
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

SMUFF: Towards Line Rate Wi-Fi Direct Transport
with Orchestrated On-device Buffer Management
Chengke Wang, Peking University; Hao Wang, Shenzhen Kaihong Digital Industry

Development Co., Ltd.; Yuhan Zhou and Yunzhe Ni, Peking University;
Feng Qian, University of Southern California; Chenren Xu, Peking University,
Zhongguancun Laboratory, and Key Laboratory of High Confidence Software

Technologies, Ministry of Education (PKU)
https://www.usenix.org/conference/nsdi24/presentation/wang-chengke

SMUFF: Towards Line Rate Wi-Fi Direct Transport with
Orchestrated On-device Buffer Management

Chengke WangP, Hao WangS, Yuhan ZhouP, Yunzhe NiP, Feng QianC, Chenren XuPZK∗

PSchool of Computer Science, Peking University SShenzhen Kaihong Digital Industry Development Co., Ltd.
CUniversity of Southern California ZZhongguancun Laboratory

KKey Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Abstract – Wi-Fi direct transport provides versatile con-
nectivity that enables convenient data sharing and improves
the productivity of mobile end users. However, as today’s
smartphones are capable of near-Gbps wireless data rates, cur-
rent solutions do not efficiently utilize the available bandwidth
in this single-hop environment. We show that existing trans-
port schemes suffer from resource-intensive reliable delivery
mechanisms, inadequate congestion control, and inefficient
flow control for achieving line-rate transmission in peer-to-
peer Wi-Fi direct links. In this paper, we present SMUFF, a reli-
able file transfer service that achieves nearly the practical line
rate of the underlying wireless bandwidth. We note a unique
feature of direct transport – the sender can monitor each buffer
along the data path and determine an optimal sending rate
accordingly. Therefore, SMUFF can maximize throughput
by strategically backlogging the appropriate amount of data
in the bottleneck buffer. We have deployed SMUFF on four
different phone models, and our evaluations with other trans-
port schemes show that SMUFF achieves up to 94.7% of the
practical line rate and 22.6% throughput improvement with a
37% reduction in CPU usage and a 15% reduction in power
consumption, compared to state-of-the-art solutions.

1 Introduction
Peer-to-peer wireless connectivity is compelling for scenarios
where quick and easy data sharing is critical. It not only im-
proves data transport efficiency by reducing protocol overhead
and backhaul traffic but also prevents potential data privacy
leakage from the cloud. The industry has taken note of these
advancements. An increasing number of smartphone man-
ufacturers are introducing their own file transfer solutions,
such as Apple AirDrop [1, 2], Huawei Share [3], Xiaomi Mo-
bile Direct Fast Exchange [4], and Samsung Quick Share [5].
Looking ahead, these innovations will play a crucial role in
supporting emerging mobile device applications. For instance,
a VR headset may seamlessly load a 2 GB game asset from
a PC [6], autonomous vehicles may exchange road traffic
information via peer-to-peer wireless links [7], and devices
involved in distributed ML training within robotic IoT net-
works or mobile federated learning may need to exchange
model gradients over the wireless channel [8–10]. With such

∗B: chenren@pku.edu.cn

a wide range of applications, there is a need to unleash the
full potential of peer-to-peer wireless data transfer.

With the ubiquitous deployment of Wi-Fi networks, Wi-Fi
Direct [11] is an attractive local wireless data transmission
technology to provide direct connectivity between devices.
The standard claims that 802.11ac (Wi-Fi 5) already provides
theoretical physical layer bandwidth up to 867 Mbps, and
the practical wireless line rate can reach nearly 700 Mbps
(§2.2). However, TCP (CUBIC), the most widely used trans-
port scheme, averages only 442 Mbps on Wi-Fi Direct links,
and other commercial solutions perform even worse (§2.3).
Our further investigation reveals three key reasons that prevent
the current transport schemes from achieving wireless line
rate performance: i) The current reliable delivery mechanism
uses a per-packet ACKing policy, which exacerbates channel
contention on Wi-Fi links, and the compute-intensive network
stack imposes more packet processing overhead. Both of these
drawbacks significantly reduce throughput. ii) Today’s widely
deployed TCP (or QUIC) relies primarily on congestion con-
trol algorithms (CCAs) to probe and estimate the network
bandwidth and adjust the sending rate, which is unsuitable for
the one-hop single-flow scenario as it exhibits unnecessary
startup phase and overreaction to the lossy wireless link. iii)
The flow control mechanisms in existing transport schemes
are inefficient in achieving line rate transmission in Wi-Fi
Direct links as they are unaware of some on-path buffers and
suffer from delayed ACK feedback and fixed parameter con-
figurations. All of the above factors contribute to the reduced
link bandwidth utilization.

In the presence of the above problems, we notice a distinc-
tive characteristic of peer-to-peer direct data transmission that
can be exploited to achieve high link utilization. Specifically,
we are able to monitor the state of each individual buffer in
the whole packet lifecycle because the two communicating
devices are the only entities involved. This is in sharp contrast
to a data center or Internet connection that relies on interme-
diate nodes (routers and switches) to forward the traffic – in
this case, the sender typically needs to use a sophisticated
CCA to indirectly infer the buffer states that are not available
to the end host [12,13] or obtain buffer states with the help of
in-network devices [14–16]. In our scenario, the direct access
to buffer states offers a unique opportunity to achieve a high
data rate by backlogging data in the buffers.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1369

However, designing an efficient mechanism allowing a re-
ceiver to report the buffer state to the sender is not straightfor-
ward. First, existing flow control shipped with today’s TCP
and QUIC uses a per-packet ACK to allow the receiver to re-
port its available space to the sender. However, a dense ACK
stream can significantly reduce the throughput of the high-
speed wireless direct connection [17,18]. Besides, there exists
a non-negligible control latency between the buffer state re-
port and sender decision-making even in our one-hop scenario
(§3.3.1). Therefore, the sender can only receive infrequent
feedback from the receiver and has to strategically determine
a sending rate according to out-of-date buffer states. Further-
more, although our scenario only involves two entities, there
are multiple buffers along the data path (§2.1). The sender
thus needs to coordinate these buffers and ensure its sending
rate does not cause underflow or overflow in any buffer.

In this paper, we present SMUFF, a file transfer service
that improves Wi-Fi Direct transport throughput to line rate
by orchestrating the on-device buffers. We model the trans-
port data path as a series of linearly connected buffers, and
consider the traffic as a fluid that sequentially traverses each
buffer. Our core idea is to identify and address the bottleneck
component within this data path. To maximize throughput,
we maintain an appropriate backlog of data in the bottleneck
buffer. The amount of backlogged data must satisfy two con-
straints: i) Enough data must be backed up to prevent a buffer
underflow, i.e., an empty router queue results in throughput
less than the link rate; and ii) sufficient buffer space must be
reserved to avoid buffer overflows, which can cause packet
drops and complicate the subsequent packet recovery pro-
cess. This leads us to define a “safe range” for the amount
of buffered data. This range ensures that even in situations
where state information is infrequently updated or out of date
due to limited feedback, the buffer remains protected from
both underflow and overflow. To accomplish this, SMUFF sys-
tematically collects state information from on-path buffers
and calculates an optimal sending rate. This rate is carefully
tuned to keep the bottleneck buffer size within the safe range.

SMUFF requires no proprietary hardware or modification to
the device kernel, making it portable across different device
models and easy to deploy. We have deployed the SMUFF
service on four different Android mobile phone models with
release dates spanning five years. Our evaluation shows that
SMUFF achieves an average link utilization of 88.7% and
91.8% for 802.11ac and 802.11ax, respectively. It improves
the link utilization by up to 22.6% while reducing CPU uti-
lization by 37% and energy consumption by 15%, compared
to the state-of-the-art solution.

Our contributions are as follows:
• We reveal the fundamental limitations of existing end-to-

end transport schemes for Wi-Fi Direct. These schemes
designed for multi-hop networks suffer from link under-
utilization in peer-to-peer wireless data transfer.

• We design SMUFF, a file transfer service that is dedicated

App send buffer

Socket write buffer

Storage disk Storage disk

Wi-Fi Direct

Qdisc

Socket read buffer

App receive buffer

Sender Receiver

Netdev backlog

User space

Kernel space

Hardware

Kernel space
& Hardware

Network-bound Computation-bound I/O-bound

WNIC circular buffer WNIC circular buffer

IP defrag. buffer

Figure 1: The end-to-end file transfer path. The Qdisc buffer,
the socket read buffer, and the application receive buffer (high-
lighted in blue) are vulnerable to overflows.

to Wi-Fi Direct towards practical line rate. SMUFF max-
imizes throughput by deriving the optimal sending rate
according to the buffer states.

• We implement SMUFF to be compatible with Android and
demonstrate its ability to reach up to 94.7% utilization of
the wireless line rate.

This work does not raise any ethical issues.

2 Background and Motivation
In this section, we introduce the background and data packet
lifecycle of Wi-Fi Direct (§2.1). We then examine the achiev-
able wireless line rate (§2.2) and the limitations of existing
transmission schemes that prevent them from achieving the
line rate of peer-to-peer direct links (§2.3).

2.1 Wi-Fi Direct and Its Packet Life-Cycle
Wi-Fi Direct is a link layer (L2) technology that allows mo-
bile devices to establish a direct Wi-Fi connection with each
other directly, without the need for a central access point or
any intermediate nodes. This technology is primarily used
for improving daily life productivity such as file transfer be-
tween devices [20]. Note that it only provides L2 connectiv-
ity and does not specify any transport protocols or default
applications. Device vendors need to choose or implement
upper-layer protocols to support reliable data transfer.

The end-to-end pipeline of a file transfer task on a typical
Android device (using Wi-Fi Direct) is shown in Fig. 1. To
simplify the illustration and bypass the heavy TCP network
stack, we use the UDP socket as an example.

Sender. The sender reads data from the disk and encapsulates
it into a series of UDP datagrams. The datagrams are then sent
from userspace and enqueued into the queueing discipline
(Qdisc), which is a software queue that allows traffic shaping
and prioritization. Note that for UDP, the socket write buffer
is a virtual buffer that only counts memory allocation but has

1370 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Buffer Type Overflow Risk Analysis
Application Send Buffer No, the application can stop sending data when the buffer reaches its capacity.

Socket Write Buffer
No. For TCP, the kernel sets the socket as non-writable when the buffer is full. For UDP, the socket write
buffer is a virtual buffer that only tracks packet memory allocation.

Qdisc
Yes, this buffer is shared among all traffic and may overflow if the Wireless Network Interface Card (WNIC)
cannot drain it quickly enough.

WNIC Circular Buffer
No. At the sender, the NIC driver notifies the kernel when the firmware buffer is full. At the receiver, the
kernel prioritizes the interrupt handler responsible for receiving data.

Netdev Backlog Almost never, as the high-priority interrupt handler can process data.
IP Defragmentation Buffer No overflow in single-hop scenarios. Overflow typically results from Denial-of-Service (DoS) attacks [19].

Socket Read Buffer Yes, if the receiving process lacks sufficient CPU time to copy data from it.
Application Receive Buffer Yes, if the receiving system is I/O-bound.

Table 1: Analysis of buffer overflow risk in the Wi-Fi Direct transport data path.

no real queue to buffer data. The kernel blocks the application
from sending more data when the memory counter reaches
a memory allocation threshold. Finally, the WNIC driver
fetches packets from the Qdisc and sends them to the peer.

Receiver. The received packets are stored in the network de-
vice queue (i.e., netdev backlog) by the interrupt handler and
then processed by the kernel. After processing the received
data, the kernel stores the UDP datagrams in the read buffer
and waits for the userspace program to read them. The re-
ceiving application reads the data from the socket read buffer,
performs packet reordering and loss recovery, and asks the
kernel to write to disk.

Buffer Overflow Analysis. Buffer overflow is the primary
cause of packet drops when we send UDP packets at a high
rate. Table 1 gives an analysis of overflow risk. We need to
consider these buffers when designing our system. We iden-
tify three buffers that are susceptible to overflow because of
bounded device capability, as highlighted in blue in Fig. 1:
i) Qdisc. Packet drops happen at Qdisc when the sending
rate is faster than the available wireless bandwidth and the
queue is full. The bounded network capacity cannot drain
the queue fast enough; ii) Socket read buffer. When the sys-
tem is under heavy load, or the processor clock frequency is
constrained by the mandatory thermal throttling mechanism
to avoid overheating, the receiving application process may
not have sufficient CPU time slices to copy the data from the
kernel. The packets could drop if the socket read buffer is full;
iii) Application receive buffer. Like the socket read buffer,
the application buffer is prone to overflow when there is no
available CPU time. This buffer also overflows when the disk
I/O rate cannot keep up with the receiving rate.

In a nutshell, from a buffer management perspective, we
need to carefully pace the sending rate to avoid overflow
in any of these buffers, preferably at the upper layer (e.g.,
userspace transport) instead of inside the kernel or firmware
in WNIC for the sake of programmability and deployability.

2.2 Practical Line Rate Transmission of Wi-Fi Direct

Theoretical transmission rate cannot be achieved in the
real world. While Wi-Fi standards such as 802.11ac (Wi-Fi 5)

and 802.11ax (Wi-Fi 6) claim impressive physical bandwidth
limits1 of up to 867 Mbps and 1.2 Gbps, respectively [21,22],
real-world peak throughput falls far short of these advertised
rates. The gap between the line rate and the physical rate is
inevitable for two reasons: i) Protocol overhead. Network
protocols from the MAC layer to the transport layer require
the process of header information in each data packet. This
additional overhead reduces the effective throughput that can
be achieved; ii) Channel contention. In areas with a high den-
sity of wireless devices or networks, Wi-Fi devices adhere
to Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) mechanism [22] when accessing the wireless
channel, resulting in decreased throughput [23]. To illustrate
the discrepancy between the achievable transmission rate
and the theoretical rate, we conduct an experiment using two
802.11ac supporting devices with a maximum physical band-
width limit of 867 Mbps. We use the iperf tool [24] with
fine-tuned parameters and the iw tool [25] to monitor the
physical layer data rate reported by the wireless NIC (WNIC).
As shown in Fig. 2, for the first 30 seconds we place the two
devices head-to-head, allowing them to reach the maximum
achievable throughput. However, although the physical layer
rate consistently reaches its theoretical maximum, the actual
throughput fluctuates and remains below that rate. From 30
seconds to 60 seconds, we move the devices 5 meters apart
while keeping them stationary. This change caused instability
in the data rate due to increased collisions and retransmissions
caused by other devices sharing the same wireless channel.
Between 60 seconds and 90 seconds, we deliberately intro-
duce channel contention by running TCP traffic on additional
devices operating on the same Wi-Fi channel. The actual
throughput is well below the physical layer rate.

Defining practical line rate transmission. While the physi-
cal layer rate cannot serve as the metric of practical transmis-
sion rate due to protocol overhead and channel contention,
previous research has explored techniques for estimating this

1From a wireless communication perspective, it is the instantaneous
highest data rate based on the modulation and coding scheme determined
by the channel condition (e.g., Signal to Interference plus Noise Ratio, or
SINR) and channel bandwidth according to the Wi-Fi specification.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1371

0 30 60 90
Time elapsed (s)

0

300

600

900

Li
ne

 ra
te

 o
r P

H
Y

ra
te

 (M
bp

s)

Stationary
(~0.1 m)

Stationary
(~5 m)

Stationary
(~5 m)

Channel
interference

Line rate PHY rate

Figure 2: Traces of the phys-
ical rate and the actual UDP
throughput.

TCP
(Cubic)

QUIC

(Cubic)
Fast

Exchange Airdrop

(AWDL)

0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s) Wireless line rate

Figure 3: The Wi-Fi Direct link
throughput of two 802.11ac de-
vices 3 meters apart.

−80 −70 −60
Signal strength (dBm)

0.0

0.2

0.4

0.6

0.8

Lo
ss

 ra
te

 (%
)

Loss rate Throughput

0

200

400

600

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 4: Wi-Fi Direct cannot
guarantee packet loss recovery
(at lower layer).

0 2 4
Time elapsed (s)

0

250

500

750

T
hr

ou
gh

pu
t (

M
bp

s)

Line rate TACK TCP (Cubic)

Figure 5: Congestion control
fails to (quickly) achieve high
utilization of a wireless link.

rate using specific hardware [15, 26]. However, these esti-
mates are inherently approximate and hardware dependent.
In the rest of this paper, we take the empirical approach in
our experiment and define practical line rate as the maximum
instantaneous throughput achievable by iperf UDP over a
one-second window. Such a definition provides a practical and
real-time measure of network performance and is a valuable
metric for our analysis.

2.3 Limitations of Existing Transport Schemes

Existing peer-to-peer transmission schemes fail to achieve
line rate. While the achievable line rate is below the claimed
physical line rate, existing peer-to-peer transmission schemes
still cannot achieve such a line rate over Wi-Fi Direct link. As
shown in Fig. 3, we initiate data transmission tasks over a Wi-
Fi Direct link with two transport layer schemes (TCP CUBIC
and QUIC CUBIC) and two commercial services (Xiaomi
Fast Exchange and Apple AWDL). While the wireless line
rate is 655 Mbps in this setting, TCP (CUBIC), as the most
widely used transport solution, only achieves 442 Mbps on
average. QUIC and other commercial solutions perform even
worse. This pilot study indicates a great opportunity to design
a dedicated transport scheme for Wi-Fi Direct towards its
wireless line rate. In the rest of the section, we investigate the
drawbacks of basic transport layer elements in Wi-Fi Direct
links and their implications on a dedicated transport solution.
Resource-Intensive Reliable Delivery Mechanism. The
Medium Access Control (MAC) layer of Wi-Fi performs “best
effort” retransmission upon packet loss2. Therefore, Wi-Fi Di-
rect is only partially reliable, and packet loss over a wireless
channel is unavoidable. We conduct a Wi-Fi Direct data trans-
fer experiment and confirm that packet loss is not negligible
when the signal is “weak” (i.e., below -70 dBm), as shown
in Fig. 4, which means that the reliable delivery (including
loss recovery and packet reordering) is still a key require-
ment for Wi-Fi Direct and should be handled by the transport
layer. TCP is widely used for reliable delivery, but it has the
following two drawbacks when applied to Wi-Fi Direct:
• Per-packet ACKing intensifies channel contention. A recent

2It retries for failed transmission until the attempt reaches
dot11ShortRetryLimit (7 by default) or the retransmission time
exceeds dot11MaxTransmitMSDULifetime (512 ms by default) [27].

study [18] shows that over a Wi-Fi link, TCP’s default ACK-
ing policy (i.e., at least one ACK every other packet [28])
would hurt the throughput by 33% compared to ACKing ev-
ery 16 packets. This is because uplink and downlink data in a
shared wireless channel will cause extra contention and MAC
protocol overhead, suggesting a reduced ACK frequency for
a delicate transport layer design.

• Computation-intensive network stack stresses computation
resource. The TCP stack is known to be computationally
intensive and causes more packet processing overhead [29].
More recent transport protocols such as QUIC opt for high
efficiency based on UDP, which bypasses the TCP stack and
gives more flexibility to the user space. Therefore, we need a
lightweight transport protocol based on UDP datagrams for
its efficient in-kernel implementation.

Unsuitable Congestion Control. TCP or QUIC relies heavily
on congestion control algorithms (CCAs) to adjust the send-
ing rate. Basically, the goal of CCA is to evenly distribute
bandwidth among the flows traversing a bottleneck link in
a multi-hop path. However, CCAs are unsuitable in the one-
hop, single-flow setting in Wi-Fi Direct links and face the
following two problems:

• Unnecessary Startup Phase. CCAs need to probe the avail-
able bandwidth and send packets conservatively to avoid con-
gestion, adding unnecessary start time to quickly reach the
peak sending rate. Our experiment in Fig. 5 shows that Cubic
spends 0.15 seconds on the slow start phase, while TACK [18],
a TCP variant that reduces ACK frequency to alleviate chan-
nel contention, spends 3.3 seconds on the congestion avoid-
ance phase. In the peer-to-peer scenario, the slow start should
be avoided because of the absence of congestion.

• Overreact to Lossy Link. CCAs could reduce the conges-
tion windows to lower the sending rate due to packet loss or
transient delay spikes, which are common on wireless links.
This overreaction leads to link under-utilization. As shown in
Fig. 5, both CCAs cannot reach the available link bandwidth
and the throughput oscillates due to wireless link fluctuation.
A wireless transport layer should be insensitive to a lossy link.

Inefficient Flow Control. Flow control is designed to prevent
the sender from overwhelming the receiver. To achieve line

1372 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NICFCFS Task 2 Task 1

Packet Aggregation

Smuff Task Queue

NIC

Wi-Fi
Direct

Qdisc
Low Priority

High Priority

Rate Control

Socket Read Buff

Socket 3

Socket 2

App Receive Buff

App 3

App 2

Internet

Sending rate

Buffer OrchestratorTransport Mgmt.

Periodic ACKs

Fast loss recovery

𝑋 !
, 𝑣 !

𝑋
" , 𝑣

"𝑋 #
, 𝑣 #

Device 1

Device 2

App 2
File Transfer

App 3
File Transfer

App 1
Background Traffic

Buffer states
𝑋$, 𝑣$

Figure 6: SMUFF Overview.

rate transmission in Wi-Fi Direct, more delicate flow con-
trol should be used because i) the sender needs to decide a
proper packet sending rate to achieve line rate while avoid-
ing packet drops. An insufficient sending rate will not fully
utilize the WNIC potential, causing link under-utilization,
while an excessive sending rate may cause packet drops at the
sender Qdisc due to the limited queue length. ii) With Gigabit
wireless hardware equipped, the receiver could fall short of
handling such a high speed due to CPU and I/O bottlenecks
and incur buffer overflow. The existing flow control in TCP
and QUIC is inefficient in the following three aspects:
• Unaware of other On-path Buffers. Conventional TCP flow
control only considers transport-layer buffers and is agnostic
to other buffers in the packet life-cycle – underflow or over-
flow on any of them can still cause link under-utilization – a
new flow control design should take all buffers into account.
• Delayed ACK Feedback. The flow control window in TCP
and QUIC assumes ACK-driven updates, which may be de-
layed due to a longer packet queue or ACK frequency reduc-
tion [18]. The window may be slow to adjust to the fluctuating
wireless link due to delayed feedback. The effectiveness of
flow control should not depend on timely ACKs.
• Fixed Parameter Configuration. The maximum flow control
window size is a fixed value during transmission [30, 31] that
varies between implementations and device configurations.
Such a value will not be ideal for other buffers of different
sizes in the packet lifecycle and different link capacities. Flow
control should better handle all of this heterogeneity, dynam-
ics, and complexity.

3 SMUFF Design
In this section, we propose SMUFF, a Wi-Fi Direct file transfer
service to achieve line rate by orchestrating on-device buffers.
We first present the design goals of SMUFF.

3.1 Design Goals
The main idea of SMUFF is to orchestrate multiple buffers
by actively monitoring on-device buffer states and continu-

ously obtaining an optimal sending rate. We design SMUFF
to achieve the following three goals.

G1: Link Bandwidth Utilization Maximization. As pre-
sented in §2.3, existing transport solutions often fall short of
achieving line rate transmission. SMUFF should be designed
to make the full utilization of available Wi-Fi direct link band-
width by dynamically adapting its sending rate at the transport
layer to saturate the network interface.

G2: On-path Buffer Overflow Avoidance. A straightfor-
ward idea is to continuously send packets to saturate the link.
However, this may cause unnecessary packet loss due to buffer
overflow and complicate the loss recovery process. SMUFF
should effectively manage the critical packet buffers along the
data path by monitoring the buffer states and making timely
adjustments to the sending rate to avoid packet loss.

G3: Practical Deployment on Mobile Devices. SMUFF is
designed for easy portability to different phone models. To
make SMUFF practical for deployment, it should not rely on
vendor-specific hardware (e.g., proprietary NICs). In addition,
it must have a low CPU usage footprint and minimize its
impact on concurrent flows on the same devices.

3.2 System Overview
SMUFF is designed as a system service, and an overview
of its workflow and main system components are shown in
Fig. 6. This service provides a platform for applications on
the sender side to submit file transfer tasks, which are then
managed and executed by SMUFF on a first-come, first-served
(FCFS) basis. SMUFF needs to efficiently transfer the files to
the corresponding application on the receiving device.

In the rest of this section, we first present our theoretical
analysis to achieve line rate data delivery (§3.3). We then put
our analysis into practice with two key system components:
Buffer orchestrator (§3.4) collects buffer states and calcu-
lates an optimal sending rate to maximize system throughput;
Transport manager (§3.5) ensures reliable data delivery and
facilitates packet loss recovery.

3.3 Buffer Management Analysis
As shown in §2.1, data is repeatedly processed and transferred
to the next buffer until it reaches its final destination. This
property allows us to take a buffer-by-buffer approach for
flow management. For ease of exposition, we will start with
the management of a single buffer (§3.3.1) and then extend
the methodology to multiple buffers (§3.3.2).

3.3.1 Single Buffer Management
To derive the optimal sending strategy, we begin with the
simple case where there is only one buffer as shown in Fig. 7.
The packet buffer stores the incoming data until the data can
be processed by the next system component. We suppose the
maximum size of the buffer is Xmax. We denote the packet
ingress and egress rate as vin and vout respectively and denote
the current amount of data in the buffer as X . The main
purpose of the buffer is to serve as a cushion to absorb the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1373

egressingress

Packet buffer

Safe Could underflow !Could overflow !

Figure 7: Single buffer management.

variation in the ingress and egress rate. In order to make full
use of the buffer, we translate the design goals G1 and G2
into the following two constraints.

C1: Backlog enough data to avoid buffer underflow. To
keep the system working at its full rate, the buffer needs to
be backlogged (i.e., the buffer never runs out of data). If the
buffer goes empty, the egress rate will decrease and fail to
achieve the line rate.

C2: Reserve enough buffer room to avoid buffer overflow.
To prevent data loss, it is also necessary to allocate sufficient
buffer space to handle incoming data. A buffer overflow oc-
curs when the data pushed into the buffer exceeds its capacity,
resulting in potential loss of information and disruption of
system functionality.

Challenge Brought by Control Latency. Both C1 and C2
can be easily satisfied if we are able to control the ingress
rate vi just in time. We can increase vi when the buffer is
about to underflow and decrease it when the buffer is about
to overflow. However, the conventional assumption of low-
latency data delivery in single-hop wireless networks does not
hold for the line rate transmission. There is a non-negligible
control latency in buffer management, which we define as
the time interval between buffer state reporting and the rate
adjustment taking effect. For example, the buffer states at the
receiver must be relayed to the sender, and the control latency
is dominated by the RTT of the data flow. To demonstrate
such latency, we initiate TCP connections with an increasing
sending rate over an 802.11ac Wi-Fi direct link and obtain
RTT from the kernel data structure. As shown in Fig. 8, the
RTT increases up to 25 ms with the increase in the system
throughput even in this single-hop setting. This intriguing phe-
nomenon finds its roots in the well-documented bufferbloat is-
sue [32]. Notably, this issue becomes increasingly pronounced
as throughput scales to larger proportions, contrasting the ex-
periment result in previous work [15,33,34] where the latency
is no more than a few mill-seconds due to a low throughput
of much less than 20 Mbps. Therefore, in the presence of the
control latency, we need to strategically select the ingress rate
vi to maintain the right amount of data in the buffer.

Buffer Occupancy Estimation. The change in buffer occu-
pancy X depends on the delta of the ingress rate and the
egress rate. This can be formulated as:

Ẋ = vin−vout (1)
where Ẋ is the derivative over the time t (i.e., Ẋ = d

dtX).
Suppose at time t0, the buffer reports its current states, includ-

ing X(t0), vin(t0), and vout(t0). The rate adjustment takes
effect at a later time t1 = t0 +d with a control delay d. There-
fore, we need to estimate the buffer occupancy during t0 to t1
based on the reported values to adjust the sending rate at t1.
We make estimations by exploiting the fact that there exists
a lower and an upper bound for the processing rate of any
system components. For example, the wireless transport rate
must be greater than zero and less than the physical limit.
Therefore, we can assume a value range for vin(t) and vout(t)
for the duration from t to t+d:

vlo
in(t)≤ vin(t)≤ v

up
in (t) (2)

vlo
out(t)≤ vout(t)≤ v

up
out(t) (3)

As a result, we can infer the value range of Ẋ by Eqn. 1,
Eqn. 2, and Eqn. 3:

vlo
in(t)−v

up
out(t)≤ Ẋ ≤ v

up
in (t)−vlo

out(t) (4)
In order to satisfy C1, we must have a sufficient amount of

data in the buffer. From Eqn. 4 we know that from time t0 to
t1, the maximum amount of data that can be consumed from
the buffer is

Xunder =−d× (vlo
in(t0)−v

up
out(t0)) (5)

As a result, if the data in the buffer is less than Xunder at t0,
the buffer may run out of data, resulting in underutilization.

In order to satisfy C2, we need to reserve enough room in
the buffer. Similarly, the maximum amount of data that can be
backlogged from t0 to t1 is d× (vup

in (t)−vlo
out(t)). Therefore,

to avoid overflow and packet loss, the data in the buffer at t0
should be kept below a threshold

Xover = Xmax−d× (vup
in (t0)−vlo

out(t0)) (6)
To satisfy both constraints, the buffer occupancy X has a
“safe” range between two thresholds Xunder and Xover at t0,
as shown in Fig. 7. If X falls within this safe range, we
can ensure that the next system component will consistently
operate at full speed and that no packet loss will occur for
the next time period of control latency d. The existence of
this safe region depends on Xunder < Xover, meaning that the
buffer size Xmax must exceed a certain threshold, specifically
d× (vup

out(t0)−vlo
in(t0)+v

up
in (t0)−vlo

out(t0)).

3.3.2 Multiple Buffer Management

There are typically multiple buffers (or queues) connecting
different system components in a transport system. The data
starts from the sender, gets processed and traverses each com-
ponent and buffer, and arrives at the receiver. In our case as
shown in Fig. 9, the Qdisc at the sender-side stores the packets
sent by the application and waits for the network interface
driver to fetch data to send. Also, the application buffer stores
the data that is read from the transport layer and waits for the
I/O requests to be ready.

While there are three buffers in our Wi-Fi direct use case,
this idea can be generalized to more buffers. Without loss of
generality, suppose there are n buffers. We let Xi denote the
buffer occupancy (i.e., buffer size or queue length) of the i-th

1374 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 50 100 150 200 250 300 350 400 450

TCP sending rate (Mbps)

0

5

10

15

20

25

TC
P

R
TT

 (m
s)

Figure 8: TCP control latency
(RTT) increases as system
throughput increases.

𝑋!"#$%& 𝑋! 𝑋'"#$%& 𝑋' 𝑋("#$%& 𝑋(

Sender
App. buf.Socket buf.Qdisc

𝑣)

Receiver

Send feedback 𝑋* , 𝑣* to the sender

𝑣! 𝑣' 𝑣(

Figure 9: Multiple buffer management for the transport over
the Wi-Fi direct connection.

0 200 400 600
Line rate at t (Mbps)

0

200

400

600

Li
ne

 ra
te

 a
t t
+
d

(M
bp

s)

10
−3

10
−2

10
−1

10
0

Figure 10: Throughput transi-
tion probability within a con-
trol latency (d = 40 ms).

buffer. We let vi denote the instantaneous data rate from the
i-th buffer to the (i+1)-th buffer. Note that v0 and vn are the
sending and receiving rates, respectively.

Our goal is to adjust the sending rate to maximize the
overall throughput of the system. While the overall throughput
is the processing rate of the bottleneck system component,
our idea is to identify the bottleneck component and maintain
a moderate backlog of data in the buffer connected to that
particular component. Our algorithm to determine the sending
rate v0 works in two steps: i) calculate the target amount of
data to backlog for each buffer; ii) adjust the sending rate to
maintain enough data at the bottleneck buffer.

Calculating the target backlog size. We need to ensure that
the backlog size remains within the safe range at all times.
To minimize the buffer usage, we set the target backlog size
X

target
i for the i-th buffer to the lower bound of the safe range

(Xunder
i). On each latest feedback signal (vi,Xi) from the i-th

buffer, we update X
target
i according to Eqn. 5 as follows:

X
target
i =−di×

{
(vlo

i−1−v
up
i) if i > 1

−v
up
i if i = 1

, (7)

where di is the control latency for the i-th buffer, vlo
i ,v

up
i are

the lower bound and upper bound of vi. We leave the settings
of vlo

i ,v
up
i , and di in practice to §3.4. Note that we can also

set the target backlog size X
target
i to any other value within

the safe range (for example, the midpoint of the safe range
(Xunder

i +Xover
i)/2).

Calculating the sending rate. For each feedback signal, the
sender determines the sending rate based on the following:

v0←max
(

min
1≤i≤n

{
vi +

X
target
i −Xi

di

}
,0
)

, (8)

The interpretation of this rule is as follows. For the i-th buffer,
when the current buffer occupancy is less than the target buffer
backlog size (Xi < X

target
i), this buffer could underflow, re-

sulting in link underutilization. Therefore, we need to increase
the rate vi to increase the buffer occupancy in a control delay
time di. Similarly, when the buffer occupancy exceeds the
target backlog size (Xi > X

target
i), we decrease the sending

rate. The outer min operator is used to identify the bottleneck
of the whole system.

3.4 Buffer Orchestrator
The buffer orchestrator bridges the gap between theoretical
buffer management analysis (§3.3) and practical implementa-
tion. Effective buffer management depends on the ability to
quickly and accurately estimate system conditions. Therefore,
the buffer orchestrator needs to perform two tasks: continu-
ously monitoring buffer states and dynamically adjusting the
sending rate.

Monitoring the Buffer States. There are four variables that
characterize a buffer state.

• Buffer Occupancy (X): This variable indicates the current
amount of data in the buffer and can be obtained directly
by reading from the buffer.

• Data Consumption Rate (v): This variable represents the
rate at which data is being consumed from the buffer. It is
estimated over the duration of the control delay and fur-
ther smoothed using an Exponentially Weighted Moving
Average (EWMA) filter.
• Lower and Upper Bounds of the Data Rate (vlo and vup):

These two variables specify the range of values for the
data rate. Different buffers may have distinct properties,
which we discuss as follows.

• Bounds of the network data rate. We conduct an empiri-
cal study to observe throughput variations. Our experiment
involves two mobile devices running 802.11ac; the link is
capable of a maximum PHY rate of 867 Mbps. The devices
are held by two users moving randomly around a room. To
saturate the link, we run an iperf UDP test while fine-tuning
the iperf parameters to ensure that the maximum throughput
is achievable. The result, shown in Fig. 10, is presented in
a heatmap format and plot the transition probabilities from
data rate at time t to rate at time t+d, where d is the control
latency. Two reference lines in blue, y = 1

2x and y = 2x, are in-
cluded to denote throughput reductions of 0.5× and increases
of 2×, respectively. Our results show that within a control
latency duration, the network throughput is highly unlikely
to experience a > 2× increase or a < 0.5× decrease, with a
probability greater than 99%. Therefore, for the Qdisc, we
set the lower bound vlo

1 = 0.5v1 and upper bound v
up
1 = 2v1.

Note that this empirical measurement is specific to our setup.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1375

The throughput variation is affected by the complex wireless
channel environment. To completely prevent buffer overflows
due to rapidly changing channel conditions, SMUFF can use
strict bounds on the data rate, setting the lower bound to zero
and the upper bound to the maximum theoretical data rate.
• Bounds for CPU processing and I/O rate. To determine the
bounds of the processing rate of the socket buffer and the
application buffer at the receiver, we take advantage of the
insight that these rates are largely unaffected by the network,
but are CPU- and I/O-bound (Fig. 1). Therefore, they tend
to exhibit stability within a device that is largely dependent
on the underlying hardware configuration. As a result, for
the socket buffer and application buffer, we set the lower and
upper bounds to the values of 0.9 and 1.1 times the estimated
data rate, respectively, to allow for error tolerance.
Controlling the Sending Rate. In response to signals indi-
cating buffer state updates, the buffer orchestrator calculates
the new sending rate using the formula in Eqn. 8 and adjusts
v0. While the sending rate is determined at the sender, the
control latency di varies depending on the location of the
buffers: i) When dealing with the Qdisc buffer at the sender,
the control latency can be set to a relatively small value (4
ms in our implementation), because polling the buffer state
information from the sender buffers can be done simply by
a system call; ii) When dealing with the two buffers at the
receiver, the control latency is set to the network latency.

3.5 Transport Manager
While buffer orchestrator carefully monitors buffer states and
adjusts the sending rate accordingly, packet loss could still
occur due to lossy wireless link. The loss detector guaran-
tees data delivery reliability based on the sliding window
mechanism and ACKing with two improvements.
Reduce ACK Frequency. Frequent ACK messages exagger-
ate channel contention and have a negative impact on through-
put in Wi-Fi direct transport (§2.3). To address this issue, we
use periodic ACKs and send four ACKs per RTT to reduce
the ACK frequency. This setting proves to be robust in prac-
tice [18]. In addition, an ACK message also carries the states
of the buffers at the receiver side.
Speed up Loss Recovery. We propose three optimizations to
improve the efficiency of the loss recovery procedure. i) The
use of periodic ACKs prevents the receiver from notifying
the sender of lost events until the next ACK is sent. To speed
up recovery, SMUFF immediately sends an ACK containing a
retransmission request when a loss event is detected. ii) To re-
duce overhead, we use Negative Acknowledgments (NACKs),
similar to the SACK option [35] in TCP and the ACK range
in QUIC [31], to inform the sender of missing data. iii) We
use PING messages to periodically probe the RTT and use
an EWMA filter to obtain a smoothed RTT estimate. This
design mitigates RTT measurement bias caused by reduced
ACK frequency and does not require additional computation
or maintenance of a complex per-packet data structure.

3.6 Other Design Considerations

In practice, network-tuning is also important to achieve high
throughput [29, 36–38]. Here we highlight two important
considerations in the SMUFF design.

3.6.1 Packet Aggregation

Packet aggregation can reduce processing overhead in soft-
ware [29]. SMUFF uses packet aggregation to improve
throughput and reduce mobile computation and power costs.
Specifically, SMUFF generates full-size UDP packets, ap-
proaching 64 KB in size, instead of the usual 1500-byte pack-
ets. The IP layer then fragments or reassembles these packets
to meet the Maximum Transmission Unit (MTU) limit, con-
forming to the IP fragmentation feature [39]. Since a substan-
tial amount of energy is drained by the processing of packet
units (i.e., independent of their size, air time, or modulation
and coding scheme) [40], SMUFF is more computation- and
energy-efficient with packet aggregation. The effectiveness
of packet aggregation is evaluated in §5.4.

However, packet aggregation can lead to increased suscep-
tibility to packet loss. In cases where a single packet within
a fragmented small packet is lost, the entire IP packet is con-
sidered lost. To illustrate this concept mathematically, if the
network path loss rate is denoted as L, then the packet loss rate
for a full-sized IP packet can be expressed as 1− (1−L)n,
where n is the number of fragments into which the IP packet
is broken. For example, if the path loss rate is 1% and a full-
size UDP packet is segmented into 43 fragments, the total
packet loss rate rises to an unacceptable 35.1%, significantly
reducing the available throughput. To address this issue, we
consider the infrequency of packet loss events in most usage
scenarios, a phenomenon that contrasts with Internet con-
nections where loss is often attributed to network conges-
tion. Therefore, we empirically set a conservative threshold
of 0.1%. Packet aggregation is only enabled if the current
network loss rate is below this threshold. We provide a evalu-
ation of its performance and the rationale for choosing this
threshold in the evaluation (§5.3).

3.6.2 Flow Prioritization

Data transfer is often a background job. Other foreground
traffic flows are potentially at a disadvantage when sharing
the same outbound device with SMUFF because the buffer
orchestrator will try to keep the Qdisc blocklogged (if the
network is the bottleneck). This can affect interactive traffic
such as web browsing and video streaming. To address this
issue, we strictly prioritize other foreground traffic over the
SMUFF flow. Specifically, there are multiple queues with dif-
ferent priorities at the Qdisc layer, and the packet in the queue
with the higher priority is sent first. Therefore, by setting a
lower priority for the SMUFF packets, we can reduce the im-
pact on other traffic. The effectiveness of flow prioritization
is evaluated in §5.3.

1376 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Implementation
We have developed SMUFF for commodity Android devices
as a dedicated system daemon running entirely in userspace,
with a primary focus on minimizing development and integra-
tion complexity. Our implementation consists of about 8000
lines of C++ code and seamlessly integrates with the NDK
toolchain as well as the native dependencies inherent to the
Android platform. SMUFF extends its functionality by provid-
ing a file transfer service over a Linux socket. Applications
wishing to use this service can effectively communicate their
file transfer requirements by interacting with this socket. We
use the SO_PRIORITY option to define the priority for all pack-
ets to be sent by SMUFF. In addition, we set the maximum
buffer size Xmax to twice the bandwidth-delay product (BDP)
to ensure that the safe area exists.

In SMUFF, we use standard system APIs to retrieve buffer
state information. Specifically, to retrieve Qdisc information,
we use the RTM_GETQDISC option of the Linux routing socket.
The Linux routing socket is part of Netlink, which allows
userspace programs to communicate with the kernel via a
socket interface. To get the length of the Qdisc queue, we first
create a socket with the domain AF_NETLINK and the protocol
NETLINK_ROUTE. After sending the request to the socket, the
kernel takes over the processing of the request and places
the result in the socket receive buffer. We then read from the
socket and get the length of the Qdisc queue. To get the state
of the receive buffer, we use the socket option SO_MEMINFO
to get memory-related information. It’s worth noting that
all APIs used are available after Linux 4.12 and have been
supported since Android 9. This compatibility ensures a high
degree of compatibility; we verify that SMUFF works on at
least four different phone models without any code changes.

5 Evaluation

Testbed. We use two Pixel 4 devices for most of the exper-
iment because Android is based on Linux and more readily
customizable. The devices support up to 2 MIMO spatial
streams, 80 MHz bandwidth, short guard interval, and default
rate adaptation, enabling speeds of up to 867 Mbps. To en-
sure the robustness of our results, each test is repeated for 30
times, guaranteeing statistical reliability and comprehensive
data collection. The experiment is conducted in a public of-
fice with over 10 Wi-Fi APs. This experiment environment
closely mirrors common real-world scenarios involving direct
device-to-device connections.

Baselines. We compare SMUFF with the following transport
schemes as baselines:
• TACK [18, 41] is a variant of TCP. It aims to improve

wireless transport performance by minimizing the ACK
frequency to reduce wireless channel contention.

• CUBIC [13] uses the standard TCP socket to send the
data. To make sure it gets the maximum throughput, we
set the socket buffer size to 20 MB and enable the TCP

Signal Strength -20 dBm -40 dBm -60 dBm -80 dBm
Distance < 0.1 m 2~3 m 8~10 m N/A
Scenario head-to-head face-to-face meeting behind walls

Table 2: Wireless signal strength for typical scenarios.

window size scaling [42, 43].
• BBR [12] uses the standard TCP with BBR congestion

control algorithm. As BBR currently does not ship off-the-
shelf with the phones, we recompile the Android kernel
to include BBR and flash the new kernel.

• QUIC [31, 44] is designed to improve transport perfor-
mance for HTTPS traffic. It is based on UDP and is im-
plemented entirely in userspace as SMUFF.

• UDP with the default system configuration is also evalu-
ated. Note that it does not provide reliable delivery.

5.1 Transport Performance

Throughput. We begin by evaluating SMUFF for different
levels of signal strength. The typical conditions and common
usage scenarios are shown in Table 2 for reference. The aver-
age throughput of different transport schemes transferring a 1
GB file is illustrated in Fig. 11. For good Wi-Fi signal (≥−60
dmB), we maintain control over signal strength by manipulat-
ing the distance between the mobile phones, thus simulating
different channel environments relevant to file transfer scenar-
ios. In all cases, SMUFF outperforms other transport schemes.
Across the signal strength settings, it achieves throughput
improvement from 17.8% to 18.2% compared to TACK, the
state-of-the-art variant designed for wireless networks, and a
remarkable 22.6% to 44.5% improvement compared to CU-
BIC. In terms of throughput variance, SMUFF exhibits min-
imal variation across different signal strengths, ensuring a
consistent and reliable transmission service. This stability
is due to SMUFF’s ability to effectively manage data within
buffers. BBR also exhibits low variance, but it achieves lower
throughput due to its goal to achieve the minimum RTprop
time. As saturating the link can result in increased latency,
BBR is conservative in increasing its sending rate. In contrast,
other transport schemes such as TACK, CUBIC, and QUIC,
exhibit significant throughput variance as they struggle to
accurately measure wireless bandwidth. Under conditions of
bad Wi-Fi signal, where the signal strength is at -80 dBm,
all solutions perform similarly, with SMUFF still approach-
ing the practical line rate. Overall, our results consistently
demonstrate the superior network throughput performance of
SMUFF across different signal strength scenarios, confirming
its effectiveness as a reliable data transfer solution.

Flow Completion Time. We compare flow completion times
(FCT) when transferring files of different sizes, as shown in
Fig. 12. For smaller files (i.e., 10 MB), the FCT is mainly
influenced by the time taken to reach the maximum link rate.
SMUFF’s ability to bypass the slow start process leads to re-
markable reductions in transfer times, ranging from 55.7% to
91.4% compared to alternative solutions. In particular, TCP

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1377

-20 -40 -60 -80
Signal Strength (dBm)

0
100
200
300
400
500
600

Th
ro

ug
hp

ut
 (M

bp
s)

Smuff TACK CUBIC BBR QUIC UDP

Figure 11: Throughput of different transport schemes at dif-
ferent signal strengths.

10 MB 100 MB 1 GB10
−1

10
0

10
1

10
2

Fl
ow

 c
om

pl
et

io
n

tim
e

(s
)

Smuff
TACK

CUBIC
BBR

QUIC

Figure 12: FCT of different
transport schemes.

Pixel 4
Redmi K30 MI 5s

Nexus 6P
0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 u
til

iz
at

io
n

(%
)

Smuff TACK CUBIC

Figure 13: Link utilization on
different device models.

0
300
600
900

Th
ro

ug
hp

ut
(M

bp
s) Moving towards Stationary Moving randomly

0 10 20 30 40 50 60
Time elapsed (s)

0.0
0.3
0.6
0.9

Ta
rg

et
 b

ac
ko

g
si

ze
 (M

iB
)

Figure 14: Trace of the real-time throughput and the target
backlog size of the Qdisc.

variants and QUIC relying on the conventional slow start
mechanism exhibit longer transfer times. TACK, on the other
hand, shows significant variance and a much longer FCT com-
pared to all other schemes, mainly due to its extended slow
start phase caused by ACK shortages. This result is consis-
tent with the analysis presented in §2.3. For medium-sized
files (i.e., 100 MB), SMUFF remains the best scheme with a
44.2% to 67.4% reduction in FCT over the other schemes. For
larger files (i.e., 1 GB), FCT is mainly determined by the link
utilization. Consequently, TACK shows better performance
compared to transferring smaller files. SMUFF still outper-
forms TACK by reducing the FCT by 12.1%. Furthermore,
when averaged across CUBIC, BBR, and QUIC, SMUFF re-
duces transfer time by an impressive 26.3% to 64.4%. This
experiment shows that SMUFF can significantly reduce the
FCT by fully utilizing the link capacity.

Robustness to Mobility. As discussed in §3.3.2, the buffer
orchestrator continuously computes the target backlog size
based on newly received buffer states. To evaluate how effec-
tively SMUFF adapts to mobility, we perform mobility tests
focusing on the target backlog size of the Qdisc buffer. Our
experiment involves two users with devices moving around a
room, simulating realistic mobility scenarios. The real-time
throughput collected at the receiver and the target backlog
size of the Qdisc are recorded, as shown in Fig. 14. The ex-
periment includes three different movement patterns: For the
first 19 seconds (the gray region), both users move toward
each other. Between 19 seconds and 38 seconds (the white re-
gion), both users move away from each other and then remain
stationary. After 38 seconds (the red region), the users roam
randomly in the room. The results show that the target backlog

Redmi K30 Pro Google Pixel 4 MI 5s Nexus 6P
SoC Snapdragon 865 Snapdragon 855 Snapdragon 821 Snapdragon 810

RAM 6 GB 4 GB 3 GB 3 GB
Battery 4700 mAh 2800 mAh 3200 mAh 3450 mAh
Wi-Fi 802.11a/b/g/n/ac/ax 802.11a/b/g/n/ac 802.11a/b/g/n/ac 802.11a/b/g/n/ac

Released 2020 2019 2016 2015

Table 3: Device specifications.

size closely matches the throughput. Such synchronization
demonstrates SMUFF’s ability to make robust adjustments to
its sending rate to prevent overflow or underflow under mobil-
ity. This adaptability to mobility ensures stable and reliable
performance in dynamic network environments.

5.2 Compatibility

Different Device Models. To demonstrate the deployability
and adaptability of SMUFF, we conduct deploy SMUFF and
performance tests on four different smartphone models listed
in Table 3. We compare SMUFF with two sub-optimal schemes
(TACK and CUBIC) and initiate our tests by designating each
device as the sender, with the Pixel 4 serving as the receiver.
This configuration was chosen because the sender actively
manages the sending rate based on buffer states, providing a
robust metric. The results, shown in Fig. 13, show that SMUFF
outperforms TACK and CUBIC on all devices, achieving a
remarkable link utilization rate (achieved throughput divided
by line rate) of up to 94.7%. It’s worth noting that CUBIC’s
performance shows some variability across devices, likely due
to differences in processing capabilities. Overall, our experi-
ments confirm that SMUFF works seamlessly across different
device models, delivering consistently high link utilization.

Wi-Fi Specifications. To evaluate link utilization with dif-
ferent Wi-Fi specifications, we conduct experiments using a
stable signal with a strength of -40 dBm. This evaluation is
performed on both 802.11ac (Wi-Fi 5) and 802.11ax (Wi-Fi
6) networks. We evaluate the throughput of SMUFF against
all other transport schemes. The results, shown in Fig. 15,
highlight the impressive performance of SMUFF, which is
consistently close to the line rate. It achieves an average link
utilization of 88.7% on 802.11ac (equivalent to 576 Mbps)
and an even more remarkable 91.8% on 802.11ax (equivalent
to 645 Mbps). These results demonstrate SMUFF’s ability to
efficiently utilize available network resources across different
Wi-Fi specifications.

1378 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

802.11ac 802.11ax0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 u
til

iz
at

io
n

(%
)

Smuff
TACK

CUBIC
BBR

QUIC
UDP

Figure 15: Link utilization of
different transport schemes and
Wi-Fi specifications.

0 0.1 0.5 1
Loss rate (%)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

w/o aggregation
w/ aggregation

Figure 16: Impact of loss rate
on the packet aggregation.

10 Mbps 80 Mbps 160 Mbps
Target foreground throughput

1

10

100

Ac
tu

al
 fo

re
gr

ou
nd

th
ro

ug
pu

t (
%

)

w/o prio. w/ prio.

Figure 17: Flow prioritiza-
tion improves the foreground
throughput.

Smuff
TACK

CUBIC BBR
QUIC UDP Idle

0

50

100

150

PI
N

G
 la

te
nc

y(
m

s)

Figure 18: PING latency of dif-
ferent transport schemes.

5.3 Microbenchmark
We perform some micro-benchmarks to investigate the im-
pacts of design choices made in the development of SMUFF.

Packet Aggregation Robustness. As discussed in §3.6.1,
packet aggregation can make a network more susceptible to
packet loss. To investigate how SMUFF behaves under vari-
ous conditions, we perform tests at -40 dBm signal strength,
both with and without packet aggregation. To simulate packet
loss, we drop packets randomly at the receiver. As shown
in Fig. 16, in scenarios where no packet loss occurs, packet
aggregation effectively reduces processing overhead and im-
proves performance, resulting in an average improvement of
5.4%. However, as the loss rate escalates from 0.1% to 1%,
throughput drops dramatically by up to 62.4%. Such a severe
reduction is primarily due to the vulnerability introduced by
packet aggregation, where the loss of a single IP fragment
packet results in the loss of the entire packet. In contrast, when
packet aggregation is disabled, SMUFF shows efficiency in re-
covering lost packets. Therefore, SMUFF disables aggregation
when the path loss rate exceeds a predefined threshold, ensur-
ing reliability and preserving performance in the presence of
a high packet loss rate.

Flow Prioritization. As discussed in §3.6.2, SMUFF can po-
tentially cause foreground traffic to starve. To evaluate the
effectiveness of flow prioritization in mitigating this problem,
we perform tests by running foreground TCP flows alongside
SMUFF. The TCP flows are configured with different target
throughputs (10, 80, and 160 Mbps). We measure the actual
throughput achieved by the TCP flows with flow prioritiza-
tion enabled and disabled. As shown in Fig. 17, without flow
prioritization, the foreground TCP flows achieve an average
throughput of 2.44 Mbps, 2.74 Mbps, and 2.54 Mbps for differ-
ent target throughputs, indicating a disadvantaged state. With
flow prioritization enabled, the achieved throughput improves
significantly, reaching averages of 2.44 Mbps, 59.1 Mbps,
and 118.2 Mbps for the respective target throughputs. While
SMUFF cannot completely eliminate the impact on other flows
(e.g., only 73.9% of the target throughput is achieved for the
160 Mbps flow) due to the lack of prioritization in the device
firmware buffers, flow prioritization significantly alleviates
the problem of foreground traffic starvation.

SMUFF TACK CUBIC BBR QUIC UDP Idle
Energy (J) 50.7 62.6 59.6 86.6 72.8 55.2 40.6
Overhead (%) 24.8 54.2 48.2 113.3 74.4 36.0 N/A

Table 4: Average energy consumption for transferring a 1 GB
file via peer-to-peer wireless data transfer. “Overhead” is the
additional energy consumption compared with the idle state.

5.4 System Overhead

Computation Overhead. To compare the computational over-
head of SMUFF, we transfer a 1 GB file using SMUFF and
other transport schemes and measure their CPU usage. As
shown in Fig. 19, SMUFF achieves the lowest CPU usage.
There are two reasons for this: First, SMUFF achieves nearly
the wireless line rate and completes the transmission process
much faster; second, SMUFF is based on UDP and thus avoids
the overhead of a compute-intensive TCP stack. We also eval-
uate the effectiveness of packet aggregation. As shown in
Fig. 20, aggregation can reduce the CPU usage of SMUFF
by 18.0% and 21.9% on the sender and receiver side, respec-
tively. This result shows that SMUFF can reduce system load
on resource-constrained mobile devices.

Energy Overhead. We also examine power consumption,
since mobile devices are typically powered by limited bat-
teries. We use the Monsoon power monitor [45] to measure
the average power consumption while transferring a 1 GB
file using SMUFF and other transport schemes. The monitor
works by precisely measuring the input power of the smart-
phone with a sampling rate of 5000 Hz and is widely used
in the research community for measuring power consump-
tion [46, 47]. As shown in Table 4, SMUFF consumes less
energy than all other schemes (24% overhead over baseline)
because it bypasses the computationally intensive TCP stack
and completes the transmission earlier. The result shows that
SMUFF is more energy efficient than other solutions.

Transmission Latency. As buffer saturation may increase
transmission latency for all data flows between peer devices,
we also evaluate the impact of the transport schemes on trans-
mission latency. To measure the latency overhead of SMUFF,
We conduct experiments by sending the ICMP PING mes-
sages [48] every second in the background during the file
transmission. As shown in Fig. 18, compared with TACK

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1379

Smuff TACK CUBIC BBR QUIC
0

1

2

3

4

5

C
PU

 u
sa

ge
 (%

)

user sys irq

Figure 19: CPU usage of dif-
ferent transport schemes.

Smuff Smuff
w/o batch

Cubic0

3

6

9

12

C
PU

 u
sa

ge
 (%

)

Sender

Smuff Smuff
w/o batch

Cubic

Receiver

user sys irq

Figure 20: CPU usage reduc-
tion of packet aggregation.

and TCP CUBIC, SMUFF reduces average latency by 36.9%
and 39.2% because it uses an adaptive adjustment on the
backlogged data at Qdisc buffer. BBR and QUIC maintain a
low latency but fail to fully utilize the available link. SMUFF
keeps the latency below 40 ms with a small variance – such
an increase in latency is acceptable in file transfer scenarios.

6 Discussion
Operating in Non-Wi-Fi One-Hop Networks. SMUFF does
not require the underlying NIC to be a Wi-Fi device. There-
fore, SMUFF could be seamlessly deployed over any NICs that
consume packets from Qdisc. The effectiveness of SMUFF is
based on two premises: i) Sending at line rate would generate
the best performance. ii) NIC itself has some mechanism like
BQL [49] to minimize the underlying buffering. Such con-
ditions hold for most cases. Therefore, SMUFF theoretically
also works in other one-hop networks such as Apple Wireless
Direct Link (AWDL) [2], Neighbor Awareness Networking
(NAN) [50], and wired links.

Benefiting Other Applications. SMUFF can also be used
for other data transfer applications, such as 360-degree video
streaming. SMUFF can introduce a minimal initial delay due
to its extended queue length, but allows for higher video reso-
lution due to its increased throughput once the video begins.
To minimize latency, SMUFF can also be configured to main-
tain a near-zero queue length by setting the target queue size
to zero. This strategy effectively reduces queue latency within
the monitored buffers. However, it is important to note that
latency cannot be similarly reduced for buffers that are not
directly monitored, such as the NIC firmware buffer.

7 Related Work
Queue-based Transport Improvement. The packet queue
provides lower-layer information to the transport control algo-
rithm. This information enables the transport layer to perform
better sending rate adjustment and accomplish different opti-
mization goals. XCP [51], RCP [52], and ABC [15] leverage
the dequeuing rate and the current queue length to let the net-
work middleboxes compute the right sending rate and signal
this rate to the sender. The signal lets the sender “jump” to the
correct sending rate to achieve high throughput. Active Queue
Management (AQM) schemes such as RED [53], CoDel [54],
and PIE [55] drop packets when queue length or queue de-

lay exceeds a threshold to signal congestion. Swift [56] and
QCut [32] monitor the end-host queuing delay and adjust
sending rate accordingly. PowerTCP [16] and HPCC [14]
leverage in-network measurements at programmable switches
to accurately obtain the bottleneck link state. SMUFF also
works on the queue length, but it calculates its variation and
decides to send how many packets so as to backlog the queue.

Wireless Transport Layer Protocol Design. Wireless links
have different characteristics due to unstable channel char-
acteristics. This motivates designs to optimize different as-
pects of the wireless transport. I-TCP [57] splits a TCP con-
nection into two parts (the wireless part and the wired part)
and handles frequent interruptions on the lossy wireless link.
Snoop [58] performs local retransmissions over the wireless
link to hide the packet loss event. TACK [18] reduces chan-
nel contention between data packets and ACKs to improve
throughput. ELN [59] allows senders to distinguish between
packet corruption and congestion losses and respond accord-
ingly. SMUFF is designed to improve the network performance
of the one-hop wireless link. It addresses the challenge of how
to saturate a rapidly changing wireless link.

End-to-end Congestion Control Designed for Wireless
Link. Wireless link speeds vary greatly over time. There are
several ways to predict link speed and improve throughput.
Sprout [33] observes packet arrival times to predict how many
bytes can be sent from the sender. Verus [34] learns the rela-
tionship between packet delay and transmit window size and
uses it to adjust the size of the transmit window. CQIC [60]
and PBE-CC [61] use the physical layer bandwidth informa-
tion exchanged between base stations and handsets to deter-
mine link capacity. SMUFF also needs to capture link capacity
variations, but it does not need to handle the congestion on
the one-hop network and can accurately track the line rate.

8 Conclusion
The rising demand for high-speed peer-to-peer mobile data
transfer calls for an extremely efficient single-hop transport
solution. In this work, we have addressed the challenge of
achieving near wireless line rate transport based on Wi-Fi
Direct by effectively orchestrating all the on-path buffers to
maximize throughput while avoiding packet loss. We believe
that our work identifies an overlooked yet important problem
and our design can benefit other one-hop wireless networks
(e.g., 5G and vehicular) with different PHY/MAC protocols.

Acknowledgments
We are grateful to the anonymous NSDI reviewers for their
constructive critique and valuable comments, all of which
have greatly helped us improve this paper. This work is sup-
ported in part by the National Key Research and Development
Plan, China (Grant No. 2023YFB2903902) and the National
Natural Science Foundation of China (Grant No. 62022005,
62272010 and 62061146001). Chenren Xu is the correspond-
ing author.

1380 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Use AirDrop on iPhone to send items to

nearby devices - Apple Support. https:
//support.apple.com/guide/iphone/use-air
drop-to-send-items-iphcd8b9f0af/ios.

[2] Milan Stute, David Kreitschmann, and Matthias Hol-
lick. One Billion Apples’ Secret Sauce: Recipe for the
Apple Wireless Direct Link Ad hoc Protocol. In ACM
MobiCom, 2018.

[3] Huawei share. https://consumer.huawei.com/en
/support/huaweishare/.

[4] Xiaomi, OPPO and Vivo partner to bring new wireless
file transfer system to global users – Mi Blog. https:
//c.mi.com/thread-2776586-1-0.html.

[5] What is Quick Share on Galaxy? - The Official Samsung
Galaxy Site. https://www.samsung.com/global/g
alaxy/what-is/quick-share/.

[6] VRChat. https://hello.vrchat.com/.

[7] Abderrahmane Lakas and Moumena Shaqfa. Geocache:
Sharing and Exchanging Road Traffic Information Us-
ing Peer-to-Peer Vehicular Communication. In IEEE
Vehicular Technology Conference, 2011.

[8] Xiuxian Guan, Zekai Sun, Shengliang Deng, Xusheng
Chen, Shixiong Zhao, Zongyuan Zhang, Tianyang Duan,
Yuexuan Wang, Chenshu Wu, Yong Cui, et al. ROG:
A High Performance and Robust Distributed Training
System for Robotic IoT. In IEEE/ACM MICRO, 2022.

[9] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and
Yiran Chen. Hermes: An efficient federated learning
framework for heterogeneous mobile clients. In ACM
MobiCom, 2021.

[10] Jinliang Yuan, Mengwei Xu, Xiao Ma, Ao Zhou, Xu-
anzhe Liu, and Shangguang Wang. Hierarchical Feder-
ated Learning through LAN-WAN Orchestration. arXiv
2010.11612, 2020.

[11] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo
Serrano. Device-to-device communications with Wi-Fi
Direct: overview and experimentation. IEEE wireless
communications, 2013.

[12] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. ACM Queue,
2016.

[13] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC:
A new TCP-friendly high-speed TCP variant. ACM
SIGOPS Operating Systems Review, 2008.

[14] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: High precision congestion control. In ACM
SIGCOMM, 2019.

[15] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. ABC: A Simple
Explicit Congestion Controller for Wireless Networks.
In USENIX NSDI, 2020.

[16] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
POWERTCP: Pushing the Performance Limits of Data-
center Networks. In USENIX NSDI, 2022.

[17] Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle
Jamieson, and Brad Karp. HACK: Hierarchical ACKs
for Efficient Wireless Medium Utilization. In USENIX
ATC, 2014.

[18] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao
Xiong, Keith Winstein, and Kun Tan. TACK: Improving
Wireless Transport Performance by Taming Acknowl-
edgments. In ACM SIGCOMM, 2020.

[19] Yossi Gilad and Amir Herzberg. Fragmentation consid-
ered vulnerable. ACM Transactions on Information and
System Security (TISSEC), 15(4):1–31, 2013.

[20] Wi-Fi Direct Phone Product List. https://www.wi-f
i.org/product-finder-results?sort_by=certi
fied&sort_order=desc&categories=3.

[21] IEEE Standard for Information technology–
Telecommunications and information exchange
between systems–Local and metropolitan area
networks–Specific requirements–Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications–Amendment 4: Enhancements for
Very High Throughput for Operation in Bands below 6
GHz. 2013.

[22] IEEE Standard for Information Technology–
Telecommunications and Information Exchange
between Systems Local and Metropolitan Area
Networks–Specific Requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications Amendment 1:
Enhancements for High-Efficiency WLAN. 2021.

[23] Shangqing Zhao, Zhe Qu, Zhengping Luo, Zhuo Lu, and
Yao Liu. Comb Decoding towards Collision-Free WiFi.
In USENIX NSDI, 2020.

[24] Iperf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/, 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1381

https://support.apple.com/guide/iphone/use-airdrop-to-send-items-iphcd8b9f0af/ios
https://support.apple.com/guide/iphone/use-airdrop-to-send-items-iphcd8b9f0af/ios
https://support.apple.com/guide/iphone/use-airdrop-to-send-items-iphcd8b9f0af/ios
https://consumer.huawei.com/en/support/huaweishare/
https://consumer.huawei.com/en/support/huaweishare/
https://c.mi.com/thread-2776586-1-0.html
https://c.mi.com/thread-2776586-1-0.html
https://www.samsung.com/global/galaxy/what-is/quick-share/
https://www.samsung.com/global/galaxy/what-is/quick-share/
https://hello.vrchat.com/
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&categories=3
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&categories=3
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&categories=3
https://iperf.fr/

[25] iw - linux man page. https://linux.die.net/man/
8/iw, 2023.

[26] Ranveer Chandra, Ratul Mahajan, Thomas Moscibroda,
Ramya Raghavendra, and Paramvir Bahl. A Case for
Adapting Channel Width in Wireless Networks. In ACM
SIGCOMM, 2008.

[27] IEEE Standard for Information technology–
Telecommunications and information exchange
between systems Local and metropolitan area networks–
Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications. 2016.

[28] Robert Braden. RFC1122: Requirements for Internet
hosts-communication layers, 1989.

[29] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In ACM SIGCOMM,
2021.

[30] RFC 793: Transmission Control Protocol, 1981.

[31] Jana Iyengar and Martin Thomson. RFC 9000: QUIC:
A UDP-Based Multiplexed and Secure Transport. 2021.

[32] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Mor-
ley Mao, and Subhabrata Sen. Understanding On-device
Bufferbloat for Cellular Upload. In ACM IMC, 2016.

[33] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic Forecasts Achieve High Throughput
and Low Delay over Cellular Networks. In USENIX
NSDI, 2013.

[34] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adap-
tive Congestion Control for Unpredictable Cellular Net-
works. In ACM SIGCOMM CCR, 2015.

[35] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
Romanow. RFC 2018: TCP Selective Acknowledgment
Options, 1996.

[36] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-
Han Kim. WiFi-Assisted 60 GHz Wireless Networks.
In ACM MobiCom, 2017.

[37] Shivang Aggarwal, Swetank Kumar Saha, Pranab Dash,
Jiayi Meng, Arvind Thirumurugan, Dimitrios Kout-
sonikolas, and Y. Charlie Hu. Poster: Can Mobile Hard-
ware Keep Up with Today’s Gigabit Wireless Technolo-
gies? In ACM MobiCom Poster, 2019.

[38] UDP Tuning Technique from ESnet. https://faster
data.es.net/network-tuning/udp-tuning.

[39] RFC 791: Internet Protocol, 1981.

[40] Andres Garcia-Saavedra, Pablo Serrano, Albert Banchs,
and Giuseppe Bianchi. Energy consumption anatomy
of 802.11 devices and its implication on modeling and
design. In ACM CoNEXT, 2012.

[41] fillthepipe/fill-the-pipe. https://github.com/fillt
hepipe/fill-the-pipe.

[42] TCP optimization for network performance |
Compute Engine Documentation | Google Cloud.
https://cloud.google.com/compute/docs/netw
orking/tcp-optimization-for-network-perfo
rmance-in-gcp-and-hybrid.

[43] David Borman, Robert T. Braden, Van Jacobson, and
Richard Scheffenegger. RFC 7323: TCP extensions for
high performance, 2014.

[44] litespeedtech/lsquic: LiteSpeed QUIC and HTTP/3 Li-
brary. https://github.com/litespeedtech/lsqui
c.

[45] Monsoon High Voltage Power Monitor. https:
//www.msoon.com/online-store/High-Voltage
-Power-Monitor-p90002590.

[46] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
Feng Qian, and Zhi-Li Zhang. A variegated look at 5G
in the wild: Performance, power, and QoE implications.
In ACM SIGCOMM, 2021.

[47] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. A close
examination of performance and power characteristics
of 4G LTE networks. In ACM MobiSys, 2012.

[48] Jon Postel. RFC 792: Internet control message protocol.
Technical report, 1981.

[49] Tom Herbert. BQL: Byte Queue Limits. https://lwn.
net/Articles/454378/.

[50] Wi-Fi Aware | Wi-Fi Alliance. https://www.wi-fi.
org/discover-wi-fi/wi-fi-aware.

[51] Dina Katabi, Mark Handley, and Charlie Rohrs. Con-
gestion Control for High Bandwidth-Delay Product Net-
works. In ACM SIGCOMM, 2002.

[52] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. In ACM SIGCOMM CCR, 2006.

[53] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM ToN,
1993.

1382 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://linux.die.net/man/8/iw
https://linux.die.net/man/8/iw
https://fasterdata.es.net/network-tuning/udp-tuning
https://fasterdata.es.net/network-tuning/udp-tuning
https://github.com/fillthepipe/fill-the-pipe
https://github.com/fillthepipe/fill-the-pipe
https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://cloud.google.com/compute/docs/networking/tcp-optimization-for-network-performance-in-gcp-and-hybrid
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-p90002590
https://lwn.net/Articles/454378/
https://lwn.net/Articles/454378/
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware

[54] Kathleen Nichols and Van Jacobson. Controlling queue
delay. Communications of the ACM, 2012.

[55] Rong Pan, Preethi Natarajan, Chiara Piglione,
Mythili Suryanarayana Prabhu, Vijay Subramanian,
Fred Baker, and Bill VerSteeg. PIE: A lightweight
control scheme to address the bufferbloat problem. In
IEEE HPSR, 2013.

[56] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is Simple and Effective for Congestion Control in the
Datacenter. In ACM SIGCOMM, 2020.

[57] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for
mobile hosts. In IEEE ICDCS, 1995.

[58] Hari Balakrishnan, Srinivasan Seshan, and Randy H.
Katz. Improving reliable transport and handoff perfor-
mance in cellular wireless networks. Wireless Networks,
1995.

[59] Hari Balakrishnan and Randy H Katz. Explicit Loss
Notification and Wireless Web Performance. In IEEE
Globecom, 1998.

[60] Feng Lu, Hao Du, Ankur Jain, Geoffrey M. Voelker,
Alex C. Snoeren, and Andreas Terzis. CQIC: Revisiting
Cross-Layer Congestion Control for Cellular Networks.
In ACM HotMobile, 2015.

[61] Yaxiong Xie, Fan Yi, and Kyle Jamieson. PBE-CC: Con-
gestion Control via Endpoint-Centric, Physical-Layer
Bandwidth Measurements. In ACM SIGCOMM, 2020.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1383

	Introduction
	Background and Motivation
	Wi-Fi Direct and Its Packet Life-Cycle
	Practical Line Rate Transmission of Wi-Fi Direct
	Limitations of Existing Transport Schemes

	Smuff Design
	Design Goals
	System Overview
	Buffer Management Analysis
	Single Buffer Management
	Multiple Buffer Management

	Buffer Orchestrator
	Transport Manager
	Other Design Considerations
	Packet Aggregation
	Flow Prioritization

	Implementation
	Evaluation
	Transport Performance
	Compatibility
	Microbenchmark
	System Overhead

	Discussion
	Related Work
	Conclusion

