic received from
the Internet), simply forwarding these pre-analysis packets
may be sufficient, considering the average length of campus
Internet flows (∼120) [21] is much larger than S (8 in our
prototype). Finally, it is possible to employ another learning
model trained only on per-packet features (such as [58]) to
process these pre-analysis packets.

A.2 Prototype Implementation
In this segment, we supplement additional details about our
implementation.

A.2.1 On-Switch RNN Inference

Component Overview. We plot the hardware implementa-
tion of the binary RNN in BoS in Figure 8. The top part shows
the simplified dependency graph of all components. We plots
two types of dependency: if a has data dependency on b, then
the input data of a is (partially) provided by b; if a has control

dependency on b, then the execution of a is determined by
b. For instance, the GRU tables have data dependency on
embedding vector storage; the window CTR (counting the
number of windows/segments) has control dependency on
the PKT CTR-1 (indicating whether the number of received
packet is no less than S).
Per-Stage Breakdown. The bottom-right part shows the
breakdown of stage usage for deploying a BoS model with
the hyper-parameters shown in the bottom-left part. We use
the stages in both ingress and egress pipeline. The kth ingress
stage and kth egress stage share the same underlying hardware
resource.

We first introduce the stage usage in ingress. In the stage 0,
besides calculating the flow index and TrueID for flow man-
agement, it also executes embedding of packet length, since
it has no other dependency. Then, the FlowInfo tuple (i.e.,
{TrueID, timestamp}) is stored in stage 1 for flow collision
avoidance. Flow management is only necessary in the ingress
pipeline (see § A.1.4). The inter-packet delay (IPD) embed-
ding is implemented using the following three stages: stage
2 stores the last packet timestamp, stage 3 obtains IPD by
subtracting the current packet arrival time with the last times-
tamp, and stage 4 computes the embedding of IPD. In stage
5, an FC layer takes in the packet length embedding and IPD
embedding to output an embedding vector, which is stored
using 7 bins and dispatched to corresponding GRU tables in
stages 6 to 8. All seven bins cannot be allocated into one stage
because only 4 registers (register arrays) are allowed in one
stage. In the last three stages of ingress, the first four GRU
tables (i.e., GRU1,2,3,4) are placed sequentially. The first two
GRU tables (i.e., GRU1,2) are implemented with one match-
action table, i.e., h=GRU2(GRU1(0,ev1),ev2) is merged as
h=(GRU2 ◦GRU1)(0,ev1,ev2).

In the egress pipeline, the remaining four GRU tables (i.e.,
GRU5,6,7,8) are placed from stage 0 to stage 3. The output
layer is merged with GRU8, i.e., C=Output(GRU8(h,ev8)) is
merged as C=(Output◦GRU8)(h,ev8). The counters to accu-
mulate per-class probabilities (CPR1..6) are spread in stage 4
and 5. To accumulate the probability vectors (i.e., the interme-
diate results) on the data plane, we quantize the probability
for a class to an integer from 0 to 15. Considering the reset
period of 128 packets, the width of cumulative probability is
⌈log2(16×128)⌉=11. To implement argmax for n=6,m=11,
we split it into three sequential argmax operations, two for
n=3,m=11 and one for n=2,m=11, i.e., comparing the first
three numbers in stage 5, then comparing the rest three num-
bers in stage 6, then comparing the two winners in stage 7.
Finally, the escalation logic is implemented in stage 8 to 9.
To obtain the classification confidence for a packet, we do
not actually divide the largest accumulative probability with
wincnt (the total number of intermediate results for the flow),
as division is not supported on the data plane. Instead, we
compare the probability with Tconf×wincnt, which is divided
into a subtraction and a comparison with 0. The subtraction
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Figure 13: The architecture of IMIS.

is performed in the action of the winning case of argmax
match-action table. And the comparison with 0 is executed
while reading/updating the counter that stores the number of
ambiguous packets in stage 8. If the counter exceeds Tesc, the
packet is escalated to IMIS.
Escalation Flag. Due to the limited number of stages in the
ingress pipeline of the Tofino 1 switch, we must use both the
ingress and egress pipelines in our prototype. However, this
poses a challenge because the egress port of a packet must be
determined in the ingress pipeline, but we cannot determine
whether a packet should be escalated to IMIS until all opera-
tions in the egress pipeline have completed. To address this
challenge, we store an escalation flag in the ingress pipeline
so that the egress port for a packet can be properly deter-
mined. We update the escalation flag through egress-to-egress
mirroring and recirculating.

A.2.2 Implementation of IMIS

The architecture of IMIS is plotted in Figure 13. We use
Intel Data Plane Development Kit (DPDK version 20.11.9
LTS) [18] to enable multiple NIC RX/TX queues, each of
which is bound to one analysis module. The Receive Side
Scaling (RSS) [32] is enabled to efficiently distribute traffic
to each analysis module.
Analysis Module. The parser engine uses DPDK APIs to
parse flow identifier (e.g., 5-tuple) and the raw bytes from
the input traffic. It stores the parsing results into a lock-free
ring buffer consumed by the pool engine to maintain per-
flow state and perform batch arrangement. After obtaining the
parsing result of a packet, the packet is sent to another lock-
free ring buffer consumed by the buffer engine to perform
egress queuing according to model inference results. As our
transformer-based model only uses the first 5 packets in a
flow for inference, the subsequent packets sent by the flow
will be forwarded to the buffer engine directly without raw
bytes extraction.

The pool engine translates the streamed parsing results into
batched data to facilitate model inference. Specifically, it con-
tinuously fetches the raw byte features of packets from the
lock-free ring buffer linked to the parser engine, and organizes

them as per-flow state. When it receives a call from the ana-
lyzer engine, the pool engine selects flows according to their
timestamps to form a batch of inputs, and sends the batch
to the analyzer engine for inference. If a selected flow has
fewer than 5 packets, the pool engine pads its data with zeros.
The inference result obtained for this flow is considered to
intermediate, and the pool engine may select this flow again
in the next round.

To accelerate model inference, the analyzer engine uses
CUDA (version 11.7) [38] to interact with the auxiliary GPU
card. Specifically, it continuously requests input batches from
the pool engine. Upon receiving a batch, the analyzer engine
executes inference on the GPU and sends the results to a
lock-free ring buffer consumed by the buffer engine.

The buffer engine continuously fetches the latest inference
results from the analyzer engine and uses the results to release
packets. Upon receiving a packet from the parser engine, the
buffer engine checks if the inference result for the packet’s
flow has been determined. If so, the packet is released imme-
diately. Otherwise, the packet is placed in the egress queue for
its flow to wait for the inference result. When the buffer en-
gine receives a flow inference result from the analyzer engine,
it releases all packets in the egress queue for that flow.

The buffer engine keeps fetching the latest inference results
from the analyzer engine, and uses the results to release pack-
ets. Upon receiving a packet from the parser engine, the buffer
engine checks if the inference result for the packet’s flow has
been determined. If so, the packet is released immediately.
Otherwise, the packet is placed in the egress queue for its
flow to wait for the inference result. When the buffer engine
receives a flow inference result from the analyzer engine, it
releases all packets in the egress queue for that flow.

A.3 Additional Details about Testbed
We use a Wedge 100BF-32X programmable switch with 2
pipes and 32×100 Gbps ports to deploy the on-switch RNN
in BoS. The version of SDE is 9.7.0. The off-switch IMIS is
hosted on server with two Intel(R) Xeon(R) Gold 6348 CPUs
(2×28 cores), Ubuntu 20.04.1, 512 GB memory, and one Mel-
lanox 100 Gbps NIC with two ports that support DPDK (ver-
sion 20.11). We reserve 160 GB memory as huge pages for
DPDK (80 GB/NUMA Node), and an NVIDIA A100 GPU
is attached to IMIS. All physical cores for parser engines, pool
engines and buffer engines are on the same Node with NIC,
and all the physical cores for analyzer engines are on the same
Node with an auxiliary GPU.
Scaling the On-switch Analysis Beyond One Pipe. The
on-switch analysis of our current prototype is implemented
using one switch pipe. The complexity of scaling the analysis
beyond one pipe depends on whether cross-pipe traffic for-
warding is allowed. Specifically, if the traffic forwarding for
each pipe is self-contained (i.e., the traffic ingressing from
one pipe will only exit from this pipe), we can easily operate
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multiple pipes independently, where each pipe hosts an in-
stance of our on-switch RNN and processes traffic in parallel.
However, when the flows entering from different pipes can
eventually exit via the same pipe, we have to deploy our flow
management modules in both the ingress and egress pipes (as
we have discussed in § A.1.4). In this case, the flows allocated
dedicated per-flow storage within their ingress pipes may still
end up using the per-packet model if their storage indices col-
lide when exiting from the same egress pipe. This would lead
to the underutilization of storage resources initially reserved
for these flows within their ingress pipes.
Runtime Programmability. The on-switch analysis model
of BoS can be programmed in runtime. Specifically, the
weights of RNN layers, the escalation thresholds, the number
of classification classes, and widths of the inputs and outputs
of each layer (i.e., the number of binary neurons) are all pro-
grammable via the control plane. For instance, the weights
can be reconfigured by updating the table entries from the
control plane.
On-switch Statistics Collection. To collect the evaluation
results from our testbed, we use the second pipe on our switch
to implement a result collection module. Specifically, we
allocate registers to count the numbers of escalated packets,
packets analyzed by per-packet model, packets analyzed by
binary RNN, and pre-analysis packets. Further, we allocate a
register array for reporting the on-switch analysis precision
and recall for each class, using the combination of ground-
truth label and predict label as index. We read these registers
from the control plane to obtain the raw data for calculating
the macro-F1 scores.
Flow Replayer. To generate traffic according to our pcap files,
we investigate both tcprelay and DPDK pktgen. We choose
to use pktgen because it can generate high-throughput traffic
that saturates the physical 100 Gbps NIC on our testbed. Yet,
the key problem of pktgen is that it fails to honor the packet
timestamps when sending traffic. However, the on-switch
RNN relies on inter-packet delays for inference. To work
around this issue, we embed the desired timestamp of each
packet within the MAC address field of its Ethernet frame.
The on-switch analysis pipeline reads this field for flow man-
agement and inference. We create 32 pcap files throughout
the evaluation. When the flow replayer sends an excessively
large pcap file that cannot be loaded into the memory at once,
it breaks the file into smaller slices and replays these slices
sequentially.
Stress Test of Standalone IMIS. To stress test the system
performance of IMIS (§ 7.3), we generate flows on a server
with DPDK packet generator (pktgen version 23.06). These
flows are sent directly to the server where we deploy IMIS,
bypassing the on-switch analysis. To generate a burst of con-
current flows, the packet generator repeatedly sends packets
within a group of selected 5-tuples and the packet size is fixed
as 512 bytes.

A.4 Additional Details about Datasets
Data Pre-processing. For every dataset used in our evalu-
ations, we collect flow records from the original pcap files
using the following procedure. (i) We collect the original pcap
files for each class in the dataset separately, and all the flow
records extracted from a pcap file are labelled as the class
of this file. (ii) For each pcap file, we collect the TCP and
UDP packets of IPv4, and remove other irrelevant packets,
e.g., packets of Domain Name System (DNS), Address Reso-
lution Protocol (ARP), Dynamic Host Configuration Protocol
(DHCP) and so on. (iii) We split a clean pcap file by five tu-
ple, and further split packets of the same five tuple into flow
records by inter-packet delays. Specifically, if the inter-packet
delay between two packets is greater than 256 ms, we con-
sider the latter packet as the first packet of a new flow record.
This is consistent with our online inference where we con-
sider a flow is completed if we do not receive new packets for
the flow for 256 ms. (iv) 80% of flow records in a dataset are
used as the training set and the remaining records are used as
testing set.

Traffic Analysis Tasks. We evaluate BoS using the follow-
ing tasks.

• Encrypted traffic classification on VPN. This task classi-
fies traffic encrypted by Virtual Private Networks (VPNs).
We use the ISCXVPN2016 [12] dataset, which contains 7
categories of communication applications captured through
the Canadian Institute for Cybersecurity in both VPN and
non-VPN. We process the original pcap files for 6 classes
of VPN flows, including Email, Chat, Streaming, FTP, VoIP,
and P2P. We exclude the Browsing class in our evaluation
because some of the applications used for generating Email,
Streaming, VoIP packets are web-based, resulting in signifi-
cant noises, as explained in [12]. The number of flows in
each of the six classes is 613, 2350, 375, 1789, 3495, and
1130, respectively.

• Botnet traffic classification on IoT. This task classifies dif-
ferent botnet traffic collected from the Internet of Things
(IoT) systems. We process the original pcap files for 4
classes of flows (Data Exfiltration, Key Logging, OS Scan,
Service Scan) from the BOTIOT [22] dataset, collected in a
realistic network environment deployed in the Cyber Range
Lab of UNSW Canberra. The number of flows in each class
is 353, 427, 1593, and 7423, respectively.

• Behavioral analysis of IoT Devices. This task classifies
traffic generated by IoT devices in different working states.
We collect the original pcap files for 3 classes (Power, Idle,
Interact) from the CICIOT2022 [10] dataset, which contains
40 devices of audio, camera, home automation and so on.
We process the original pcap files for the Power and Interact
classes, and select one day from the 30 days of Idle pcap
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Figure 14: [Testbed] The traffic analysis accuracy given different binary RNN model sizes.

files. The number of flows in each class is 1131, 4382, and
1154, respectively.

• P2P application fingerprinting. This task classifies P2P ap-
plication traffic. We process the original pcap files for 3
classes (eMule, uTorrent, and Vuze) from the PeerRush
dataset [40]. Each class captures one hour of traffic. The
number of flows in each class is 20919, 9499, and 7846,
respectively.

A.5 Reproducing [71] and [51]
We reproduce two recent art NetBeacon [71] and N3IC [51]
for evaluation.

• NetBeacon [71]: a reproduced version of NetBeacon, which
deploys multi-phase tree-based models on switch using
both flow-level features and per-packet features. We use
the same per-packet features as in [71], and use the max,
min, mean, and variance of the packet size and IPD as
flow-level features. The inference points are located at the
{8th,32nd,256th,512nd,2048th} packet. For each phase we
train a 3×7 (3 trees with max depth 7) Random Forest
model (their largest model).

• N3IC [51]: a reproduced version of N3IC, which deploys

binary MLP on SmartNIC using both statistical flow-level
features and per-packet features. We use the same features
and phases as NetBeacon for fair comparison, and for each
phase the number of neurons in the hidden layers is [128,
64, 10] (their largest model). Note that N3IC deploys binary
MLP on SmartNIC but the model cannot be deployed on
P4 switches due to hardware resource constraints. Thus, we
simulate the switch-side traffic management logic and the
binary MLP inference in software to to obtain the traffic
analysis results for N3IC.

A.6 Binary RNN Model Complexity
The number of bits allocated to store the RNN hidden states
determines both the performance of our RNN model and the
size of match-action table for a GRU layer. In Figure 14, we
present the performance of BoS under different bit lengths.
The default bit lengths used in four tasks are 9, 8, 6, and 5,
respectively. This is because further increasing the bit lengths
does not significantly improve F1 scores, while it does in-
crease the SRAM consumption (especially for the first two
tasks). When the bit length is smaller than 6, the size of one
GRU table is smaller than the minimum allocation unit of
SRAM. Thus, further reducing bit lengths will not reduce
SRAM consumption.
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