
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Cloudcast: High-Throughput, Cost-Aware
Overlay Multicast in the Cloud

Sarah Wooders and Shu Liu, UC Berkeley; Paras Jain, Genmo AI; Xiangxi Mo
and Joseph E. Gonzalez, UC Berkeley; Vincent Liu, University of Pennsylvania;

Ion Stoica, UC Berkeley
https://www.usenix.org/conference/nsdi24/presentation/wooders

Cloudcast: High-Throughput, Cost-Aware Overlay Multicast in the Cloud

Sarah Wooders
UC Berkeley

Shu Liu
UC Berkeley

Paras Jain
Genmo AI

Xiangxi Mo
UC Berkeley

Joseph E. Gonzalez
UC Berkeley

Vincent Liu
University of Pennsylvania

Ion Stoica
UC Berkeley

Abstract
Bulk data replication across multiple cloud regions and
providers is essential for large organizations to support data
analytics, disaster recovery, and geo-distributed model serving.
However, data multicast in the cloud can be expensive due
to network egress costs and slow due to cloud network con-
straints. In this paper, we study the design of high-throughput,
cost-optimized overlay multicast for bulk cloud data replica-
tion that exploits trends in modern provider pricing models
along with techniques like ephemeral waypoints to minimize
cloud networking costs.

To that end, we design an optimization algorithm that uses
information about cloud network throughput and pricing to
identify cost-minimizing multicast replication trees under
user-given runtime budgets. Our open-source implementation,
Cloudcast, is used for cloud overlay multicast that supports
pluggable algorithms for determining the multicast tree struc-
ture. Our evaluations show that Cloudcast achieves 61.5%
cost reduction and 2.3× replication speedup compared to
both academic and commercial baselines (e.g., AWS multi-
region bucket) for multi-region replication.

1 Introduction

Increasingly, data in the cloud must be replicated to multiple
cloud providers and different regions within each provider.
For example, geo-distributed applications like model serving
require model weights or features computed in a single region
to be replicated to multiple geographic regions to reduce serv-
ing latency for users accros the globe [22,44,51]. Data sharing
between collaborating organizations using different providers
similarly requires replicating data to multiple locations. Fi-
nally, the growth of multi-cloud applications that leverage
resources from multiple providers is dependent on application
data being available across provider boundaries [13, 51, 52].

Of course, data replication and multicast are not new. Both
topics have been extensively studied to optimize throughput
and scalability in the context of IP networks, peer-to-peer over-
lays [12,14,19,22,33], and inter-DC networks [20,36,47,54].

Figure 1: Direct replication from a source region (purple)
to destination regions (blue) may traverse expensive or slow
links, which can be avoided via waypoint regions (yellow).

However, replication between cloud regions and providers
introduces first-order concerns beyond just throughput and
scalability. In particular, the monetary cost of the transfer
is a critical factor and one that (as we show later in this pa-
per) is poorly handled by existing techniques for optimizing
throughput [33, 36, 54]. While some existing works consider
the monetary cost for multicast, they either ignore the through-
out [24] or assume a capacity-based pricing model [35] which
is inconsistent with today’s cloud. In contrast to capacity-
based pricing, cloud providers charge per-GB network egress
fees for data transferred out of a given region to another re-
gion or cloud provider. Per-GB egress fees introduce a multi-
plicative term into the transfer cost—(egress price)×(amount
transferred)—making it significantly more difficult to opti-
mize throughput and cost.

Egress costs can vary by orders of magnitude depending
on the source and destination [42], as well as the capacity
of cross-region links. As a result, the structure of the multi-
cast replication tree (i.e., what data is replicated along which
paths) can dramatically affect the end-to-end throughput and
monetary cost of replication. As a concrete example, consider
replication from a GCP source region to six AWS regions
(Figure 1). Direct replication of the data between the source
and each destination region (shown in red arrows) would cost
$720 per TB. Instead, replicating to an AWS region with
the lowest cross-region egress fees once and multicasting

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 281

data from that AWS region to other regions (shown in dotted
green arrows) would reduce the price to $240 per TB. Further
modifying the multicast tree to utilize high-throughput links
and offload egress bandwidth from the source node can also
improve throughput.

In this work, we solve the problem of high-throughput,
cost-optimized cloud multicast in which we minimize the cost
of data replication while achieving a target replication time
(across all destinations) for bulk multicast replication. Cloud
multicast incurs costs from network egress fees and compute
resources needed to mediate the transfer. In addition, cloud
multicast must meet application Service Level Objectives
(SLO) for the replication time, such as providing freshness
guarantees on replicated data.

We design an optimizer to determine a multicast tree
structure given a user-specified source region, destination
regions, and target replication time. By providing varying
target replication times, our optimizer can generate a Pareto-
curve (shown in Figure 8) that improves replication cost and
throughput compared to prior approaches for cloud multi-
cast [23, 24]. We achieve this by leveraging techniques such
as striping, VM parallelism, and overlay networking, while
also accounting for the cloud providers’ network characteris-
tics, resource constraints, and per-GB network pricing model.

Designing this optimization is challenging for two main
reasons. First, the optimizer must account for path-specific
pricing models, resource constraints, and varying performance
across cloud providers. Existing techniques that formulate
the optimization problem in terms of bandwidth allocation
cannot be adapted to account for per-GB network pricing
without making the problem non-linear (described further in
Section 3). Second, the optimization search space is combi-
natorially large, as the optimizer must determine both the set
of overlay waypoint regions (regions which are neither the
source nor destination) as well as how data will be routed
along the overlay network. Unlike the traditional overlay set-
tings, the cloud offers significantly more flexibility in the num-
ber and the location of overlay nodes, as cloud VMs can dy-
namically be instantiated in specified cloud provider regions.
Furthermore, replicating subsets of data (i.e., stripes) via dif-
ferent paths is critical for achieving high-throughput [12]. We
introduce several approximations (e.g., pre-selecting the re-
gions and limiting path lengths) to reduce this search space
and enable the optimizer to run within seconds.

To run overlay multicast across clouds, we develop Cloud-
cast, a system for bulk data overlay multicast across GCP,
AWS, and Azure. Cloudcast has a centralized control plane
that supports pluggable algorithms for determining the num-
ber and location of overlay nodes and replication trees for
multiple segments of data. We implement our optimizer as
well as several baseline algorithms as part of Cloudcast’s con-
trol plane. We run system experiments to multicast data across
clouds and show that Cloudcast is able to achieve up to 62.4%
cost savings and 2.84× replication speedup depending on the

Figure 2: Egress fees between regions (in cents per GB).

control plane algorithm (Figure 10).
We run an end-to-end system evaluation comparing Cloud-

cast with BitTorrent [19] and AWS’s commercial offering for
multi-region bucket replication [50], which, like most cloud
data replication offerings, only supports replication into or
within that cloud. We find that Cloudcast achieves 7.7× repli-
cation speedups and 28.4% cost savings compared to BitTor-
rent (Figure 12). Compared to multi-region bucket replication,
we find that Cloudcast achieves up to 61.5% cost reduction
and 2.3× replication speedup (Figure 11).

To summarize, we make the following contributions:
1. We design an optimizer for minimizing replication cost

under replication time constraints.
2. We introduce several approximations to reduce the

search space for the optimizer, reducing the solver run-
time from hours to seconds.

3. We build Cloudcast, an open-source system for cloud
overlay multicast with pluggable data transfer policy.

2 Problem Setup

We frame the problem of cloud multicast in terms of construct-
ing an overlay network for replicating data, which involves
defining: (1) the set of overlay nodes (i.e., cloud VMs) and
(2) the paths between those nodes that will be included in a
multicast replication tree. Cloudcast eventually divides the
target data into multiple stripes (i.e., partitions), so concur-
rent replication trees may be used in a single transfer. Our
optimization objective is to minimize the monetary cost of
replication while also meeting a replication time constraint.

2.1 Egress Costs
A unique aspect of multicast in the cloud is the effect of
egress costs incurred for data transferred across cloud regions.
Cloud providers charge for wide-area data transfer per-GB
of data transferred. Egress prices—as a method of keeping
data within the provider’s regions without disincentivizing

282 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: Bandwidth distribution (in Gbps) between regions.
Per-VM egress limits are marked in red dotted lines.

migration into the provider—dominate data movement costs
in the cloud and fundamentally change the multicast problem.
Figure 2 visualizes the pricing for 11 regions across AWS,
Azure, and GCP. Prices vary depending on the source and
destination cloud or region, with differences of up to 23×
across region pairs. Along those lines, one particularly impor-
tant axis is whether the transfer stays within a given cloud
provider or crosses provider boundaries, as inter-cloud egress
costs are generally higher than intra-cloud egress.

Intra-cloud egress (data movement between geographically
separated datacenters in the same cloud provider) is priced
between $0.01−$0.19 per GB transferred. Prices typically
increase with longer-distance transfers. For example, GCP
charges $0.08 for transfers between continents but only $0.02
for transfers within the US. Some smaller providers (e.g.,
IBM, Cloudflare) offer free cross-region egress.

Inter-cloud egress (data movement between different cloud
providers) is typically priced at a much higher rate per GB
($0.08− $0.23). As such, it is essential to minimize cross-
cloud transfers in a multicast replication tree.

2.2 Bandwidth Variability Across Endpoints

Meeting replication time constraints can be challenging due to
network bandwidth variability in the cloud. One type of vari-
ability arises from cloud providers, who impose constraints on
per-VM egress and ingress bandwidth. These constraints dif-
fer significantly across providers: for instance, AWS throttles
intra-cloud and inter-cloud egress to 5 Gbps per VM, while
Azure imposes no VM-level limits. The impact of these egress
limits can be observed in Figure 3, where bandwidth is capped
at the VM egress limit for AWS and GCP. Limited node egress
poses a particular challenge for cloud multicast, as the source
node’s egress bandwidth is often the bottleneck.

Even when source-node bandwidth is not the bottleneck,
observed network capacity can also vary considerably across
cloud region pairs (up to 202×). Note that these networks
are relatively stable across time; prior work [28] has found
that network throughputs are stable over periods of at least

24 hours. Instead, variations are primarily observed across
different source and destination regions. Figure 3 depicts the
distribution of profiled bandwidth between VMs running in
AWS, Azure, and GCP. Intra-cloud bandwidth is typically
(but not always) higher than inter-cloud bandwidth.

2.3 Elasticity of Resources

A major advantage of the cloud is resource elasticity and the
ability to flexibly provision VMs across many regions. In the
face of the source bottlenecks described above, VM elasticity
translates to a corresponding elasticity of bandwidth. Allocat-
ing multiple parallel VMs enables users to scale throughput
beyond per-VM network bandwidth limits.

Unfortunately, adding elastic VM capacity at the source re-
gion has limitations. Additional VMs add additional costs
due to per-second billing on VMs, which can impact the
cost/throughput tradeoff. We note that because the marginal
cost of additional VMs is often relatively small compared
to egress fees, the tradeoff is often worth making. However
even in these situations, bandwidth elasticity has limits: for in-
stance, if a network-based bottleneck is unavoidable or when
cloud providers limit the number of vCPUs per region.

Crucially, elastic VM capacity can also be deployed at way-
point regions that are neither the source nor the destination.
These waypoint regions can help mitigate source VM bot-
tlenecks by distributing load from multicast fan-out across
multiple separate regions. Waypoint regions also mitigate
points of congestion by routing data around slow paths.

2.4 Illustrated Example

Selecting overlay nodes and replication trees to optimize cost
and throughput is challenging. Consider the toy example in
Figure 4 for a 2 GB replication with two 1 GB stripes. Assum-
ing a 4 Gbps bandwidth limit for all nodes and one VM per
region, the source (“S”) and destination (“D”) nodes have fast
but expensive outgoing paths, capable of sending at 2 Gbps but
costing 10¢ per GB transferred. Other regions have cheaper
but slower outgoing paths, capable of sending at 1 Gbps but
costing 2¢ per GB transferred. In a simple direct replication
scenario, the replication will be bottlenecked by the source
node’s egress limit (4 Gbps). With two copies of data to send,
the total transfer time will be 8 seconds.

Like many bandwidth-optimized techniques [12, 23, 33],
we offload egress bandwidth by sending a single data copy
from the source and leveraging multiple replication trees.
Replication cost is reduced by replicating to a waypoint, and
then multicasting to destinations. This doubles replication
time to 16 seconds due to stripes being replicated via the
slower path (dotted arrows). An 8-second replication SLO is
met by transferring just one stripe via the cheaper waypoint.

This simple example presents a large search space for pos-
sible replication trees, and real-world cloud networks present

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 283

Figure 4: Overlay node set and distribution trees for a toy example. The source and destination nodes are marked ‘S’ and ‘D’
respectively, while waypoint nodes in yellow are marked ‘W’. Expensive, fast paths ($0.1 per GB, 2 Gbps) are shown in solid
red, while slow, cheap paths ($0.02 per GB, 1 Gbps) are shown in dashed green.

additional parameters such as choosing the number of VMs
per region and many possible waypoint regions.

3 Cost Optimization in Cloudcast

We design an optimizer to minimize replication cost while
meeting a replication time SLO (i.e., a constraint on the max-
imum replication time to a destination). Our optimizer has
two main contributions. The first is a Mixed-Integer Lin-
ear Program (MILP) formulation of the cost-aware multicast
problem, jointly selecting overlay nodes and replication trees.
While others [23, 54] have used MILP formulations for multi-
cast overlay design, they formulate the optimization problem
in terms of bandwidth. Extending these formulations to ac-
commodate per-GB costs would violate linearity as data trans-
fer volume (cost) is proportional to the product of the key de-
cision variables: allocated bandwidth and replication time. As
a consequence, we propose a new formulation that reframes
the optimization in terms of data volume. Our new formula-
tion assigns discrete subsets of data (i.e. stripes) to replication
paths in the network while ensuring that a complete copy of
the data arrives at all destinations. Unfortunately, solving this
MILP formulation can be intractable for larger numbers of
destinations. Our second contribution is an approximation of
the MILP formulation that significantly reduces solve time
without significantly degrading the solution quality.

3.1 Egress Cost Minimization Algorithms
The challenge with our optimization problem stems from hav-
ing to consider both throughput and cost. Without replication
time constraints, we observe that the Steiner Tree [27] mini-
mizes egress cost. A Steiner Tree is a set of cost-minimizing
edges that form a tree that connects a subset of nodes within
a graph. If we do not allow the use of waypoint regions, the
cost-minimizing tree is a Minimum Spanning Tree (MST).
While solving for the MST can be done in linear time, the
Steiner Tree problem is NP-hard, though many approxima-
tions exist [43]. We cannot use the Steiner Tree to account

Inputs
TRANSFER-SIZE ∈ R Transfer size in GB
TIME ∈ R Replication time constraint
STRIPES ∈ Z+ Number of data stripes

Decision Variables
P ∈ {0,1}|STRIPES|×|V |×|V | Path indicator variable
N ∈ Z|V |

+ Number of VMs per region
F ∈ R|STRIPES+1|×|V |×|V |

+ Flow feasibility variable
Constants: Cross-Region Paths (edges)

BANDWIDTHpath ∈ R|V |×|V |
+ Bandwidth profile matrix (Gbps)

COSTpath ∈ R|V |
+ Network cost ($/Gbit)

Constants: VM Instances (nodes)
EGRESSVM ∈ R|V |

+ Per region per VM egress limit (Gbps)
INGRESSVM ∈ R|V |

+ Per region per VM ingress limit (Gbps)
COSTVM ∈ R|V |

+ Per region per VM cost ($/s)
LIMITVM ∈ Z|V |

+ Max number of VMs per region

Table 1: Symbol table for Cloudcast’s ILP formulation.

for replication throughput or instance costs, since it only opti-
mizes total edge cost, but we expect our optimizer’s solution
to be similar to a Steiner Tree in cases where the replication
time constraint is loose.

3.2 Profiling Cross-region Bandwidth

The bandwidth of paths between cloud regions (both intra-
cloud and inter-cloud) is determined by the number of VMs
in each region, each VM’s egress and ingress limits, and the
profiled bandwidth. As discussed in Section 2.2, cross-region
bandwidth per VM can be estimated by profiling the band-
width between region pairs using iperf3. Egress and ingress
limits vary across cloud providers but are static and can be
determined by cloud providers’ documentation [8, 10, 16].
We utilize these profiles as an estimate of expected network
bandwidth for the duration of a transfer. Profiling results are
included as part of our open-source repository and shared
across all users of Cloudcast.

284 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Stripes transferred from the source (purple) to desti-
nations (blue) are placed by the solver along edges depending
on edge capacity (yellow) and node capacity (green).

3.3 Optimizing Cost with Time Constraints

In order to minimize replication price while meeting run-
time requirements and cloud resource constraints, we frame
a MILP on a directed graph representing the entire cloud
topology. The input to the optimizer is the transfer size:
TRANSFER-SIZE, the runtime budget: TIME, and the number
of stripes: STRIPES to divide the data into.

To formulate the optimization problem as a MILP, for-
mulate the problem in terms of allocating data volume
to edges rather than bandwidth, with allocation units per
stripe. We translate cross-region bandwidth and per-region
egress/ingress limits into volume capacities, as shown in Fig-
ure 5, this determines how many stripes can fit along each
edge. This makes the MILP similar to a bin packing problem,
where we aim to pack stripes into edges such that all desti-
nations receive all stripes. The volume-based representation
allows cost to be computed as a function of the number of
stripes placed on each edge.

Next, we formally describe the MILP decision variables, ob-
jectives, and constraints. The cloud regions and cross-region
paths are represented as G = (V,E), where V denotes the set
of cloud regions and E denotes paths between regions. We
provide a reference table for the notation in Table 1.

3.3.1 Decision variables

The MILP formulation consists of three decision variables.
The path indicator variable Ps,(v,u) indicates whether a stripe
s is sent between regions (u,v) ∈ V . The paths selected by
P make up the multicast replication tree for each stripe. The
decision variable Nv represents the total number of overlay
routers in the region v. An additional flow variable Fs,(u,v)
ensures valid paths when constructing the multicast tree. It
ensures that the paths selected by P do not contain cycles and
are connected, by allowing flow to be pushed from the source
to all destinations for each stripe (see Section 3.3.3).

3.3.2 Objective: minimizing price under a deadline

To minimize the price of a multicast transfer while meeting
replication time constraints, we use a two-part objective func-
tion. The first part optimizes the number of virtual machines
(VMs) per region, represented by N, and the second part opti-
mizes the distribution trees per stripe, represented by P. The

objective is formulated as follows:

argminP,N TIME×⟨COSTVM,N⟩︸ ︷︷ ︸
Instance Cost

(1)

+
TRANSFER-SIZE

STRIPES
× ∑

s∈STRIPES

⟨COSTpath,Ps⟩︸ ︷︷ ︸
Egress Cost

(2)

The price of a data transfer is the sum of the instance fee and
the egress fee. The instance fee depends on the number of
VMs running per region, the job completion time, and the per-
region VM fee. The egress fees are determined by the data
distribution path and the amount of data traversed through the
path, as defined by P. We note that the instance cost is also
an upper bound as it can be potentially overestimated if the
data transfer is completed in less than the user-defined time
budget. However, this is necessary to ensure linearity.

3.3.3 Constraints
We represent cross-region bandwidth, node egress/ingress
bandwidth, per-region VM limits, and replication tree struc-
ture requirements as constraints within the MILP.

Representing Inter-Region & Inter-Cloud Bandwidth.
Cross-region bandwidth is represented as the per-GB capacity
given the run-time budget, i.e., how many stripes can fit along
an edge. Increasing the number of VMs in the source regions
linearly increases the rate at which we can send data. We thus
model the bandwidth between two regions as the per-VM
bandwidth profiled between those two regions multiplied by
the number of VMs in the source region:

CAPACITYpath = ⟨N,BANDWIDTHpath⟩ ∗ TIME, (3)

and constrain P in terms of the path capacity:

∀(u,v) ∈ E SIZESTRIPE ∗∑
s

Ps,(u,v) ≤ CAPACITYpath
(u,v). (4)

to ensure allocated stripes fit within the capacity.

Representing VM Bandwidth Constraints. Cloud providers
impose per-VM bandwidth constraints on network egress, as
described in Section 2.2. As such, a major bottleneck of mul-
ticast transfer is the source region’s limited egress bandwidth.
We constrain P in terms of the ingress and egress limits:

∀v ∈V SIZESTRIPE ∗∑
s

∑
u∈V

Ps,(v,u) (5)

≤ EGRESSVM
v ∗Nv ∗ TIME (6)

∀u ∈V SIZESTRIPE ∗∑
s

∑
v∈V

Ps,(v,u) (7)

≤ INGRESSVM
u ∗Nu ∗ TIME (8)

Representing VM Capacity Constraints. We account for
per region VM limits by adding the constraint N ≤ LIMITVM.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 285

Figure 6: Visualized solver output for inter-cloud replication
described in Section 5.1, consisting of source (purple), way-
point (yellow), and destination (blue) regions. The data is
divided into 5 stripes (marked on edges).

Ensuring Valid Multicast Trees. We use an additional vari-
able F to ensure that the paths selected by P are valid distribu-
tion trees, i.e., they are connected and acyclic, and they deliver
all data to each destination. At a high level, we ensure that
Fs,(u,v) ≥ 1, if Ps,(u,v) = 1, and impose conservation of flow
constraints on F but not P, since P is an indicator variable not
a flow variable. We then ensure that flow can be pushed from
the source node to destination nodes on F for each stripe,
which also ensures that flow can be pushed from the source
to destination for the paths selected by P (without having to
impose flow conservation on P). We leave details on this part
of the formulation for Appendix B due to space.

3.3.4 Solver feasibility
Our formulation so far has a search space of size
O(2|V |2×|STRIPES|). With 71 possible regions across GCP, AWS,
and Azure and 10 stripes, the search space is, therefore,
O(250410), which is infeasible even for advanced solvers to
solve within a few minutes, necessitating approximations.

3.4 Reducing Optimizer Runtime
In this section, we describe several mechanisms that we com-
bine to reduce the optimization runtime or an order of seconds,
while still maintaining solution quality.

Node Clustering. We observe that many regions across cloud
providers share similar characteristics in terms of bandwidth
and the costs of their outgoing and incoming paths. A moti-
vating observation was that sub-sampling regions randomly
could produce similar solutions with much lower solve time,
as shown in Figure 17. At a high level, AWS regions in Europe
regions all have similar egress/ingress costs and bandwidth, so
only one of those regions needs to be considered as a potential
waypoint. Therefore, to reduce the optimizer search space, we
cluster regions using their incoming and outgoing path costs
and bandwidth as features and select a representative node
from each cluster. We empirically find that, with about 20
clusters (i.e. 20 subsampled regions), the optimizer can gen-

Figure 7: Cloudcast system architecture.

erate solutions that are reliably similar to the original MILP
without approximation (more discussion in Section 5.3.2).

Hop Constraining. To further reduce the optimization space,
we only consider a maximum of 2-hop overlay waypoints.
Previous research has shown that limited numbers of overlay
hops are often sufficient [7, 41, 46]. Our analysis also found
solutions using multiple overlay hops to be rare, suggesting
that they need not be considered. We implement the hop
constraints as an additional constraint on the MILP.

Stripe-iterative Approximation. To make the optimizer run-
time linear with respect to the number of stripes (rather than
exponential), we design a greedy, stripe-iterative approxima-
tion algorithm that solves for one stripe per iteration. We solve
for each stripe independently, then update the input graph for
the next stripe by reducing the path capacity (CAPACITYpath),
instance limits, and egress/ingress limits per region (LIMITVM,
EGRESSVM, and INGRESSVM).

3.5 Example Topology
We show an example of the optimizer’s output replication
tree topology visualized in Figure 6. Due to variability in
cloud provider egress pricing and cross-region throughput,
our optimizer often finds unexpected solutions, such as routing
one stripe (marked [3]) from GCP to AWS, AWS to Azure,
then back to GCP. Although questionable at first glance, we
evaluate this same replication in Figure 10 and demonstrate
both cost and replication time improvements over baselines.

4 Architecture of Cloudcast

A key contribution of this work is the design and implemen-
tation of the Cloudcast artifact, which provides a practical,
performant, and extensible system for studying overlay multi-
cast algorithms in cloud environments. The Cloudcast system
simplifies the design and deployment of multicast overlays
spanning cloud object stores, and is used to implement the
optimizer described in Section 3.

We provide an overview of Cloudcast in Figure 7. Cloud-
cast is designed with a centralized control plane and a dis-

286 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tributed data plane. The control plane determines the set of
overlay nodes and routing paths, and it dispatches and moni-
tors multicast jobs. The data plane consists of overlay routers,
which we implement as modular software routers running on
overlay nodes deployed on cloud VMs. The control plane
configures overlay routers using a router program, which
specifies a graph of modular operators for processing data.
Each overlay router gets a unique router program, which, in
cooperation with other routers in the system, implements the
desired flow of data over the overlay network.

Cloudcast is implemented as part of the Skyplane [28] open
source project and consisted of 5K additional lines of Python
to implement a design based on overlay routers.

4.1 Control Plane
The control plane contains the planner, which supports plug-
gable algorithms for determining the placement of overlay
routers across cloud providers and paths along which data is
replicated (shown in Figure 7). The output of the planner is
used to provision VMs to act as overlay routers across cloud
regions and to compile a router program for each overlay
router that configures its behavior. Finally, the control plane
initiates the transfer and monitors its progress.

Planner. The planner is responsible for creating a multicast
plan based on a target replication time, source and destina-
tion object store paths provided by the user, and profiling
data described in Section 3.2. The planner takes as input the
algorithm to use for generating a multicast plan, which can
be the default Cloudcast optimizer described in Section 3.3
or a custom plan (e.g., a Steiner Tree over the cost graph).
The planning algorithm determines how many overlay nodes
to create in each region and how each data stripe should be
routed through the overlay network. The planner uses the al-
gorithm output to generate a router program for each overlay
router, which specifies how the overlay router should pro-
cess a chunk header when received. The Cloudcast default
optimizer is implemented using Python’s CVXPY library [3]
(version 1.3.2) with a Gurobi solver [26].

Provisioner. Once a multicast plan is determined, the provi-
sioner instantiates the overlay routers. The provisioner creates
a VPC in each cloud provider and provisions VMs to act as
overlay routers within these VPCs. The provisioner also sets
firewall rules to allow network traffic between overlay routers,
which send and receive data from each other, as specified by
the planner-generated router programs. Once a VM has been
instantiated, the provisioner installs and launches the router
programs as containers on the VMs.

Chunk Dispatching and Status Tracker. The control plane
subdivides replication target data into chunks, which are at
most 64MB in size, to allow for transfer pipelining and par-
allelism. Each chunk has a chunk header, which specifies a
key (e.g., object store object, filename), byte range, and an
optional multipart ID (required for multipart uploads). The

chunk header also contains a stripe ID, which specifies which
path along the overlay the chunk will take.

The control plane informs each source overlay router
(i.e., overlay routers responsible for reading source data) the
chunks for which they are responsible by sending the cor-
responding chunk headers. We refer to this as registering a
chunk to an overlay router. The control plane’s status tracker
monitors the status of each chunk by querying the status of
chunks on each overlay router.

4.2 Data Plane
The data plane is composed of overlay routers, each running
on a single VM. The overlay routers are created and config-
ured by the control plane to execute the transfer according
to the multicast plan. Cloudcast supports configurable over-
lays by defining processing on overlay routers using modular
operators, inspired by the design of configurable routers [32].

The router program provided by the control plane specifies
a directed acyclic graph (DAG) of operators (analogous to
elements) and connections, all of which run on each overlay
router and are used to process incoming chunk headers reg-
istered to the overlay router. The DAGs are created at the
overlay router’s startup time based on the router program,
and they allow overlay routers to process chunks without
additional coordination with the control plane.

Operators are implemented as a pool of worker processes
running processing steps for a chunk, such as reading the
chunk from the source object store, relaying the chunk to an-
other overlay router, writing the chunk to a destination object
store, or transforming the chunk data (e.g., compression or
encryption). Connections pass chunk headers between opera-
tors via thread-safe queues, and can be configured to send a
chunk header to one or all of multiple downstream operators.

For example, on a source overlay router, chunk registrations
from the control plane will provide chunk headers to the first
operator in the DAG, which downloads chunk data from an
object store. All chunk data is stored in a shared memory
filesystem to allow for fast access across operators. Once
chunk data is downloaded, the chunk header is passed to the
next operator via a connection, which runs LZ4 compression
[4]) and secret key encryption [5, 18] on the chunk data. The
leaf operators are ‘sender’ operators, which relay the chunk
header and data to other overlay routers.

Chunk data is relayed between overlay routers by a ‘sender’
operator on the sending router and a ‘receiver’ operator on the
receiving overlay router. When the sender operator is created,
it creates parallel TCP connections which are kept open for the
duration of the transfer. Before sending chunk data, the sender
will attempt to register the corresponding chunk headers with
the receiving overlay router to ensure it has space in its shared
memory file system to write the chunk data. Once chunks are
registered, the sender will send the chunk data over the TCP
sockets, and the receiver will wait for the written chunk data
size to match the size specified by the chunk header, before

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 287

System Description

Direct Data is transferred directly from the source to the destination regions.
MDST Data is transferred along edges selected by a Minimum Directed Spanning Tree (including source and destination regions)

computed from network costs.
Steiner Tree Data is transferred along edges selected by a Steiner tree (including optional waypoint regions) computed from network costs.
SPIDER [23] Data is transferred according to the plan generated by SPIDER, a system designed for fast bulk replication to multiple destinations.
Skyplane Skyplane’s optimizer is used to select paths for each source-destination pair, which are combined to build the distribution tree.
CloudMPCast [24] Data is transferred over a set of cost-minimizing edges that meet a minimum bandwidth threshold.
Deadline-aware
Inter-DC Multicast [30]

Data is transferred to meet deadlines in the inter-DC context according to [30]. Note that due to scalability issues, we needed to
modify the candidate tree generation step to only consider a subset of waypoint regions to achieve tractable runtimes.

AWS S3 Multi-
Region Bucket [9]

Vendor product that supports intra-cloud between AWS regions only. We enable Replication Time Control [38].

Bullet [33] Data is transferred according to the plan generated by Bullet, a high-bandwidth dissemination technique using an overlay mesh.
BitTorrent [49] Peer-to-peer protocol where peers download data from each other in a decentralized manner.

Cloudcast-Opt (HT) Data is transferred along the highest throughput (HT) multicast tree generated by our optimizer (tightest time constraint).
Cloudcast-Opt (LC) Data is transferred along a low cost (LC) multicast tree generated by our optimizer (relatively loose time constraint).

Table 2: All of the systems and variants we evaluate, covering a mix of academic baselines and commercial solutions.

sending chunk headers to the next operator. Successfully sent
chunk data is deleted from the shared memory filesystem.

Backpressure. Connections are configured with a maximum
size for the underlying queues. If the queue reaches its max-
imum size, the upstream operator will wait until the queue
size decreases sending chunk headers to the connection.

Striping. Registered chunk headers with different stripe IDs
are placed in different queues and processed by separate
DAGs, so that different stripes can be routed differently.

5 Evaluation

In this section, we evaluate Cloudcast across three metrics:
replication cost, replication time, and the optimizer solve time
(or simply, runtime). In particular, we show that for intra-
cloud and inter-cloud bulk data transfer, Cloudcast is able to
achieve up to 61.5% cost improvements under a tight runtime
budget when compared to academic, commercial, and open-
source baselines. We also show that our approximations to
reduce the optimizer solve time (as discussed in Section 3.4)
are highly effective by reducing the runtime by, on average,
30.68× for 5-destination replications. To simplify evaluation,
we disable compression and encryption in experiments.

The full list of evaluated baselines is shown in Table 2. We
note that many algorithms do not determine the number of
VMs to use in each region. To present them in the best light
possible, we maximize the number of VMs in each region
traversed by data, subject to per-region quota limits.

5.1 Comparison to Multicast Algorithms
We compare the replication time and cost of existing multicast
algorithms with Cloudcast’s optimizer to send 100 GB of data
from one source to six destination regions.

Simulation results. Given the above replication scenario, we
start by exploring a wide range of algorithmic baselines and

Figure 8: Simulated results for Multicast Algorithms.

Cloudcast parameter settings through simulation. While we
tested many configurations through the development of Cloud-
cast, due to limited space, we present results for a representa-
tive configuration1. Evaluated systems include Cloudcast-Opt,
direct transmission to the destinations, sending along cost-
minimizing trees (MDST and Steiner Tree), SPIDER [23],
CloudMPCast [24], Skyplane [28], and a deadline-aware inter-
DC optimizer [30]. Although Skyplane’s optimizer is de-
signed for unicast, not multicast, we adapt the optimizer’s
solution to multicast by running the optimization for each
source-destination pair, and then combining all the graphs to
build the distribution tree.

For Skyplane, CloudMPCast, and Cloudcast-Opt, we vary
the throughput parameter to evaluate the performance range.
For CloudMPCast [24], the optimizer allows for the level of
throughput degradation to be controlled by an α ≤ 1 term,
which determines how aggressively edges are filtered out. Our
parameter sweep includes α ∈ [1,0.5,0.1], where α = 1 maxi-
mizes CloudMPCast’s throughput. For Skyplane, we vary the
target throughput to maximize throughput and minimize cost,
and plot both of these points. For Cloudcast-Opt, we show

1Simulated Inter-Cloud: from gcp:asia-southeast1-a to azure:
eastasia, aws:af-south-1, azure:brazilsouth, aws:sa-east-1

288 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) AWS Intra-Cloud (b) Azure Intra-Cloud (c) GCP Intra-Cloud

Figure 9: Intra-cloud multicast results for algorithms implemented on Cloudcast.

Figure 10: Inter-cloud multicast results for different algo-
rithms implemented on Cloudcast. The Cloudcast replication
tree is visualized in Figure 6.

results for several replication time constraints.
In Figure 8, we see that all baselines improve signifi-

cantly upon direct transmission, and while some can match
Cloudcast-Opt’s capacity for fast replication time or low cost,
no existing baseline can optimize both metrics simultaneously.
Rather, Cloudcast-Opt’s Pareto-curve can match or beat all
baselines on at least one of cost or performance. CloudMP-
Cast, whose α parameter does provide some flexibility, still of-
fers a worse tradeoff than Cloudcast-Opt. Skyplane also has a
significantly worse tradeoff curve, as it is not designed for mul-
ticast, so does not perform optimizations to alleviate source
bottlenecks which are crucial for achieving high throughput.
Despite this, even Skyplane’s can improve throughput (for
the throughput-maximizing solution) and reduce cost (for the
cost-minimizing solution) as compared to direct transfers.

Cloud deployments. The remainder of our evaluations
present empirical results from real cloud data transfers. Due to
the high cost of running data multicast in the cloud ($20–$110
per transfer), we limit our evaluation to four representative
configurations and four representative baselines identified by
our simulation results. Among the configurations, three are
intra-cloud replications corresponding to AWS2, Azure3 and

2AWS Intra-Cloud: from ap-east-1 to us-west-1, ap-northeast-3,
eu-north-1, ap-south-1, ca-central-1, ap-northeast-1

3Azure Intra-Cloud: from brazilsouth to westeurope, westus,

GCP4, and one is an inter-cloud replication workload that
covers all three major providers5. These configurations are
chosen to contain a source region with high egress costs to
demonstrate potential cost savings. Among the baselines, we
sub-selected the best-performing baselines from our simula-
tion results in terms of throughput (SPIDER) and cost (Steiner
Tree), with direct transmission providing a naive baseline.

Figures 9a to 9c show results for AWS, GCP, and Azure
intra-cloud replication, and Figure 10 shows inter-cloud re-
sults. Across all configurations, given a very tight replica-
tion time constraint, Cloudcast-Opt (HT) solution leads to
46− 62.4% cost reductions and 2− 2.84× replication time
speedup compared to sending directly to each destination.

Of the baselines tested, SPIDER [23] consistently demon-
strates the lowest replication time, as it did in simulation.
However, as SPIDER is not cost-aware, Cloudcast-Opt (HT)
can achieve 28.4− 44.0% cost savings. Surprisingly, while
saving significant cost, Cloudcast-Opt (HT) simultaneously
speeds up replication by 1.11−1.35×, beating SPIDER on
both axes. If, on the other hand, Cloudcast is given a loose
replication time budget, i.e., Cloudcast-Opt (LC), it can find
the cost-optimal solution in all setups, matching Steiner Tree
solutions.

5.2 Cloud Provider and P2P Systems
We run end-to-end evaluation comparing Cloudcast with a
commercial baseline (AWS S3 multi-region bucket replica-
tion) and P2P systems (BitTorrent and Bullet).

5.2.1 AWS S3 Multi-Region bucket replication
We run an end-to-end comparison between Cloudcast and
AWS’s S3 multi-region bucket replication [9] for single-
provider multicast. AWS supports adding multiple replication
rules to a source bucket to specify automatic replication to

koreacentral, australiaeast, uaenorth, centralindia
4GCP Intra-Cloud: from asia-southeast2-a to australia-

southeast1-a, southamerica-east1-a, europe-west4-a,
europe-west6-a, asia-east1-a, europe-west2-a

5Inter-Cloud: from gcp:asia-southeast1-a to azure:
australiaeast, azure:eastasia, aws:ap-southeast-2, azure:
brazilsouth, aws:sa-east-1, gcp:australia-southeast1-a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 289

Figure 11: Cloudcast outperforms AWS S3 Replication Time
Control while reducing total transfer costs.

one or more replication buckets. In the aspect of time control,
AWS supports a replication time control with a minimum
15-minute SLO. However, we found that in our experiments,
replications typically completed much faster than 15 minutes.
Therefore, we use the actual replication time as a point of
comparison.

We compare AWS’s replication time and cost to Cloudcast
with the planner implemented with both direct transfer and
the optimizer. We transfer an OPT model [53] with 66 billion
parameters (122 GB in total across 9 files) between regions
in a single continent6. To evaluate AWS replication time and
cost, we create buckets with replication rules from a bucket
in the source region to buckets in destination regions. Once
the replication rules are created, we copy data from a bucket
in the same region into the source bucket with 16 VMs. After
the write completes, we measure the time until the comple-
tion of replication into all destination buckets. We calculate
the transfer cost according to AWS’s pricing page [39]. We
compare AWS multi-region bucket replication to Cloudcast
implemented with both the direct and optimizer planner and
running. As shown in Figure 11, the direct transfer has the
same egress costs as AWS bucket replication, but the VM
costs are much less than the service fee charged by AWS for
the replication. Overall, Cloudcast with the optimizer is able
to achieve 2.3× replication speedup and 61.5% cost savings.
This is a result of being able to leverage VM parallelism as
well as an overlay network that minimizes total egress costs.

5.2.2 P2P BitTorrent and Bullet
We also compare Cloudcast against P2P systems like Bit-
Torrent and Bullet. We run the same transfer benchmark in
Azure in Figure 9b, sending 100GB within Azure to 6 desti-
nation regions. We host our own BitTorrent tracker and use
aria2 [48] as a BitTorrent client. Since Bullet’s implemen-
tation is not available, we evaluate Bullet by implementing
Bullet’s algorithm inside Cloudcast’s planner. The result is
shown in Figure 12: both BitTorrent and Bullet have lower
egress costs than direct but higher than Cloudcast. BitTor-
rent is the slowest because most clients cannot utilize the full
bandwidth. The clients are built for scenarios like background
seeding and transfer off the critical path, rather than for bulk

6from aws:ap-east-1 to aws:ap-southeast-2, aws:ap-south-1,
aws:ap-northeast-3, aws:ap-northeast-2, aws:ap-northeast-1

Figure 12: Comparison with BitTorrent protocol on the intra-
cloud Azure workload in Figure 9b.

(a) Cost Reduction (b) Replication Time Speedup

Figure 13: Cloudcast optimizer’s cost and time improvement
over direct replication with varying destination numbers.

data transfer. Interestingly, without a centralized planner, Bit-
Torrent is able to find a low-cost multicast replication tree by
inferring the bandwidth among peers and preferring the data
from peers who have the highest throughput. However, it is
still significantly more expensive than Cloudcast.

5.3 Ablations of Cloudcast’s Optimizer
To understand how our optimizer behaves for different selec-
tions of source and destination regions and different target
replication times, we run simulated ablations.

5.3.1 Varying region selection
We test the generality of our improvements by randomly se-
lecting source and destination regions for varying numbers of
destinations. We show aggregated results over 100 samples
for different numbers of destinations in Figure 13. Cloud-
cast is able to improve the runtime and cost of replication
consistently across varying numbers of destinations. Cost
and throughput improvement increase with more destinations,
since more destinations provide a larger optimization space.

5.3.2 Impact of approximations on solutions
We evaluate how the optimizer with and without approxima-
tions scales to larger numbers of destinations in Figure 14, by
randomly selecting source and destination regions for varying
numbers of destination regions. We find that combining all
three approximation mechanisms is necessary to scale the op-
timizer: using no approximations, or only one approximation,
takes several minutes for just 10 destinations while using all
approximations together reduces solve time to seconds.

We also evaluate how approximations affect the quality of
the solution using the monetary cost of the solver-generated

290 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: Approximations reduce solver runtime from the
cutoff of 30 minutes to seconds for up to 20 destinations.

Method Mean error Solver speedup
(geomean)

Node Clustering 0.3% 9.04×
Hop Constraining 1.1% 5.72×
Stripe Iterative 0.0% 7.02×
All Approximations 1.1% 30.68×

Table 3: Solve time and solution quality with approximations.

solution. We randomly sample 100 source/destination com-
binations for 5 destinations and compute the difference in
the solution’s monetary cost and replication runtime com-
pared to MILP without approximation in Table 3. We find
that the difference in cost averages around 1%, and estimate
the worst-case approximation ratio to be 1.4. We find that for
even just 5 destinations, the approximated solver runs with a
geometric-mean speedup of 30.68×.

5.3.3 Accuracy of replication time model
We compare optimizer-modeled throughput and real through-
put in Table 4. As transfer size increases, the approxima-
tion becomes more accurate. This is because Cloudcast’s
optimizer, designed for bulk data replication, makes several
simplifying assumptions, such as perfectly pipelined stripes.
Thus, transient inefficiencies during startup and teardown
mean smaller transfers may experience lower throughput than
the optimizer expects, but for larger, more expensive transfers,
modeled throughput closely matches empirical results.

5.4 When to Use Cloudcast for Multicast?
Cloudcast is designed for bulk multicast replication in the
cloud, so should only be used with data sizes are sufficiently
large. Since Cloudcast relies on creating VMs in the cloud
at transfer initiation time, there is a constant overhead from
VM startup time. We calculate the transfer size break-even
point (i.e. the minimum data size for using Cloudcast) for
varying providers and VM capacity limits (constraining the
throughput for the Cloudcast overlay), shown in Figure 15.
We approximate the per-destination replication throughput
without Cloudcast as equal to the per-VM egress bandwidth
limit, ignoring congestion between source and destination
VMs. Azure has a higher break-even point than AWS and
GCP due to two effects. First, the VM startup time is the

Transfer Size (GB) Prediction error

16 16.6%
32 8.51%
64 3.31%
128 1.69%

Table 4: Accuracy of the optimizer’s predicted throughput.

Figure 15: Estimated break-even point for a 6-destination
replication based on VM startup times (35, 56, and 34 seconds
for AWS, Azure, and GCP, respectively) and VM egress limits.

highest of all providers (56 seconds). Second, VMs in Azure
are not subjected to egress constraints (5 Gbps and 7 Gbps for
AWS and GCP, respectively). As a result, the benefits of using
Cloudcast’s techniques are only realized for larger transfer
sizes or larger numbers of destinations.

6 Related Work

Overlay Unicast. A significant body of prior work uses over-
lay networks to improve the performance and resilience of
one-to-one data transfers in the Internet and peer-to-peer net-
works [7, 12, 33]. In clouds, previous work has also leveraged
cloud elasticity to further improve performance [28,37]. How-
ever, they do not consider multicast, and except Skyplane [28],
none consider the monetary cost of replication in the cloud.
Handling multicast is challenging. For example, while [28]
can leverage elastic resources, cloud pricing models, and over-
lay networking for bulk unicast replication in the cloud, its
techniques are not directly applicable to the multicast setting.
More specifically, Skyplane’s flow-based throughput model
results in ambiguous multicast distribution tree solutions as it
ignores the identity of data sent along multiple paths. Further-
more, since Skyplane’s optimizer is not designed for multicast,
it cannot take advantage of techniques such as leveraging mul-
tiple distribution trees to alleviate source bottlenecks.

Overlay Multicast. End-system multicast [15] and over-
lay multicast have been proposed to efficiently disseminate
data from a single source to multiple destinations. Many
application-level multicast algorithms have been proposed.
Algorithms like SPIDER [23], SplitStream [12], Bullet [33],
and Overcast [29] are designed for high-bandwidth, cross-
internet file distribution with application-level multicast over-
lays. However, these algorithms ignore monetary costs and
focus on techniques to maximize bandwidth.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 291

Inter-DC Replication. Extensive prior work addresses inter-
DC replication [21, 22, 34, 44, 54], including bulk multi-
cast [36]. Recent research includes deadline [36] and cost-
awareness [20, 21]. However, the cost model in the Inter-DC
setting cannot be easily adapted to cloud users, for which
network pricing is based on total data volume rather than
bandwidth (which introduces a non-linearity for a standard
bandwidth-based MILP formulation). Furthermore, existing
formulations are not designed for multicast [20, 21] or do not
consider more than a few geo-distributed regions [36]. Our
work focuses on public clouds, considering unique per-GB
network pricing, elastic resources, and cloud-specific resource
constraints. Our approximation algorithm is also designed to
scale to all regions across multiple cloud vendors.

Traffic Engineering. The classic problem of traffic engineer-
ing has also formulated optimization problems for minimizing
cost under performance constraints. These techniques have
recently been applied to cloud providers and their monetary
costs. For example, Entact [55] studied how to optimize costs
for online service providers while still minimizing user la-
tency. Similarly, Cascara [45] leveraged latency-equivalent
paths to identify cost-minimizing paths for cloud providers.
Like Inter-DC Replication, these approaches have been de-
veloped from the perspective of the cloud or service provider
and, thus, present a materially different optimization problem.

Steiner Trees. The Steiner Tree algorithm has been applied
in the multicast setting both to minimize costs in terms of de-
lay [31] and cloud egress costs [24]). CloudMPCast [24] mini-
mizes egress costs in cloud bulk data multicast by constructing
a Steiner Tree overlay network that avoids low-throughput
cross-region paths. However, CloudMPCast overlooks VM
capacity and per-VM egress/ingress limits in its MILP for-
mulation. Also, CloudMPCast aims to achieve comparable
performance to direct transfers while minimizing cost, unlike
Cloudcast, which optimizes throughput.

Geo-Distributed Storage. Geo-distributed storage via data
replication is supported by a variety of cloud services, such as
AWS Cross-Region Replication [9], AWS Multi-Region Ac-
cess Points [11], and GCP Multi-region buckets [25]. Cross-
region replicated buckets (e.g., S3 replication rules) automat-
ically replicate written data from a bucket in one region to
one or more buckets in other regions. However, these services
have limited support for cross-cloud data movement and do
not minimize egress costs even for intra-cloud data movement.
SPANStore [51] designs a system for geo-distributed storage
across multiple cloud providers, and also optimizes egress
costs of relaying data on PUT requests. However, its relay
strategy is optimized for latency, not bandwidth.

Peer-to-peer Multicast. Peer-to-peer systems (P2P) support
file sharing among a set of end-user clients. The BitTorrent
protocol [17] reduces the network load on the source by al-
lowing clients to upload and download data to each other.
BitTorrent is widely used for data multicast in data center

METHOD MULTICAST
CLOUD

PRICING
STRIPING

RESOURCE
ELASTICITY

Unicast overlay networks
RON [7] × × ✓ ×
Skyplane [28] × ✓ ✓ ✓
COMS [20] × × × ∼

Peer-to-peer
BitTorrent [17] ✓ × ✓ ×
SplitStream [12] ✓ × ✓ ×
Bullet [33] ✓ × ✓ ×

Inter-DC overlay multicast
SPIDER [23] ✓ × ✓ ×
CodedBulk [47] ✓ × ✓ ×
BDS [54] ✓ × ✓ ×
Deadline-aware Inter-DC [30] ✓ × × ✓

Cost optimized overlay networks
SPANStore [51] ✓ ✓ × ×
CloudMPCast [24] ✓ ✓ × ×
Jetway [21] × ✓ ✓ ×

Cloudcast (ours) ✓ ✓ ✓ ✓

Table 5: Cloudcast builds on prior work by enabling multi-
cast, optimizing cloud costs, and leveraging cloud resource
elasticity and multiple distribution trees.

environments by Facebook [19] and Twitter [49]. Special-
ized systems for data multicast that use BitTorrent include
Uber’s Kraken [40] and Ant Group’s Dragonfly [6]. These
P2P systems have significant overhead as they are designed
for adversarial settings where peers may be unreliable or fail.
Moreover, P2P systems must scale to millions of destinations
and therefore lack centralized control which prevents custom
routing topologies. P2P systems may redundantly send data
over expensive links due to a lack of cost awareness.

7 Conclusion

In this paper, we explored the problem of cost-optimized
cloud multicast by introducing overlay networks of ephemeral
VM waypoints that exploit path-specific cloud pricing to sig-
nificantly reduce cost and improve throughput. We developed
a MILP formulation of this problem and introduced approxi-
mations that make the solving time feasible for practical ap-
plications. Our evaluation against academic and commercial
baselines demonstrated up to a 61.5% reduction in cost and a
2.3× improvement in runtime. Cloudcast has been released
as part of the Skyplane open source project with pluggable
planning algorithms to enable future research in this space.

Acknowledgments

This work was supported by gifts from Accenture, AMD,
Anyscale, Google, IBM, Intel, Microsoft, Mohamed Bin Za-
yed University of Artificial Intelligence, Samsung SDS, SAP,
Uber, and VMware. We also thank Asim Biswal for his con-
tributions to the open source artifact, and Daniel Rothchild
for providing feedback on writing.

292 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Blackblaze. https://www.backblaze.com/b2/
cloud-storage-pricing.html. Accessed: 2022-12-
08.

[2] Wasabi. https://wasabi.com/. Accessed: 2022-12-
08.

[3] Cvxpy: A python library for convex optimization, 2021.

[4] Lz4 - extremely fast compression, 2023.

[5] Pynacl: Python binding to the libsodium library, 2023.

[6] Alibaba. Dragonfly. https://github.com/
dragonflyoss/Dragonfly, 2018. Accessed on
12/15/2022.

[7] David Andersen, Hari Balakrishnan, Frans Kaashoek,
and Robert Morris. Resilient overlay networks. In
Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 131–145, 2001.

[8] Amazon AWS. Ec2 on-demand instance pricing. https:
//aws.amazon.com/ec2/pricing/on-demand, 2023.

[9] Aws cross-region replication. https:
//docs.aws.amazon.com/AmazonS3/latest/
userguide/replication.html.

[10] Microsoft Azure. Pricing - bandwidth.
https://azure.microsoft.com/en-us/pricing/
details/bandwidth/, 2023.

[11] Alex Casalboni. Amazon s3 multi-region access
points. https://aws.amazon.com/s3/features/
multi-region-access-points/.

[12] Miguel Castro, Peter Druschel, Anne-Marie Kermar-
rec, Animesh Nandi, Antony Rowstron, and Atul Singh.
Splitstream: High-bandwidth multicast in cooperative
environments. ACM SIGOPS operating systems review,
37(5):298–313, 2003.

[13] Sarah Chasins, Alvin Cheung, Natacha Crooks, Ali Gh-
odsi, Ken Goldberg, Joseph E Gonzalez, Joseph M
Hellerstein, Michael I Jordan, Anthony D Joseph,
Michael W Mahoney, et al. The sky above the clouds.
arXiv preprint arXiv:2205.07147, 2022.

[14] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui
Zhang. Enabling conferencing applications on the inter-
net using an overlay muilticast architecture. In Proceed-
ings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer commu-
nications, pages 55–67, 2001.

[15] Yang-hua Chu, Sanjay G Rao, Srinivasan Seshan, and
Hui Zhang. A case for end system multicast. IEEE Jour-
nal on selected areas in communications, 20(8):1456–
1471, 2002.

[16] Google Cloud. All networking pricing. https://
cloud.google.com/vpc/network-pricing, 2023.

[17] Bram Cohen. Incentives build robustness in bittorrent.
In Workshop on Economics of Peer-to-Peer systems, vol-
ume 6, pages 68–72. Berkeley, CA, USA, 2003.

[18] Frank Denis. The sodium cryptography library, Jun
2013.

[19] Facebook uses bittorrent, and they love it.
https://torrentfreak.com/facebook-uses-
bittorrent-and-they-love-it-100625/. Ac-
cessed on 12/15/2022.

[20] Bita Fatemipour, Wei Shi, and Marc St-Hilaire. A cost-
effective and multi-source-aware replica migration ap-
proach for geo-distributed data centers. In 2022 IEEE
Cloud Summit, pages 17–22. IEEE, 2022.

[21] Yuan Feng, Baochun Li, and Bo Li. Jetway: Minimizing
costs on inter-datacenter video traffic. In Proceedings of
the 20th ACM international conference on Multimedia,
pages 259–268, 2012.

[22] Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex
Boyko, Francois Richard, Eric Sun, Wendy Tobagus,
Nick Wolchko, and Fang Zhou. Owl: Scale and flexi-
bility in distribution of hot content. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 1–15, 2022.

[23] Samrat Ganguly, Akhilesh Saxena, Sudeept Bhatnagar,
Rauf Izmailov, and Suman Banerjee. Fast replication
in content distribution overlays. In Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer
and Communications Societies., volume 4, pages 2246–
2256. IEEE, 2005.

[24] José Luis García-Dorado and Sanjay G Rao. Cost-aware
multi data-center bulk transfers in the cloud from a
customer-side perspective. IEEE Transactions on Cloud
Computing, 7(1):34–47, 2015.

[25] Gcp multi-region bucket. https:
//cloud.google.com/storage/docs/
locations#location-mr. Accessed on 12/15/2022.

[26] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2023.

[27] Frank K Hwang and Dana S Richards. Steiner tree
problems. Networks, 22(1):55–89, 1992.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 293

https://www.backblaze.com/b2/cloud-storage-pricing.html
https://www.backblaze.com/b2/cloud-storage-pricing.html
https://wasabi.com/
https://github.com/dragonflyoss/Dragonfly
https://github.com/dragonflyoss/Dragonfly
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/vpc/network-pricing
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr

[28] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G Patil,
Joseph E Gonzalez, and Ion Stoica. Skyplane: Opti-
mizing transfer cost and throughput using cloud-aware
overlays. arXiv preprint arXiv:2210.07259, 2022.

[29] John Jannotti, David K Gifford, Kirk L Johnson,
M Frans Kaashoek, and James W O’Toole Jr. Over-
cast: Reliable multicasting with an overlay network. In
Fourth Symposium on Operating Systems Design and
Implementation (OSDI 2000), 2000.

[30] Siqi Ji, Shuhao Liu, and Baochun Li. Deadline-aware
scheduling and routing for inter-datacenter multicast
transfers. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 124–133, 2018.

[31] Jehn-Ruey Jiang and Szu-Yuan Chen. Constructing
multiple steiner trees for software-defined networking
multicast. In Proceedings of the 11th International
Conference on Future Internet Technologies, pages 1–6,
2016.

[32] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti, and M Frans Kaashoek. The click modular
router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[33] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and
Amin Vahdat. Bullet: High bandwidth data dissemi-
nation using an overlay mesh. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples, pages 282–297, 2003.

[34] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang,
and Pablo Rodriguez. Inter-datacenter bulk transfers
with netstitcher. In Proceedings of the ACM SIGCOMM
2011 Conference, pages 74–85, 2011.

[35] Long Luo, Qixuan Jin, Jingzhao Xie, Gang Sun, and
Hongfang Yu. Cost-efficient scheduling of multicast
transfers with deadline guarantees across edge datacen-
ters. IEEE Transactions on Services Computing, 2021.

[36] Long Luo, Yijing Kong, Mohammad Noormohammad-
pour, Zilong Ye, Gang Sun, Hongfang Yu, and Bo Li.
Deadline-aware fast one-to-many bulk transfers over
inter-datacenter networks. IEEE Transactions on Cloud
Computing, 10(1):304–321, 2019.

[37] Miguel Matos, António Sousa, José Pereira, and Rui
Oliveira. Clon: Overlay network for clouds. In Proceed-
ings of the Third Workshop on Dependable Distributed
Data Management, pages 14–17, 2009.

[38] Meeting compliance requirements using s3 replica-
tion time control. https://docs.aws.amazon.com/
AmazonS3/latest/userguide/replication-time-
control.html. Accessed on 12/15/2022.

[39] Overview of data transfer costs for common ar-
chitectures. https://aws.amazon.com/blogs/
architecture/overview-of-data-transfer-
costs-for-common-architectures/. Accessed on
12/15/2022.

[40] P2p docker registry capable of distributing tbs of data
in seconds. https://github.com/uber/kraken. Ac-
cessed on 12/15/2022.

[41] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos,
Thomas Anderson, and Arvind Krishnamurthy. One
tunnel is (often) enough. ACM SIGCOMM Computer
Communication Review, 44(4):99–110, 2014.

[42] Matthew Prince and Nitin Rao. Aws’s egre-
gious egress. https://blog.cloudflare.com/aws-
egregious-egress/, 2021.

[43] Daniel Rehfeldt and Thorsten Koch. Implications, con-
flicts, and reductions for steiner trees. In Mohit Singh
and David P. Williamson, editors, Integer Programming
and Combinatorial Optimization - 22nd International
Conference, IPCO 2021, Atlanta, GA, USA, May 19-21,
2021, Proceedings, volume 12707 of Lecture Notes in
Computer Science, pages 473–487. Springer, 2021.

[44] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri
Gong, Feng Lin, Junyu Wu, Yongsheng Li, Haidong
Rong, Pierre-Louis Aublin, et al. Ekko: A {Large-
Scale} deep learning recommender system with {Low-
Latency} model update. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 821–839, 2022.

[45] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 201–216, 2021.

[46] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott
Shenker, and Sonesh Surana. Internet indirection in-
frastructure. In Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 73–86, 2002.

[47] Shih-Hao Tseng, Saksham Agarwal, Rachit Agarwal,
Hitesh Ballani, and Ao Tang. Codedbulk: Inter-
datacenter bulk transfers using network coding. In NSDI,
pages 15–28, 2021.

[48] Tatsuhiro Tsujikawa and Nils Maier. aria2 - the ultra
fast download utility. https://github.com/aria2/
aria2, 2008.

294 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-time-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-time-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-time-control.html
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://github.com/uber/kraken
https://blog.cloudflare.com/aws-egregious-egress/
https://blog.cloudflare.com/aws-egregious-egress/
https://github.com/aria2/aria2
https://github.com/aria2/aria2

[49] Twitter uses bittorrent for server deployment.
https://torrentfreak.com/twitter-uses-
bittorrent-for-server-deployment-100210/.
Accessed on 12/15/2022.

[50] Marcia Villalba. Amazon s3 replication
adds support for multiple destination buckets.
https://aws.amazon.com/blogs/aws/new-amazon-
s3-replication-adds-support-for-multiple-
destination-buckets/, 2020.

[51] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning bmul-
tiple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, pages 292–308, 2013.

[52] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-
Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, Sifei Luan, Gautam Mittal, Scott Shenker, and
Ion Stoica. SkyPilot: An Intercloud Broker for Sky
Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’23), April
2023.

[53] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. Opt: Open pre-trained trans-
former language models, 2022.

[54] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-
tin J Reed, Haiyang Wang, Guang Yao, Miao Zhang,
and Kai Chen. Bds: A centralized near-optimal overlay
network for inter-datacenter data replication. In Pro-
ceedings of the Thirteenth EuroSys Conference, pages
1–14, 2018.

[55] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Char-
lie Hu, Ratul Mahajan, and Blaine Christian. Optimiz-
ing cost and performance in online service provider
networks. In NSDI, pages 33–48, 2010.

A Optimizer Parameters

A.1 Stripe Granularity
The number of stripes is a parameter in the optimizer that
determines the unit of data size that the optimizer determines
routes. Choosing too small a number of stripes (e.g., 1-4) can
result in solution infeasibility, since an individual stripe may
be too large to fit along any given link under a replication
time constraint. We show the tradeoff in 16 between solution

quality (dollar cost) and the number of stripes set of solving
a 3-destination topology. Adding more stripes can increase
the solver runtime unnecessarily. We use 8− 16 stripes for
experiments.

Figure 16: Solution quality v.s the number of stripes. Given
a 6-destination intra-AWS transfer job and the same runtime
SLO, our optimizer generates different solutions for different
numbers of stripes. Small numbers of stripes can result in no
feasible solution or solution with worse quality (i.e., higher
cost). However, increasing the number of stripes to larger than
10 has diminishing returns.

A.2 Node Sub-Selection
In Figure 3.4, we describe how we cluster nodes to select
a subset of nodes for consideration by the optimizer. We
motivate this by running an experiment to randomly select a
subset of nodes in Figure 17. Generally, there are diminishing
returns (beyond 20 nodes) to consider additional nodes. To
avoid variability from randomness, we use the techniques
described in Figure 17 to select a represented subset of nodes.

Figure 17: Solution quality versus the number of considered
nodes. Considering a larger set of regions has diminishing re-
turns of solution quality but exponentially increases optimizer
runtime.

B Formulation Details

B.1 Ensuring Valid Paths
We cannot ensure connectivity of prevent cycles in paths
defined by P without adding an exponential number of con-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 295

https://torrentfreak.com/twitter-uses-bittorrent-for-server-deployment-100210/
https://torrentfreak.com/twitter-uses-bittorrent-for-server-deployment-100210/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/

straints. We define a special flow variable F to add constraints
that ensure that flow can be pushed along paths from P from
the source to all destinations. The source node is denoted as
the source region index in the transfer, the destination nodes
are denoted as the destination region indices, and the sink
node is denoted as a special node that is only connected to
destination nodes. We constrain F to have flow if and only if
the corresponding stripe and edge for P is set to 1.

Fs,(u,v) ≥ 1, if Ps,(u,v) = 1 (9)

We ensure zero or negative flow for Ps,u,v = 0 via capacity
constraints. We set special capacity constraints between des-
tination nodes and the sink, to ensure that the sink can only
receive sufficient flow if it receives flow from all destinations.

Fs,(u,v) ≤

1, if u ∈ DEST,v = sink

0, if Ps,(u,v) = 0
|DEST|, otherwise

(10)

We impose conservation of flow ∀s:

∑
u∈V

Fs,(u,v) =

|DEST|, if v is the source
−|DEST|, if v is the sink
0, otherwise

(11)

If the above constraints are met, this ensures that the stripe
paths assigned by P are able to push flow from the source to
all destinations.

B.1.1 Full Formulation

We can write a full formulation of an integer linear program
as the following:

argmin
P,N,F

TIME ∗ ⟨COSTVM,N⟩+∑
s
⟨COSTpath,P⟩ (12)

N ≤ LIMITVM (13)

SIZESTRIPE ∗∑
s

Ps,(u,v) ≤ CAPACITYpath
u,v (14)

SIZESTRIPE ∗∑
s

∑
u∈V

Ps,(v,u) ≤ EGRESSVM (15)

SIZESTRIPE ∗∑
s

∑
v∈V

Ps,(v,u) ≤ INGRESSVM (16)

Fs,(u,v) ≥ 1, if Ps,(u,v) = 1 (17)

∑
u∈V

Fs,(u,v) =

|DEST|, if v is the source
−|DEST|, if v is the sink
0, otherwise

(18)

Fs,(u,v) ≤

1, if u ∈ DEST,v = sink

0, if Ps,(u,v) = 0
|DEST|, otherwise

(19)

C How does Cheaper Egress Affect Cloud-
cast’s Optimizations?

Some existing cloud providers (e.g., Cloudflare [42], Wasabi
[2], and Blackblaze [1]) offer discounted or even free network
egress. Interestingly, incorporating free-egress clouds into
Cloudcast offers further opportunities to reduce costs. Figure
18a illustrates this effect. This highlights the importance of
using a system like Cloudcast, which can adapt replication
plans in response to cheaper network offerings.

It is possible that major cloud providers will also adapt free-
egress models or, in a less extreme case, make intra-cloud
network fees more uniform as they build up additional capac-
ity for inter-region networks with limited bandwidth. In this
case, the techniques used by Cloudcast (overlay networking,
VM parallelism, and striping) would achieve only substantial
throughput improvements but no cost improvement.

(a) Example of routing via no egress fee clouds.

Direct Cloudcast w/o
Cloudflare

Cloudcast w/
Cloudflare

Cost ($/GB) 0.24 0.2075 0.12

(b) Egress cost is 2× cheaper including Cloudflare in Cloudcast.
Figure 18: Routing data through clouds with no egress fees
(e.g., Cloudflare) can reduce inter-cloud replication costs as
egress fees need to be paid only once rather than a minimum
of twice to replicate data across AWS, GCP, and Azure.

296 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Problem Setup
	Egress Costs
	Bandwidth Variability Across Endpoints
	Elasticity of Resources
	Illustrated Example

	Cost Optimization in Cloudcast
	Egress Cost Minimization Algorithms
	Profiling Cross-region Bandwidth
	Optimizing Cost with Time Constraints
	Decision variables
	Objective: minimizing price under a deadline
	Constraints
	Solver feasibility

	Reducing Optimizer Runtime
	Example Topology

	Architecture of Cloudcast
	Control Plane
	Data Plane

	Evaluation
	Comparison to Multicast Algorithms
	Cloud Provider and P2P Systems
	AWS S3 Multi-Region bucket replication
	P2P BitTorrent and Bullet

	Ablations of Cloudcast's Optimizer
	Varying region selection
	Impact of approximations on solutions
	Accuracy of replication time model

	When to Use Cloudcast for Multicast?

	Related Work
	Conclusion
	Optimizer Parameters
	Stripe Granularity
	Node Sub-Selection

	Formulation Details
	Ensuring Valid Paths
	Full Formulation

	How does Cheaper Egress Affect Cloudcast's Optimizations?

