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Abstract
Recent network telemetry witnesses tremendous progress

in two directions: query-driven telemetry that targets expres-
siveness as the primary goal, and sketch-based algorithms
that address resource-accuracy trade-offs. In this paper, we
propose AutoSketch that aims to integrate the advantages of
both classes. In a nutshell, AutoSketch automatically com-
piles high-level operators into sketch instances that can be
readily deployed with low resource usage and incur limited
accuracy drop. However, there remains a gap between the
expressiveness of high-level operators and the underlying re-
alization of sketch algorithms. AutoSketch bridges this gap
in three aspects. First, AutoSketch extends its interface de-
rived from existing query-driven telemetry such that users can
specify the desired telemetry accuracy. The specified accu-
racy intent will be utilized to guide the compiling procedure.
Second, AutoSketch leverages various techniques, such as
syntax analysis and performance estimation, to construct ef-
ficient sketch instances. Finally, AutoSketch automatically
searches for the most suitable parameter configurations that
fulfill the accuracy intent with minimum resource usage. Our
experiments demonstrate that AutoSketch can achieve high
expressiveness, high accuracy, and low resource usage com-
pared to state-of-the-art telemetry solutions.

1 Introduction

The continuous growth of modern data centers inspires
tremendous progress on network telemetry, which forms the
basis of various network management tasks, such as anomaly
detection [32, 43, 99], performance analysis [74, 78, 92, 100],
and fault diagnosis [5, 13, 14, 33, 44, 93, 106]. Recent ad-
vances in network telemetry can be categorized into two
classes: query-driven telemetry and telemetry algorithms.
Query-driven telemetry [30, 66, 67, 97] considers expressive-
ness as the primary goal. They provide extensive operators
for users to build various telemetry tasks, and then automat-
ically deploy the operators into switches. Therefore, users

*Qun Huang is the corresponding author.

do not need to concern with the implementation details in
switch hardware. However, the resource-efficient realization
of operators is not well addressed in existing query-driven
telemetry solutions. In particular, many operators maintain
flow-level states. As the number of interested flows increases,
maintaining the states easily exhausts switch memory [30] or
network bandwidth [67].

The other class is telemetry algorithms. Their common idea
is to leverage approximate techniques (e.g., sampling [73, 76,
77], top-k counting [6,79], and sketch [1,34,36,54,55,94,103])
that sacrifice a small portion of accuracy to relax resource
requirements. Even though recent studies show that such ap-
proximate techniques can achieve both resource efficiency
and bounded errors, it remains non-trivial to utilize them. First,
each approximate technique is designed for several specific
telemetry applications and fails to support all tasks. Second,
an approximate technique needs careful parameter configu-
ration to simultaneously reach high accuracy and resource
efficiency. Thus, for each telemetry task, users need to select
the appropriate algorithms, carefully realize them, and tune
parameters in switches, which needs domain knowledge on
the programming models and hardware restrictions.

In this paper, we present AutoSketch that integrates the
advantages of both query-driven telemetry and sketch algo-
rithms. Its goal is to fully exploit the resource efficiency of
telemetry algorithms while hiding the complicated details
of implementing and configuring them in network devices.
This is extremely significant because (i) users lack the do-
main knowledge of underlying telemetry algorithms and ar-
chitecture; and (ii) the hardware resources of existing network
devices are limited. On the one hand, AutoSketch follows re-
cent operator-based telemetry languages. It defines extensive
interfaces for users to build telemetry applications with both
built-in operators and user-defined operators, which achieves
high expressiveness. On the other hand, AutoSketch automat-
ically converts these operators to sketch algorithms, which
achieves high accuracy and low resource usage.

However, it is challenging to bridge the gap between the
high-level operators and the sketch algorithms. First, sketch
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algorithms incur errors due to their approximation nature (al-
though the errors are bounded). Users should be capable of
perceiving and controlling the incurred errors for telemetry
applications. Second, user-defined operators complicate the
conversion to sketch. In particular, many user-defined op-
erators maintain numerous states, which are hard to realize
as sketch. For some operators, there is even no ready-made
sketch algorithm to realize them. Finally, sketch algorithms
expose various parameters to configure, which needs to take
underlying hardware into account.

AutoSketch addresses the challenges in three aspects:
• First, AutoSketch extends its operator-based interface to

allow users to specify the desired accuracy as an accuracy
intent (§2). Then, AutoSketch employs a compiler that au-
tomatically generates sketch-based solutions that fulfill the
intent (§3). The compiler hides the details on switch hard-
ware and algorithm details. To this end, administrators can
control the extent of approximation without concerns with
underlying realization.

• Second, AutoSketch constructs efficient sketch instances
for the stateful operators (§4). For built-in operators, Au-
toSketch realizes them by classical sketch algorithms. For
user-defined operators, AutoSketch decomposes each of
them into several simple operators with the aid of syntax
analysis. Then, AutoSketch designs sketch-like structures
to instantiate the decomposed operators. Each sketch-like
structure follows the same idea of sketch that maps traf-
fic into different cells, but employs different methods to
aggregate cells (depending on the user-defined functions).
The sketch-like structures provide theoretical guarantees to
estimate the impact of hash conflicts like classical sketch.

• Finally, AutoSketch formulates the parameter tuning into
an optimization problem, which reveals the hardness of
parameter tuning (§5). We propose a searching algorithm to
find the most suitable configuration that fulfills the accuracy
intent and incurs minimum resource usage. The algorithm
employs various optimization techniques and eliminates
the user burdens of tuning sketch parameters.
We build a prototype of AutoSketch that targets PISA [10]

switches and compare AutoSketch with existing query-driven
telemetry systems and sketch-based telemetry algorithms. We
show that AutoSketch can implement telemetry applications
in less than 20 lines of code without extra efforts to tune
configurations. Under 200 K active flows per 100 ms, AutoS-
ketch still reaches 99% recall, 97% precision, and 2.8% errors
with only 0.84 MB switch memory and 84 KB/s bandwidth
on average for 11 applications. We release our source code at
https://github.com/N2-Sys/AutoSketch.

2 AutoSketch Interface

AutoSketch follows recent telemetry languages (e.g., Sonata
[30] and Marple [67])that provide operator-based interface. It
abstracts network traffic as a stream of tuples, each of which

Operator Description
filter(bool_expr) Check the boolean expression bool_expr for each

tuple and preserve tuples satisfying conditions.
map( f ields, [expr]) Transform each input tuple into an output tuple con-

sisting of f ields, whose values are set by expr.
distinct( f ields) Categorize input tuples based on f ields, and pre-

serve one tuple for each category (i.e., delete dupli-
cated tuples with the same field values).

reduce( f ields, val) Categorize tuples according to f ields and sum up
val for each category.

zip(s, f ield) Merge the input stream with tuples of another stream
s containing the same field values in f ields.

groupby(states, ud f ) Invoke user-defined function ud f to update states.

Table 1: Operators of AutoSketch Interface

consists of a key and several fields. An operator performs
specific computations on each input tuple and then generates
some output tuples if needed. A telemetry application is de-
fined as an operator graph in which vertices are operators. A
(directed) edge indicates that the output tuples of the upstream
operator are consumed by the downstream operator.

Operators. Table 1 summarizes the operators supported by
AutoSketch. Currently, AutoSketch provides five built-in op-
erators: filter, distinct, map, reduce, and zip. Among
them, distinct and reduce are stateful, i.e., maintaining in-
ternal states for tuple processing. Here, an operator state refers
to a key-value pair associating with tuples that have the same
key. To achieve more expressiveness, AutoSketch further pro-
vides a groupby operator that allows users to customize the
processing logic in two aspects. First, a groupby operator can
maintain user-defined states. Second, each groupby operator
associates with a user-defined function (UDF) to define the pro-
cessing logics on the tuples and states. AutoSketch supports
three types of statements in a UDF: (1) assignment statements,
(2) arithmetic statements, and (3) conditional statements.

Accuracy intents. AutoSketch realizes stateful operators (i.e.,
distinct, reduce, and groupby with states) using sketch
techniques, which inevitably incurs errors. To characterize
the errors, AutoSketch provides users with accuracy intent
interface, which can specify user-desired accuracy. In the con-
text of operator-based processing, an accuracy intent consists
of four accuracy metrics:
• Recall: the ratio of true output tuples to all true tuples that

should be output.
• Precision: the ratio of true output tuples to all output tuples.
• Average relative error (ARE): the mean relative error of all

output tuples.
• Confidence: the probability that all other accuracy metrics

(e.g., recall, precision) are met.
Users can selectively use the accuracy metrics for a teleme-

try application. For a metric, users can specify the minimal/
maximal value or the desired range for it (e.g., ARE_max = 1%,
recall = 95%± 5%). If a metric is not specified, AutoSketch
considers that there is no requirement on it. Note that the
intents are set for the entire application instead of individual
operators. Thus, users do not need to concern with how to set
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1 def nonmt(tcp.seq):
2 if maxseq < tcp.seq or maxseq == 0:
3 maxseq = tcp.seq
4 else:
5 nm_count += 1
6
7 nm[precision_min=99%,ARE_max=1%,confidence =95%]=
8 PacketStream()
9 .filter(ipv4.protocol==TCP)

10 .groupby({5tuple:(maxseq , nm_count)}, nonmt)

Application 1: TCP non-monotonic detection

per-operator errors to form the application-level accuracy. Au-
toSketch automatically handles the application-level intents
by configuring operator-level parameters.

Example. Application 1 presents an example that monitors
non-monotonic sequence numbers of TCP flows. The appli-
cation first selects TCP packets by a filter operator (line
9). Then it uses the groupby operator to define a UDF, namely
nonmt (line 10). The groupby operator maintains two states.
The maxseq state tracks the maximal sequence number of
each flow (line 3). The nm_count state counts the number of
packets whose sequence numbers are lower than maxseq for
each flow (line 5). The intent requires that with a probabil-
ity of 95%, the monitored flows achieve 99% precision, and
per-flow ARE is below 1% (line 7).

Generality. The operators in AutoSketch come from recent
query-driven telemetry systems [30, 67, 105]. They cover a
rich set of telemetry applications according to these studies.
We do not claim the novelty of this design. However, to the
best of our knowledge, we are the first to define accuracy
intent interface that (1) empowers automatic control operator
errors introduced by sketch and (2) hides the underlying im-
plementation and configuration details of sketch. Some prior
works (e.g., BlinkDB [3]) also define accuracy intent but they
control sampling rate of input traffic instead of operator be-
haviors. On the other hand, some efforts [19, 45, 105] also
attempt to apply sketch algorithms to query-driven teleme-
try, but lack the accuracy intent interface, leaving the error
configuration to the users.

Limitations. The programming model has three limitations
due to the resource constraints of commodity devices. First,
AutoSketch cannot support complicated statements, such
as loops and floating-point arithmetic, because commodity
switch ASICs only allow limited recirculation and such state-
ments are too expensive [26]. Second, the states in an operator
must have limited dependency: users cannot define two states
whose processing depends on each other (details in §4.1). Fi-
nally, the accuracy intent should not consume more resources
than hardware capacity. When a telemetry application com-
promises any of these restrictions, AutoSketch throws an error
as existing data-plane compilers [70]. We will support more
compiling modes in future work, such as suggesting accuracy
intents and returning multiple configurations within accuracy
ranges for users to select from.

Sketch
Construction

Parameter 
Configuration

AutoSketch Compiler

Data Plane
Program

AutoSketch
Application

P4

Code 
Generation

UDF
Decomposition

Operator  Extraction

UDF Mapping
Control Plane

Program
Stateful Operators

Stateless

Built-in

Operators

Figure 1: AutoSketch Compiler.

3 AutoSketch Compiler

AutoSketch designs a general compiler in order to bridge the
gap between our interface and the underlying hardware. The
compiler takes a telemetry application composed of several
operators and an accuracy intent as input. It converts the
application to a P4 program that runs in the data plane to
record per-packet information, and a control plane program
that retrieves telemetry results and reports the results to users.

Figure 1 depicts the compiler internals. For an input appli-
cation, the compiler first extracts its operators. Then it maps
the stateful operators into sketch instances. For built-in state-
ful operators, the compiler directly constructs corresponding
sketch instances. For groupby operators with complicated
UDFs, the compiler first decomposes each UDF into several
simple ones, and then performs the construction. After sketch
mapping, AutoSketch configures parameters for the sketch
instances to satisfy the accuracy intent. Finally, AutoSketch as-
sembles output programs by integrating the converted sketch
instances with the stateless operators.

Although sketch mapping and parameter configuration have
been studied in prior works (§3.1 and §3.2), it is non-trivial to
combine them because we need to fulfill the application-level
accuracy intent. Specifically, when an application is mapped
to numerous combinations of different sketch algorithms, it
remains an open issue to configure operator-level sketch pa-
rameters to satisfy application-level accuracy intent [58].

3.1 Mapping for Stateful Operators
AutoSketch constructs a sketch instance for each stateful op-
erator instead of using a single universal sketch for the en-
tire application. The reason is that existing universal sketch
algorithms are also composed of multiple basic structures
[36, 50, 55], whose overall resource usage is nontrivial and
hard to be optimized. In contrast, per-operator sketch mapping
allows more fine-grained sketch selection and tuning.

Specifically, the compiler employs different strategies for
built-in operators and groupby operators. For built-in stateful
operators, since their functionalities are common, the compiler
realizes them with well-known sketch algorithms, e.g., Count-
Min Sketch (CM) [20] and Bloom Filter (BF) [8].

For groupby operators, AutoSketch follows the idea of
sketch to construct sketch-like structures. As shown in Fig-
ure 2, a sketch-like structure comprises multiple rows of cells,
where each cell maintains the state values of the groupby
operator. To process a tuple, we hash its key to one cell in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1553



tuple

hash functions h1
h2

h3 Invoke
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Figure 2: Sketch-like structure in AutoSketch.

each row, and then invoke the UDF to update the states in the
hashed cells. When querying for the key, we mitigate the er-
rors caused by hash conflicts. Specifically, we use the same
hash functions to select cells, and aggregate the cells based
on the linearity or monotonicity of the state. We use the ag-
gregated results to estimate the state value. We also provide
theoretical analysis for the sketch-like structures. Thus, com-
pared to existing sketch algorithms, our sketch-like structures
support more types of states and user-defined processing log-
ics, while preserving bounded telemetry errors. Note that
we choose two-dimensional (2D) matrices for the sketch-like
structures because their parameters are simpler and fewer than
that of higher-dimensional matrices, which incur more switch
resources to handle the additional dimensions.

Challenges. The mapping is non-trivial for both built-in and
groupby operators. For each type of built-in operator, there
could be multiple possible sketch algorithms that can realize
its functionalities. (e.g., reduce operator can be mapped to
Count-Min Sketch [20] or Count Sketch [12].) The algorithms
achieve different levels of resource-accuracy trade-offs. We
need to choose suitable algorithms to meet application ac-
curacy intents. For groupby operators, the challenge comes
from the complexity of UDFs. If we map a complicated UDF to
a single sketch instance entirely, every cell includes all opera-
tor states. In this case, the incurred computational resources
are overwhelming. In particular, a UDF may contain multiple
state updates. However, existing switch ASICs only support
limited per-cell operations. For example, PISA switches only
allow one read-and-modify operation for each memory ad-
dress and a small number of conditional judgments (i.e., the
boolean expression in the if statement) [89].

Solutions (§4). For built-in operators, AutoSketch estimates
the efficiency of all combinations of candidate sketch algo-
rithms. Then it chooses the one incurring minimum resource
usage while reaching the desired accuracy. For UDFs, AutoS-
ketch decomposes every complicated UDF via abstract syntax
trees, a common technique for syntax analysis. Each decom-
posed UDF contains exactly one state. Thus, AutoSketch can
construct sketch instances for decomposed UDFs with limited
resource usage, and tune the parameters for each state indi-
vidually. Although Newton [105] also maps operators into
sketches, it does not allow UDFs. Note that AutoSketch is
not binding to several specific sketches or sketch-like struc-
tures. It is expected for AutoSketch to support newly proposed
sketches [87, 101], by (i) adding new sketch candidates for
existing stateful operators or (ii) introducing new operators
(e.g., top operator). Note that the actual errors are varying
depending on specific sketches used for operators.

3.2 Parameter Configuration
AutoSketch automatically tunes the parameters of the con-
structed sketch instances. The parameter configuration targets
both high accuracy and resource efficiency. That is, AutoS-
ketch aims to use minimum resources for achieving a specified
accuracy intent.

Challenges. Although existing sketch algorithms provide
theoretical analysis to characterize the relationship between
parameters and accuracy, it remains challenging to tune pa-
rameters for AutoSketch in two aspects. First, as in recent
studies [21, 36, 57], the theoretical analysis of existing sketch
algorithms typically addresses worst-case scenarios, thereby
providing limited guidelines for parameter tuning. Second, a
telemetry application usually comprises multiple sketch in-
stances. Existing works on merging sketch [2, 48] only apply
to multiple sketch instances of the same type. Thus, it remains
challenging to integrate the errors of multiple heterogeneous
sketch instances to form the overall accuracy of an application,
because the errors are quite different across sketch algorithms.
For example, some algorithms produce false positives [8],
while others introduce a relative error for each flow [20]. It is
hard to characterize the errors in a uniform method.

Solutions (§5). The difficulty of integrating the errors of indi-
vidual sketch instances motivates us to employ a benchmark-
based parameter tuning. Specifically, AutoSketch formulates
the parameter configuration into an optimization problem.
Then it searches all possible configurations to find out the
most efficient configuration. For each configuration, AutoS-
ketch estimates its overall accuracy via benchmark experi-
ments. AutoSketch proposes an efficient searching algorithm
with several techniques to reduce the searching overhead.
Note that our optimization tunes parameters of each operator
to satisfy application-level accuracy intent, while existing con-
figuration methods only focus on planning for placement and
refinement [30] or configuration for single data structure [31].
Thus, their optimization objectives are all different.

Discussion. AutoSketch adopts static configuration instead
of dynamic adjusting [63, 64] for two reasons. First, dynamic
approaches require precisely estimating the resulting accu-
racy after adjusting. This is infeasible since existing theoreti-
cal analysis typically works for worst scenarios [21, 36, 57].
Second, recent studies on dynamic reconfiguration are not
adopted by commodity switches yet [60,102]. Thus, we leave
this issue in future work.

4 Mapping to Sketch

4.1 Operator Decomposition
AutoSketch exploits Abstract Syntax Tree (AST) to decom-
pose a UDF. An AST is a tree that characterizes the syntax
structure of a specific function. AutoSketch utilizes AST to
perform decomposition in three steps as follows.
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Figure 3: Example of nonmt (Application 1) decomposition.

Step 1: build AST. We first build an AST for the UDF. In an
AST, a leaf node represents a state, a parameter, a constant,
or a temporary variable. Non-leaf nodes correspond to state-
ments that manipulate their child nodes. Recall that there are
three types of statements: assignment statements, arithmetic
statements, and conditional statements (§2). For an assign-
ment or arithmetic node, its children refer to the operands. A
branch node corresponds to a conditional statement. Its edges
to the child nodes are associated with the judgment expres-
sions. The first child refers to the If branch, while the second
child indicates the Else branch (if any). For better organiza-
tion, our AST further introduces a block node, which indicates
that its children are executed sequentially. Figure 3(a) shows
the AST of UDF nonmt in Application 1. The AST contains
a branch node as the root. The two children are the assign-
ment nodes for maxseq and nm_count derived from the If
and Else branches, respectively. Due to space limitations, we
omit the decomposition for maxseq < tcp.seq or maxseq
== 0 but the procedure is similar.

Step 2: partition AST. Next, AutoSketch partitions the AST
into several small ASTs, such that there is exactly one state be-
ing modified in each partitioned AST. Algorithm 1 illustrates
the partitioning of an AST. Our basic idea is to repeatedly
remove subtrees containing state modifications. Specifically,
we enumerate each state and travel the AST (line 3). For each
assignment node that modifies the state (lines 5-6), we build
a subtree st comprising nodes from the root to this assign-
ment node including its child nodes (line 7). Then, we remove
nodes in the subtree from the original AST. The removal
travels from the root to the assignment node (line 9). If a
node does not appear in other root-to-leaf paths (line 10), we
remove this node and all its descendant nodes (lines 11-12).
Otherwise, for a node appearing in other root-to-leaf paths,

Algorithm 1 AST Partition
Input : The original AST of UDF
1: function PARTITIONAST(ast)
2: partitioned_asts = []
3: for each state s maintained by UDF do
4: ST = []
5: for each assignment node u in ast do
6: if u modifies s then
7: Build a subtree st from root to u (with u’s children)
8: Add st to ST
9: for each node v from root to u do

10: if v does not appear in other root-to-leaf paths then
11: Remove v and its descendants from ast
12: break
13: Construct a new_ast by merging the subtrees in ST
14: Add new_ast to partitioned_asts
15: return partitioned_asts

we keep the node in the AST, such that the connectivity of
other paths is preserved. Note that there could be multiple
statements modifying a state. Thus, we can partition multiple
subtrees from the original AST for one state. In this case,
we form a larger AST for this state by merging the duplicate
nodes in the multiple subtrees (line 14).

Figure 3(b) and (c) illustrate the partitioning procedure for
the AST of nonmt. We start with partitioning modifications on
state nm_count. We identify the subtree modifying nm_count
as shown in Figure 3(c) (also marked in blue in Figure 3(a)).
In the residual AST in Figure 3(b), there is only one state
maxseq, and thereby we have no need to remove subtree.

Step 3: pass parameters. Finally, AutoSketch passes state
values among the partitioned ASTs because a partitioned AST
may need to read state values from another AST. Since there
exist multiple versions of the state values, we only pass the
needed versions with temporary variables. In Figure 3, up-
dating state nm_count depends on the value of state maxseq.
Thus, we extend the AST of maxseq in Figure 3(b) to a new
AST in Figure 3(d). Since the value of maxseq before up-
dating is actually needed, we add an assignment statement
that saves the value before updating in a variable temp. The
variable is returned and passed to AST of nm_count after all
statements are executed. We put more examples in Appendix.

Discussion. AutoSketch restricts the dependency among
states in a groupby operator. For two states A and B, if updat-
ing A needs to access B, we say that A depends on B. In this
case, the decomposition result must be unique: the stage that
deploys partitioned AST of B must be before that of A. Thus,
AutoSketch does not allow mutual dependency. By mutual
dependency, we mean that the two states depend on each other.
When mutual dependency occurs, AutoSketch cannot deter-
mine which state should be placed on the preceding stage.
Then, it throws an error during compilation time.

4.2 Sketch Construction for UDFs

AutoSketch constructs a sketch-like structure for each decom-
posed UDF. As shown in §3.1, it maps each key into one cell
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Algorithm 2 Update procedure of sketch-like structure
Input : The packet tuple t
Variables: Sketch-like structures C = map()
Variables: Bloom filter b f , Keyarray = [], l = 0
Variables: Incflags = map(), Decflags = map() ▷ Initial value true
1: function UPDATE(t)
2: Extract key k from t
3: if k /∈ b f then
4: Insert k to b f
5: if Keyarray is not full then
6: Keyarray[l] = k
7: l += 1
8: else
9: Send k to controller

10: for each UDF in decomposed UDFs do
11: SL = C[UDF] ▷ SL is the sketch-like structure of UDF
12: for i = 1 to d do
13: j = hi(k)
14: old_value = value of SL[i][ j]
15: Invoke UDF(SL[i][ j], t)
16: new_value = value of SL[i][ j]
17: if old_value > new_value then
18: Incflags[UDF]=false ▷ non-increasing
19: else if old_value < new_value then
20: Decflags[UDF]=false ▷ non-decreasing

with hash functions. Then, AutoSketch updates the mapped
cells with the UDF, or queries per-key information by aggregat-
ing the mapped cells. We elaborate on the detailed realizations
of the update and query procedures as follows.

Update procedure. Recall that a state in a groupby operator
is a collection of key-value pairs. Thus, in addition to updating
values in the sketch-like structures, it also needs to store
the keys. One possible solution is to store the keys within
each sketch-like structure. However, this incurs overwhelming
memory overheads, because there are duplicate keys in the
multiple decomposed UDFs. Thus, AutoSketch separates the
keys outside the sketch-like structures.

Algorithm 2 details the update procedure for the multiple
decomposed UDFs. To separate keys from sketch values, it
maintains an array Keyarray to store keys, a counter l indicat-
ing the length of Keyarray, and a Bloom Filter b f to check
the existence of keys. Upon the arrival of a tuple, we extract
its key k and check the occurrence of the key with b f (lines
2-3). If the key never appears, we insert the key into the b f
and append the new key to the end of Keyarray (lines 4-7).
If Keyarray is full, we send k to controllers (line 9). Then we
update the sketch-like structures. Specifically, for each UDF,
we hash the key to locate the cells containing the state of the
key (line 13). We invoke the function to update the state (line
15). We maintain Decflags and Incflags for each UDF. The
two variables indicate whether state values are monotonically
decreasing or increasing, respectively (lines 17-20). The two
variables will assist the query procedure in the next.

Query procedure. The query procedure is performed in
the control plane. The controller periodically collects data
plane information, including the sketch-like structures, the
Keyarray, and the two variables indicating the monotonic-
ity of the UDF. Then, the controller enumerates the keys in

Algorithm 3 Query procedure of sketch-like structure
Input: The key k, The monotonicity flag Decflag, Incflag
1: function QUERY(k, Decflag, Incflag)
2: rets = []
3: for i = 1 to d do
4: SL = C[UDF] ▷ SL is the sketch-like structure of UDF
5: j = hi(k)
6: r = SL[i][ j]
7: Add value of r to rets
8: if Decflag then ▷ Monotonically decreasing
9: return the maximal value in rets
10: else if Incflag then ▷ Monotonically increasing
11: return the minimum value in rets
12: else ▷ No monotonicity
13: return the median value in rets

Keyarray to query their state values in the sketch-like struc-
tures (recall that a sketch-like structure corresponds to one
state in the original UDF). Specifically, AutoSketch hashes a
key to obtain the mapped cells in a sketch-like structure. Then
it aggregates the cells to estimate the state value.

AutoSketch mitigates the errors caused by hash conflicts
by leveraging the monotonicity of a UDF.
• Monotonically increasing: AutoSketch takes the minimum

value among the mapped cells as the estimate, since all cells
overestimate the true value of a key.

• Monotonically decreasing: AutoSketch takes the maximum
value among the cells, similarly.

• No monotonicity: AutoSketch uses the median of the cells.
The rationale comes from the Chernoff Bound [61]. Specif-
ically, for each flow, the occurrences of overestimates and
underestimates from the multiple cells are expected to be
the same. Thus, using the median yields an accurate result.

Algorithm 3 summarizes the query procedure. The function
takes key k and the monotonicity variables of the UDF as
input. It hashes k into SL[i][ j] in the i-th row with j = hi(x)
and records the value of state SL[i][ j] in rets (lines 2-7).
Then it uses the monotonicity flags Decflag and Incflag to
decide which value in rets to return (lines 8-13). We put the
theoretical analysis of sketch-like structures in Appendix C.

Control plane overheads. Although the decomposition in-
creases the number of stateful operators, it does not amplify
the query overheads in the control plane. The reason is that
the controller only needs to query the operators that form the
eventual results. For example, in many applications that follow
"Count-Distinct with Threshold" [18], only the last operator
is of interest. Since the actually queried operators are more
lightweight and much traffic is pruned in previous operators,
we do not introduce additional control plane overheads.

4.3 Sketch Selection for Built-in Operators
AutoSketch supports multiple types of sketch algorithms to
instantiate built-in operators, so as to adapt to diverse applica-
tions and accuracy intents. We leverage a sampling technique
to select the most efficient algorithms for a given application
and accuracy intent. Specifically, we evaluate different com-
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binations of sketch algorithms, and select the combination
that uses minimum resource usage to fulfill the accuracy. The
evaluation uses synthetic workloads to perform benchmark
analysis (see §5), so that we can estimate the actual resource-
accuracy trade-off of the sketch algorithms. For each built-in
operator, we generate several configurations for each potential
algorithm that can realize this operator. We not only calculate
the theoretical configuration suggested in the literature, but
also randomly sample some other configurations.

Note that the sampling only addresses a limited number of
configurations, which is acceptable for algorithm selection.
Thus, we still need comprehensive configurations in §5. We
put more optimizations for sketch mapping in Appendix D.

5 Searching for Configurations

5.1 Problem Formulation

AutoSketch aims to find out a configuration that satisfies input
accuracy intent but incurs minimum resource usage. We state
the problem as follows (the complete problem formulation is
in Appendix E).

Application configuration. We define an application config-
uration c as a vector of 3n variables, c = (d1,w1,s1,d2,w2,
s2, ...,dn,wn,sn), given that n is the number of mapped sketch
instances. Each variable in the vector is a parameter that needs
to be configured. For the i-th sketch instance, the two parame-
ters di and wi indicate the depth and width of the 2D sketch
structure, respectively. si is the number of stages occupied by
the i-th instance, which limits the maximal available resources
for each sketch. Here, we omit the size of each element, be-
cause it is a constant determined while sketch-based mapping.

Constraints. A configuration needs to satisfy two types of
constraints. The first type is about accuracy. It requires that
the accuracy of the telemetry application should reach the
user-specified accuracy intent. The other type of constraint
ensures that the resource usage (stage, ALU, and memory) of
a configuration should not exceed the available ones provided
by PISA switches. Further, since ALUs and memory are as-
sociated with each stage, we also require that a configuration
does not compromise per-stage resource restrictions.

Objective. The objective of parameter tuning is to find the
configuration that satisfies all the constraints (including ac-
curacy constraints and resource constraints) while incurring
minimal resource usage. Currently, AutoSketch considers two
types of resources: register memory and stateful ALU. The
resource usage of any configuration c is quantified as a score:
SC(c) = αnALU +βnmem, where nALU refers to the number of
needed ALUs for the configuration c and nmem refers to the
used register memory. Here, α and β are two user-specified pa-
rameters to weight ALUs and memory. Note that the number
of ALUs also relates to in-switch processing delay because it
determines how many match-action tables each packet needs

Algorithm 4 Searching Algorithm for Configuration
Input : Telemetry application T composed of n mapped sketch instances
Input : Accuracy intent EB specified by the user
Global variables : S = [], done = [], candidate = []
1: function SEARCH(T , EB)
2: candidate = LHS_INIT(n)
3: while candidate not empty do
4: Take a configuration c from candidate
5: Evaluate T by c
6: Add c to done
7: if c satisfys EB then
8: Add c to S
9: neighbors = CALCNEIGHBOR(c)

10: for x in neighbors do
11: if EXAMINE(x) then
12: add x to candidate
13: if S is not empty then
14: return the configuration whose SC is minimal in S
15: else ▷ no configuration satisfies EB
16: return the configuration whose accuracy is highest in done

to go through. Thus, if we aim to minimize the processing
delay instead of resource usage, we can simply set β = 0.

Hardness. It remains challenging to adopt classical optimiza-
tion techniques to solve it. As summarized in §3.2, (1) existing
theoretical analysis of sketches considers the worst case; (2)
it is challenging to integrate the errors of individual sketch
instances into application-level accuracy intent. Thus, we
cannot rely on theoretical analysis to estimate actual accu-
racy for practical workloads or configure parameters. On the
other hand, some studies [49, 51, 98] advocate learning the
configuration parameters by deep reinforcement learning [62].
However, as telemetry applications vary, it is unacceptable to
train a model for each application separately.

5.2 Benchmark-based Searching

AutoSketch performs benchmark analysis to evaluate con-
figuration accuracy and selects configurations accordingly.
Specifically, AutoSketch employs several representative work-
loads. For each configuration, AutoSketch evaluates its accu-
racy with the workloads. If the resulting accuracy meets the
accuracy intent in all workloads, we consider that this configu-
ration can fulfill the intent in practice. Currently, AutoSketch
provides several synthetic workloads for the benchmark. The
synthetic workloads follow typical distributions of network
traffic (e.g., power-law) and are generated with different pa-
rameters (e.g., different skewness for power-law distributions)
to mimic various scenarios. In addition, we randomly inject
additional network traffic in some intervals during the search-
ing to simulate traffic bursts. Users can select the workloads
based on their needs or use their own trace. Here, the pro-
grams required for the benchmark (including the decomposed
UDF) are automatically generated by AutoSketch.

Obviously, the benchmark searching is time-consuming
because the number of possible configurations is huge. Con-
sider an example in which a sketch instance runs in a switch
with four ALUs and 1 MB memory. Even in this simple ex-
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ample, the number of possible configurations is above 5 K
(the detailed calculation is in Appendix F). Taking an ap-
plication containing two sketch instances, the time usage of
benchmark evaluation for one configuration takes 1-2 minutes
under a 4 Gb workload. AutoSketch optimizes the searching
procedure in the following paragraphs.

Searching procedure (Algorithm 4). The searching starts
with invoking LHS_INIT (see below) to initialize a list of
candidate configurations (line 2). Then AutoSketch iteratively
pops one configuration, and performs benchmark experiments
to evaluate its accuracy (lines 3-6). If this candidate fulfills
the intent, it is saved in a set S (lines 7-8). For each candidate,
AutoSketch also generates its neighboring configurations that
incur similar resource overheads (line 9). Among these neigh-
boring configurations, AutoSketch prunes useless ones and
adds the residual to the candidate list (lines 10-12). After all
the candidates are evaluated, if there exist configurations ful-
filling the intent, AutoSketch returns the one with minimum
resource usage (lines 13-14). Otherwise, AutoSketch returns
the configuration with the highest accuracy (lines 15-16).

LHS-based configuration initialization. AutoSketch con-
structs initial configurations based on Latin Hypercube Sam-
pling (LHS) [56]. LHS is a statistical method to generate
representative sampled configurations in multi-dimensional
spaces. It requires that the generated samples have distinct
sampled values in every dimension. Figure 4 shows an ex-
ample of 2D-space. In this case, LHS generates three sample
points. Each row has exactly one sample point. Each column
has at most one point. Note that the second column has no
sample point because adding any point in this column causes
conflicts with other points. In this way, LHS guarantees that
the sampled points are evenly distributed in the parameter
space. We leave the complete algorithm in Appendix G.

Hardware-aware configuration generation. After evalu-
ating a candidate c, AutoSketch generates the neighboring
configurations of c. Function CALCNEIGHBOR leverages the
hardware features to reduce the number of configurations.
First, existing switches allocate memory at the granularity of
16 KB pages. Thus, we require that the total size of a config-
uration aligns to the page size. Second, the range of a hash
value is a power of two. Thus, we only consider the config-
urations in which per-row cell count is also a power of two.
Specifically, the generation depends on whether c meets the
accuracy intent. If c satisfies the intent, AutoSketch generates
new configurations with fewer resources, by either decreasing
the number of hash functions by one or halving the number
of memory pages. Otherwise, if c does not fulfill the intent,

AutoSketch either adds one hash function or doubles memory
pages to generate configurations with more resources. We
leave the pseudo code of CALCNEIGHBOR in Appendix H.

Configuration pruning. AutoSketch applies several rules to
prune configurations. AutoSketch first examines unnecessary
configurations, including (1) configurations that have been
evaluated, (2) configurations whose resource usage exceeds
a limit, and (3) configurations that consume more resources
than a configuration already satisfying the intent.

In addition, AutoSketch stops when sufficiently good con-
figurations are found. Specifically, if the initial configuration
satisfies the intent, AutoSketch stops decreasing resources
when a configuration fails to meet the intent. Otherwise, if the
initial configuration does not satisfy the intent, AutoSketch
stops when a satisfying configuration is found. Therefore, Au-
toSketch guarantees that it can always find a feasible solution
that meets the accuracy intent if such configurations exist.
Otherwise, AutoSketch throws an error.

6 Implementation

Interface. We leverage the syntax sugar of Python to imple-
ment our interface as a domain-specific language embedded
in Python. Specifically, we define a PacketStream class and
realize all operators as its member functions. For each func-
tion, both the input and output have the type PacketStream.
This inherently realizes the chaining syntax as shown in §2.
We plan to integrate OmniWindow [83] with our interface to
support general window mechanisms in our future work.

Compiler. We provide two sketch algorithms for each state-
ful built-in operator. Specifically, a reduce operator can be
mapped to a Count-Min Sketch [20] or a Count Sketch [12],
while we use Bloom Filter [8] and Counting Bloom Filter [23]
for distinct. We leverage multi-threading techniques to par-
allelize the time-consuming benchmark experiments. Cur-
rently, AutoSketch supports two types of PISA-based target
backends, namely Tofino [89] and BMv2 [9]. Our implemen-
tation realizes the idea of this paper (i.e., constructing and
optimizing sketch instances). Other program optimization
(e.g., Chipmunk [26], BitSense [22]) is out of our scope.

Runtime. We realize a control plane runtime and a data plane
runtime to deploy AutoSketch. The data plane runtime installs
the output P4 programs of AutoSketch into switches and sends
sketch structures to the controller. The control plane runtime
invokes the query procedures and reports results to users.

Multiple applications and distributed deployment. To de-
ploy multiple applications over distributed devices, we merge
the DAGs of each application into a large application and ab-
stract the switch along the packet transmission path into a big
pipeline [16, 25]. We leave the searching for this large appli-
cation on the big pipeline abstraction with different accuracy
intents as our future work.
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Telemetry Application Lines of Code
Sonata Marple AS AS-P4

Used in existing query-driven telemetry (see §7.2)
New TCP Conns.(NC) [97] 6 8 7 192
TCP Incomplete Flows (IF) [97] 12 16 15 237
Port Scan (PS) [40] 6 11 6 285
DDoS (DD) [96] 9 14 6 277
TCP timeouts (TO) [67] * - 6 7 567
TCP non-monotonic (NM) [67] * - 7 9 618
TCP out-of-sequence (OOS) [67] * - 6 7 618
TCP SYN Flood (SF) [97] * - 17 20 635

Used in existing sketch-based telemetry (see §7.3)
Superspreader (SP) [96] 6 11 6 271
Cardinality (CD) [34] 3 8 4 227
Heavy Hitter (HH) [20] 5 10 5 271

Table 2: (Exp#1) LoC of telemetry applications (* indicates
that the application contains UDF).

7 Evaluation

We conduct experiments that compare AutoSketch with state-
of-the-art telemetry solutions in various aspects. We summa-
rize our findings for AutoSketch: (1) It implements 11 teleme-
try applications in <20 lines of code without concerns with
parameter configurations (Exp#1 and Exp#5); (2) It satisfies
the accuracy intent of at least 95% precision, 97% recall, and
at most 2.8% ARE for all the applications with only less than
6 ALUs, 1.06 MB memory and 115 KB/s bandwidth on aver-
age (Exp#2, Exp#3 and Exp#4); (3) It consumes around 50%
switch resource usage to achieve the intent compared to most
classical sketch algorithms (Exp#6 and Exp#7); (4) It achieves
better effectiveness than query planning of Sonata and scale
to large-volume traffic (Exp#8); (5) It efficiently finds out
configurations with high accuracy (Exp#9 and Exp#10 in
Appendix I). We put the complete results in Appendix J.

7.1 Setup

Telemetry Applications. Our evaluation considers 11 repre-
sentative telemetry applications in Table 2. The applications
are commonly used to evaluate telemetry solutions, including
both query-driven telemetry [30, 67, 105] and sketch-based
telemetry. Among these applications, TO, NM, OOS and SFL
contain UDFs. We configure the applications as described in
the literature. We put their realizations in Appendix K.

Workloads. We use CAIDA traces from 2016 to 2019. For
stress testing, we simultaneously run PktGen [72] on eight
servers to replay the traffic at 40x speed: every 100 ms interval
in our result corresponds to 4 s traffic of the origin trace. Thus,
each interval contains around 200 K active flows and 6 Gb
traffic (60 Gbps). Further, we inject additional 20 K flows at
10% intervals to evaluate AutoSketch under traffic bursts.

Accuracy metrics. For all applications except for CD, we
measure both recall and precision. For TO, NM, and OOS
that measure per-flow packet count of interest, we additionally
evaluate their ARE. For CD, we measure the relative error
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Figure 5: (Exp#2) Switch resource usage against query-driven
telemetry.

(RE): n−n̂
n , where n and n̂ are the true and estimated number

of flows, respectively.
Resource metrics. We consider three types of switch re-
sources: (1) on-chip memory used to maintain the states of
stateful operators; (2) stateful ALU used to calculate hash
functions and update state values; and (3) stage in the PISA
switch associated with its own ALUs and memory. Note that
we do not report the results on PHV because the packet tu-
ples passing across stages mainly include the parsed fields in
packet headers, whose overheads are limited.
Accuracy intents. We use two accuracy intents for AutoS-
ketch: one aims to achieve 95% recall, 95% precision, and 3%
ARE, while the other requires 99% recall, 99% precision, and
1% ARE. Both intents set the confidence as 95%. Therefore,
we report the 95-th percentiles among the intervals, with the
minimum and maximum values as the error bars. For each
application, we apply the two intents to generate their P4
programs, denoted by AS-1 and AS-2, respectively.

7.2 Compare with Query-driven Telemetry

Methodology. We compare AutoSketch with two query-
driven telemetry systems, Sonata [30] and Marple [67]. For
Sonata, we configure each stateful operator with 216 counters
and utilize the refinement plan ∗ → 8 → 32 as in its open-
source prototype. For Marple, we implement its key-value
cache and evict old keys to handle hash collisions. We con-
figure 216 cache slots as in the paper [67]. For applications
with groupby operators, we also consider a naive approach,
namely entire mapping (EM), that converts each UDF operator
entirely into a sketch-like structure (see §3.1). Since EM does
not resolve hash collisions, we configure the structure with
256 K cells to handle the >200 K flows per interval.
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telemetry.

(Exp#1) Expressiveness. We first compare the expressiveness
of AutoSketch with Sonata and Marple, both of which regard
expressiveness as the "first-class citizens" in their designs.
Table 2 shows that AutoSketch needs similar lines of code
(LoC) to implement the eleven telemetry applications. On
the other hand, it needs hundreds of lines if we directly use
P4. Further, AutoSketch allows expressing accuracy intents,
while the Sonata and Marple do not have such features.
(Exp#2) Resource usage. This experiment evaluates the re-
source usage of AutoSketch in switches. We deploy each
solution atop a Barefoot Wedge 100B-32X (Tofino) PISA
switch [89], and then measure the incurred resource usage.
We consider eight telemetry applications in this experiment.
Recall that Sonata does not support UDFs, while EM only
applies to UDFs. Thus, we present the results of the eight
applications separately, according to the existence of UDFs.

Figure 5 presents the results. For applications without
UDFs, Sonata occupies much more stages than others due
to its refinement mechanism which reduces the traffic sent
to the stream processor. AutoSketch consumes less or the
same amount of ALUs and memory as Sonata and Marple
except for DD under AS-2, but achieves lower bandwidth
overhead (Exp#3) and higher accuracy than Sonata (Exp#4).
For example, the memory overheads of Sonata and Marple
for NC and IF are 8 times higher than AS-1. For applications
with UDFs, EM incurs six more stages, nine more ALUs, and
1.6 MB more memory than AS-1 over the total resources of
four applications and suffers from serious hash conflicts and
incurs low accuracy (see Exp#4). However, AutoSketch con-
sumes two to fine more stages, seven to nine more ALUs and
15%-175% more memory than Marple. The reason is that the
user-defined states in UDFs are complicated, thereby AutoS-
ketch enlarges the resource usage to mitigate hash conflicts.
However, Marple has to deal with hash conflicts by sending
excessive traffic to the control plane (see Exp#3).
(Exp#3) Bandwidth usage. Figure 6 presents the traffic sent
to the control plane of each approach. Although the cur-
rent bandwidth of the control plane is in the magnitude of
100 Gbps, it must hold numerous data plane devices. Thus,
it is critical to save control plane bandwidth [15, 30, 46, 67].
AutoSketch incurs 115 KB/s bandwidth for all the applica-
tions, while Sonata, EM and Marple consume 45.1 KB/s,
913.2 KB/s, and 485.2 MB/s, respectively. Here, Sonata re-
duces the bandwidth usage at the cost of higher switch re-
sources (see Exp#2). The reasons why EM and Marple incur

higher bandwidth consumption than AutoSketch are as fol-
lows. For Marple, it needs to evict conflicting packets to the
control plane. For EM, it suffers from severe hash conflicts,
so a large number of normal packets are wrongly identified
as anomalies and then sent to the control plane.

(Exp#4) Accuracy. This experiment compares the accuracy
of AutoSketch with Marple, Sonata, and EM. Figures 7(a)
and 7(b) present the results of the applications without UDFs.
Marple achieves zero error for all applications because they
completely handle hash conflicts. However, it incurs exces-
sive resource overheads and bandwidth consumption (see
Exp#2 and Exp#3). Sonata well ensures the precision of all
applications but fails at the recall metric. The reason is that
Sonata decreases the counting value during the refinement
process and many abnormal flows are not wrongly identified
as normals. AutoSketch achieves high accuracy. In particular,
it satisfies our two accuracy intents for all applications.

Figures 7(c) to 7(e) show the results on the applications
with UDFs. Marple achieves zero error for the four applica-
tions. Except for TO, all AutoSketch applications meet both
intents. Here, TO also achieves 95% precision and 97% recall,
which is close to the intent. However, the recall of TO for
EM is only 62% and the average precision for EM is even
much lower (only 36%). EM also incurs high ARE: the ARE
for NM even exceeds 186%. The reason is that some states
are extremely sensitive to hash conflicts. When binding all
states in one sketch-like structure, hash conflicts will seriously
compromise their accuracy.

7.3 Compare with Sketch-based Telemetry

Methodology. We compare AutoSketch with existing sketch
algorithms. In Table 2, we select three applications that
have been extensively studied by existing sketch algorithms.
We consider two general-purpose sketch-based solutions
FlowRadar (FR) [50] and OpenSketch (OS) [96] that can
support all three applications. FR proposes a general sketch
structure to support various applications. For OS, we build
the algorithms in P4 as suggested by the original paper [96].

In addition to FR and OS, we also select two state-of-the-
art sketch algorithms that are specifically designed for each
application: in heavy hitter detection (HH), we compare Au-
toSketch with MV-Sketch (MV) [87] and HashPipe (HP) [79];
in superspreader detection (SP), we compare AutoSketch with
SpreadSketch (SS) [86] and Vector Bloom Filter (VBF) [52];
in cardinality estimation, we compare AutoSketch with FM-
Sketch (FM) [24] and Linear Counting (LC) [91].

We realize these algorithms based on their published de-
signs except MV and SS that provide open-source implemen-
tation. We also apply AS-1 and AS-2 for AutoSketch and the
sketch algorithms. We follow the guidelines in the literature to
configure these sketches. Here, we present the results of AS-1.
The results of AS-2 are in Appendix J. We do not present the
bandwidth usage of sketch-based solutions because they only
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Figure 9: (Exp#6) Switch resource usage against sketch-based
telemetry.

transfer the sketch structures to the controller. Thus, we can
infer the bandwidth from their memory usage in Exp#6.

(Exp#5) Expressiveness. We first compare the expressiveness
of AutoSketch with the sketch algorithms. Figure 8 shows
that AutoSketch only needs less than ten LoC to express each
telemetry application. However, existing sketch algorithms
require hundreds of lines of P4 code. Note that OS provides
one library that includes some pre-built sketches. Therefore,
OS can express one telemetry application in dozens of con-
figuration LoC. Further, AutoSketch automatically generates
corresponding P4 programs with parameter configurations,
while sketch algorithms need many efforts to tune parameters.

(Exp#6) Resource usage. We compare the resource usage of
AutoSketch with the sketch algorithms. Figures 9(a) to 9(i)
show that AutoSketch only consumes 50% switch resources
compared to most existing sketch algorithms except for LC
and FM (OS utilizes LC to realize cardinality). The reason is
that existing sketch algorithms typically consider worst-case
scenarios, while AutoSketch selects the most suitable config-
uration via benchmarking-based searching. FM and LC use
very limited resources because they only support the simple
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Figure 10: (Exp#7) Accuracy against sketch-based telemetry.

cardinality estimation at the cost of occasional unacceptable
error (Exp#7). FR incurs much higher resource usage since it
has complicated structures to support general telemetry tasks.
HP and VBF take the multi-level data structure that needs
more stages than other solutions. OS incurs more resources
than AutoSketch to detect heavy hitters and super spreaders,
since it adopts reversible sketch [75] to maintain flowkey.

(Exp#7) Accuracy. We compare the accuracy of AutoSketch
with the sketch algorithms (the red dotted line in the figure
indicates the accuracy intent). For the heavy hitter detection
(Figure 10(a)), all solutions can reach 95% precision. How-
ever, the recall of HP and FR is only 20% and 90%, respec-
tively. The reason is that their desired resources exceed the
hardware capacity. MV achieves similar accuracy as AutoS-
ketch, but needs more resources (see Exp#6). For the super-
spreader detection (Figure 10(b)), SS, VBF, and OS reach
high precision but cannot fulfill the recall goal, since they
are sensitive to hash conflicts. For the cardinality estimation
(Figure 10(c)), FM cannot satisfy the intent and its RE suffers
from terribly high error. AutoSketch meets the accuracy intent
in all the telemetry applications for two reasons. First, our
parameter configuration avoids worst-case parameters in tra-
ditional theoretical analysis. Second, our randomly injecting
additional traffic adapts to traffic bursts.

7.4 Micro Benchmarks

(Exp#8) Parameter tuning. We compare our benchmark-
based parameter tuning with the query planning of Sonata.
We consider two versions of Sonata, denoted by S1 and S2,
respectively. S1 is the default setup in Sonata’s open-source
prototype [69] that does not deal with hash collisions. S2
resolves hash conflicts by mapping each flow to d counters
and evicting a flow to the remote stream processor if hash
collisions occur (c.f. §3.1 of [30]). We follow the guidelines
in [30] to make the partition and refinement decision via the
ILP. We stress test all systems with different packet rates.

We present the DDoS detection under AS-1 due to space
limitations. Figure 11 shows the results. Even though S1 care-
fully tunes the data structure size and the refinement plan
(∗→ 16 → 32), it still fails to satisfy AS-1 (Figure 11(a) and
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11(b)) because it does not resolve hash conflicts. In contrast,
S2 achieves zero error at the cost of higher switch resource
and bandwidth overhead. Compared to S1 and S2, AutoS-
ketch satisfies the accuracy intent with lower switch resource
and bandwidth overhead. The reason is that although Sonata
efficiently determines offloaded operators, it lacks the opti-
mization for individual operators. On the opposite, AutoS-
ketch targets parameter tuning for each operator. The two
approaches are orthogonal to each other, which can be com-
bined to realize both benefits.

(Exp#9) Searching costs. We evaluate the cost of the
benchmark-based configuration searching algorithm. Fig-
ure 12 presents the searching time (red bar) and the ratio
between the number of configurations actually evaluated and
the number of all possible configurations (blue bar). As in
§5.2, the number of possible configurations is extraordinarily
huge. Our algorithm greatly prunes the number of evaluated
configurations by three to nine magnitudes. In particular, our
searching algorithm leverages hardware features to prune
configurations (see §5), which decrease the candidate config-
urations by at most six magnitudes. Other techniques further
reduce by two magnitudes. All the applications converge a
configuration close to the best solution (see Exp#10 in Ap-
pendix I) within 15 minutes using a single core, with an aver-
age time of 6.5 minutes. It is acceptable because the searching
is performed once before an application is deployed.

8 Related Works

Query-driven telemetry. Existing studies on query-driven
telemetry can be categorized into two classes. The first class
is based on text-based expression [4, 66, 95, 97]. Specifi-
cally, PathQuery [66] focuses on the path-based traffic mon-
itoring. NetQRE [97] combines application-level aggrega-
tion operations with regular-expression-like pattern match-
ing. dShark [95] leverages the json-based telemetry lan-

guage to declare fields and then invoke callback functions
for further processing. The second class provisions a col-
lection of operators for users to form telemetry applications
[19, 29, 30, 38, 45, 47, 67, 105]. AutoSketch follows the line
of operator-based telemetry with two enhancements: the ac-
curacy intent in the language, and the automatic compiler to
generate sketch-based programs.

Telemetry algorithms. There are three classes of telemetry al-
gorithms. Sampling algorithms [11,41,73,76,77,82] consume
limited resources but suffer from high errors. Counter-based
approaches [6, 79] only address top-k flows, thereby failing
to support generic applications. Sketch algorithms maintain
compact data structures that allow multiple flows to share
counters [1, 28, 35, 50, 54, 55, 94, 96, 101, 103]. With proper
parameters, they achieve both high accuracy and resource
efficiency. However, they suffer from heavy implementation
and configuration burdens. AutoSketch hides such complexity
with its programmability.

Telemetry architectures. Host-based telemetry systems [27,
42,65,84] suffer from limited network visibility. Switch-based
systems [7, 17, 39, 59, 68, 71, 80, 81, 88, 90, 104] process traf-
fic with high-speed ASICs but suffer from the limited mem-
ory. Recent studies often combine different network entities.
SwitchPointer [85] utilizes the switch memory as a directory
that points to the telemetry data on end-hosts. Sonata [30]
abstracts the switch and end-host into a big streaming proces-
sor. Marple [67] treats the switch memory as the cache of the
key-value store on end-hosts. MOZART [53] coordinates the
switches and end-hosts to select and monitor traffic. Omni-
Mon [37] integrates the capabilities of end-hosts, switches,
and the controller. AutoSketch is orthogonal to these works.

9 Conclusion

This paper proposes AutoSketch, a network telemetry solu-
tion that bridges the gap between query-driven telemetry and
sketch-based telemetry algorithms. AutoSketch extends the
existing operator-based interface to allow users to specify the
accuracy intent. It designs a compiler to translate the stateful
operators in telemetry applications into sketch instances in the
data plane. AutoSketch automatically configures parameters
to fulfill the accuracy intent. Experiments demonstrate that
AutoSketch achieves high expressiveness and high accuracy
with limited hardware resources.
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Appendix A Decomposed TCP non-monotonic

1 def nonmt_cf(tcp.seq):
2 temp = maxseq
3 if maxseq < tcp.seq:
4 maxseq = tcp.seq
5 return temp
6
7 def nonmt_uf(tcp.seq, maxseq):
8 if maxseq >= tcp.seq:
9 nm_count += 1

10
11 nm[precision_min=99%,ARE_max=1%,confidence =95%]=
12 PacketStream()
13 .filter(ipv4.protocol==TCP)
14 .groupby({5tuple: maxseq}, nonmt_cf)
15 .groupby({5tuple: nm_count}, nonmt_uf)

Application 2: Decomposed TCP non-monotonic

Appendix B Complex Decomposition Example

Figure 13 illustrates the partitioning procedure with a com-
plex example AST. The original AST in Figure 13(a) modifies
two states: state A and state B. We start with partitioning modi-
fications on state A. We identify a first subtree modifying A as
shown in Figure 13(b) (also marked in gray in Figure 13(a)).
Note that the root node appears in multiple paths. Thus, the
root remains in the residual AST in Figure 13(c), while the as-
signment node and its children are removed. Since there is still
a subtree modifying A (marked in gray in Figure 13(c)), we
continue to remove it. Figure 13(d) and Figure 13(e) present
the second removed subtree and the residual AST. In Fig-
ure 13(e), there is only one state B, and thereby we do not
remove subtrees further. Since there are two subtrees modify-
ing state A (in Figure 13(b) and Figure 13(d), respectively),
Figure 13(f) integrates them by merging the duplicated root.
In Figure 13, updating state A depends on the value of state
B. Thus, we extend the AST of B in Figure 13(e) to a new
AST in Figure 13(g). Since the value of B before updating is
actually needed, we add an assignment statement that saves
the value before updating in a variable temp. The variable
is returned and passed to AST of A after all statements are
executed.

Appendix C Theoretical analysis of Sketch-
like structure

We analyze theoretical error bounds according to the behavior
of states in sketch-like structures. One type is summable state
(i.e., counter), whose sketch-like structure is equivalent to
classical CM [20]. The other type is non-summable state (e.g.,
ingress port number, TCP sequence number).

For non-summable states, we analyze the probability that a
flow maintains inaccurate states. Specifically, a flow is accu-
rate if at least one of its hashed cells has no conflicts. Consider
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Figure 13: Example of UDF decomposition.

N flows in a sketch-like structure with w rows and d columns.
We assume that hash functions are perfectly random and in-
dependent. The probability that a flow does not collide with
others in one row is (1− 1

d )
N−1. For w rows, the probability

that the flow has at least one row without conflict P is:

P = 1− (1− (1− 1
d
)N−1)w ≈ 1− (1− e−

d
N )w. (1)

The users can utilize the above theoretical analysis to estimate
the accuracy of the search configuration.

We can further narrow the error bounds according to the
monotonicity-based query method of our sketch-like structure.
Take nonmt_cf in Application 2 as an example, its sketch-like
structure maintains the maximal sequence number of each
flow, which is monotonically increasing and thus return the
minimum value as the query result. In fact, not the conflicts
of all the flows will affect query results. We can first sort
the packets with the largest sequence number of each flow in

ascending order. Considering the ith largest flow, only N − i
flows that collide with it will affect the query result, referred
as interference flows. Here, Equation 1 is updated to P =
1− (1− (1− 1

d )
i−1)w. For our sketch-like structure, the query

results remain correct as long as one row does not conflict
with the interference flows. Therefore, the expectation of the
number of flows for which the query results are accurate is

E =
N

∑
i=1

1−(1−(1− 1
d
)i−1)w =N−

N−1

∑
i=1

(1−(1− 1
d
)i)w (2)

This is similar to the sketch-like structure of monotonically
decreasing. For the case without monotonicity, all the flows
can be interference flows.

Appendix D Optimization for sketch mapping

We optimize the sketch instances with several techniques.
First, we allow sketch instances to share hash functions: we
compute several hash values for each key, and use them to
locate cells in multiple sketch instances. This reduces compu-
tational units in switches, particularly the decomposition in
§4.1 produces numerous sketch instances. Second, we clear
the state values of terminated TCP connections to mitigate
hash conflicts. Third, since some applications are interested
in partial flows, we only record the keys addressed by the
applications instead of all flow keys.

Appendix E Formulation of Benchmark-
based parameter tuning

Goal min(SC(c))

Constraints
C0 T (c) satisfies EB

C1

n−1

∑
i=0

si ≤ S− sstateless

C2 si ≥ 1, i ∈ [1,2, ...,n]
C3 di ∈ [1,2, ...,siA], i ∈ [1,2, ...,n]

C4
wibi

8
≤ M, i ∈ [1,2, ...,n]

C5
diwibi

8
≤ siM, i ∈ [1,2, ...,n]

Table 3: Formulation for searching.

Table 3 formulates the optimization problem of our
benchmark-based parameter tuning. First, the accuracy of the
telemetry application T (c) should reach the user-specified ac-
curacy intent EB (C0). Second, the resource usage is bounded
by the hardware capability. C1 indicates the total stage re-
sources that can be used to deploy sketch instances. Here, S
refers to the number of stages in match-action pipeline and
Sstateless indicates the number of stages used for stateless oper-
ators, which can be determined before sketch-based mapping.
C2 indicates that each sketch instance should use at least one
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stage. C3 constraints the maximal number of stateful ALUs
cannot exceed sA, where A is the number of stateful ALUs
per stage. The register memory size allocated for one stateful
ALU cannot exceed the size of register memory (in bytes) per
stage M (C4). Meanwhile, the total register memory of one
sketch instance should be less than sM (C5).

Appendix F The number of Configurations

Consider an example in which we deploy a sketch with a two-
dimensional matrix structure in a switch with a single stage.
The stage contains four ALUs and 1 MB memory. Assume
that each cell occupies fours bytes. Since each hash function
needs one ALU, we can support at most four rows. When there
is only one single row, we have at most 220/4 = 262144 cells
in the row, resulting 2550 configurations. Similarly, when
the number of rows ranges from two to four, the number of
configurations is 1270, 840, and 630, respectively. Therefore,
there are 5290 possible configurations in total.

Appendix G LHS-based initialization for
searching

Algorithm 5 LHS-based initialization
Input : The number of mapped sketch instances n
1: function LHS_INIT(n)
2: m = min(ALUmax, Pagemax)
3: Initialize m empty application configurations c1,c2, ...,cm
4: for i = 0 to n do
5: alus = [1, 2, ..., ALUmax]
6: pages = [1, 2, 4, ..., Pagemax]
7: for j = 0 to m do
8: d = random sample in alus
9: Remove d from alus

10: w = random sample in pages
11: Remove w from pages
12: c j[2i] = d; c j[2i+1] = w

13: return the list of c1,c2, ...,cm

Algorithm 5 details the LHS-based initialization. It takes
the number of mapped sketch instances n as input and outputs
a list of initial configurations sampled by LHS. The algorithm
first initializes m empty configurations (line 3). Here, m de-
pends on the minimal value between the available maximal
stateful ALUs and memory pages (line 2), in that LHS has to
ensure the parameter values of all samples in each dimension
are different. As mentioned in §5.1, the application configura-
tion is a vector of 2n variables (c= (d1,w1,d2,w2, ...,dn,wn)).
Therefore, the algorithm fills in the d and w dimensions of all
samples one by one in the order of the sketch instance (lines
4-12). For each sketch instance, the algorithm prepares two
lists (alus and pages) of available resource values (lines 5,6).
Then, c1 to cm iteratively pops the values in alus and pages
randomly to fill in c j[2i] and c j[2i+ 1] (lines 7-12). In this
way, the configurations meet the requirement of LHS.

Algorithm 6 Pseudo Code of Function CALCNEIGHBOR
1: function CALCNEIGHBOR(c)
2: neighbors = []
3: for each parameter p in c do
4: c′ = copy of c
5: if c satisfys EB then ▷ decrease resource
6: if p is a row parameter then
7: p′ = p−1
8: else
9: p′ = p/2

10: else ▷ increase resource
11: if p is a row parameter then
12: p′ = p+1
13: else
14: p′ = p∗2
15: Replace p in c′ by p′

16: Add c′ to neighbors

17: return neighbors

Appendix H Hardware-aware configuration
generation

Algorithm6 details the hardware-aware configuration genera-
tion process. It generates neighbors for a given configuration
by changing one parameter in the configuration at a time (line
3). If the given configuration satisfies the accuracy intent, the
algorithm calculates its neighbors by decreasing the resource
usage (lines 5-9). Otherwise, it calculates its neighbors by
increasing the resource usage (lines 10-14). The algorithm
considers hardware characteristics. Specifically, when chang-
ing the number of rows, it uses 1 as the step size, and when
changing the number of columns, it ensures that the number
of columns is a power of 2.

Appendix I Additional Experiment

NC IF SFL SP PS DD CD HH TO NM   OOS 0
 1
 2
 3
 4

M
em

or
y 

(M
B)

  AutoSketch Optimimal Configuration

Figure 14: (Exp#10) Memory efficiency of searching results.

(Exp#10) Efficiency of searching results. We compare the
resource usage between the configuration searched by Au-
toSketch and the optimal configuration found by brute-force
searching. Figure 14 shows that the memory consumption
of AutoSketch is slightly more than the optimal configura-
tion: even the largest difference (DD) is only 0.25 MB. In
additional, the searched results consume the same number of
stages and at most one more ALU than the optimal ones (not
shown in the figure). Such additional costs are acceptable.
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Appendix J Complete Experiment Results

Table 4 and Table 5 list the complete experiment results of Exp#2 to Exp#4 in §7.2, including SSH Brute Force detection. Table
6 summarizes the complete switch resources and application accuracies of sketch-based solutions under two accuracy intents
(AS-1 and AS-2).

Telemetry Resources
Applications Memory (MB) Stage ALU Bandwidth (MB/s)

Marple | Sonata | EM | AutoSketch-1 | AutoSketch-2
New TCP Conns. 0.5 0.5 - 0.06 0.13 2 4 - 1 1 2 2 - 2 2 0.06 0.033 - 0.001 0.001
TCP Incomplete Flows 1.0 1.0 - 0.13 0.5 2 8 - 1 1 4 4 - 2 2 0.276 0.036 - 0.001 0.001
DDoS 1.0 1.0 - 0.63 0.75 3 8 - 2 2 3 4 - 4 6 44.24 0.037 - 0.0037 0.0036
Port Scan 0.88 1.0 - 0.5 1.0 3 8 - 2 2 4 4 - 3 4 23.56 0.07 - 0.0063 0.0063
SSH Brute Force 1.25 1.0 - 0.03 0.03 3 8 - 2 2 5 4 - 2 2 0.001 0.001 - 0.001 0.001
TCP non-monotonic 1.31 - 2.25 1.5 2.13 3 - 7 5 6 4 - 6 11 11 147.6 - 1.265 0.233 0.226
TCP out-of-sequence 1.31 - 2.25 2 2.88 3 - 7 5 7 4 - 6 13 12 167.3 - 1.692 0.526 0.517
TCP timeouts 1.31 - 2.25 3.63 3.63 3 - 7 8 8 4 - 6 12 12 34.4 - 0.609 0.136 0.136
SYN Flood 0.91 - 2.0 0.06 0.06 2 - 7 4 4 2 - 5 4 4 56.35 - 0.001 0.001 0.001
Total 10.47 4.5 8.75 8.54 11.11 24 36 28 30 33 32 18 23 53 55 473.8 0.177 3.57 0.909 0.893
Average 1.16 0.9 2.19 0.95 1.23 2.67 7.2 7 3.33 3.67 3.56 3.6 5.75 5.89 6.11 52.64 0.035 0.89 0.101 0.099

Table 4: Complete resource overheads of solutions in Exp#2 and Exp#3.

Telemetry Accuracy
Applications Precision Recall ARE

Marple | Sonata | EM | AutoSketch-1 | AutoSketch-2
New TCP Conns. 1.0 0.98 - 0.995 0.998 1.0 0.74 - 1.0 1.0 - - - - -
TCP Incomplete Flows 1.0 0.93 - 0.95 0.994 1.0 0.75 - 0.993 1.0 - - - - -
DDoS 1.0 0.92 - 0.976 0.996 1.0 0.34 - 0.996 0.996 - - - - -
Port Scan 1.0 0.93 - 0.956 0.981 1.0 0.41 - 0.982 1.0 - - - - -
SSH Brute Force 1.0 1.0 - 1.0 1.0 1.0 1.0 - 1.0 1.0 - - - - -
TCP non-monotonic 1.0 - 0.25 0.96 0.992 1.0 - 0.996 0.996 0.996 0.0 - 1.86 0.025 0.006
TCP out-of-sequence 1.0 - 0.37 0.98 0.99 1.0 - 0.99 0.998 0.999 0.0 - 1.39 0.016 0.005
TCP timeouts 1.0 - 0.66 0.95 0.95 1.0 - 0.62 0.972 0.972 0.0 - 0.38 0.028 0.028
SYN Flood 1.0 - 0.17 1.0 1.0 1.0 - 1.0 1.0 1.0 - - - - -

Table 5: Complete accuracy of solutions in Exp#4.

Solutions Accuracy Intent 1 Accuracy Intent 2
Memory (MB) Stage ALU Precision Recall RE Memory (MB) Stage ALU Precision Recall RE

HashPipe 0.563 9 16 0.99 0.195 - 0.63 12 18 0.989 0.464 -
MV-Sketch 0.375 6 12 0.958 0.995 - 0.63 8 20 0.989 1.0 -
FlowRadar-HH 5.91 11 24 0.989 0.903 - 5.91 11 24 0.989 0.903 -
OpenSketch-HH 0.578 7 8 0.976 1.0 - 0.95 8 8 0.986 1.0 -
AutoSketch-HH 0.14 3 3 0.98 0.999 - 0.27 3 3 0.997 1.0 -
SpreadSketch 0.375 6 6 0.972 0.659 - 0.63 7 10 0.99 0.695 -
Vector Bloom Filter 2.58 12 5 0.973 0.66 - 2.58 12 5 0.973 0.66 -
FlowRadar-SS 5.91 11 24 1.0 0.991 - 5.91 11 24 1.0 0.991 -
OpenSketch-SS 1.2 10 8 0.941 0.748 - 1.75 10 8 0.976 0.728 -
AutoSketch-SS 0.375 3 4 0.975 0.978 - 1.0 3 6 0.983 1.0 -
FM-Sketch 0.031 4 1 - - 0.044 0.046 4 1 - - 0.006
Linear Counting 0.031 1 1 - - 0.017 0.031 1 1 - - 0.004
FlowRadar-CD 5.91 11 24 - - 0.011 5.91 11 24 - - 0.011
OpenSketch-CD 0.031 1 1 - - 0.017 0.031 1 1 - - 0.004
AutoSketch-CD 0.25 2 2 - - 0.011 0.19 2 3 - - 0.009

Table 6: Complete experiment results of solutions in Exp#6 and Exp#7.

1570    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Appendix K Telemetry Applications

We show the function of each application in Table 7 and how
to realize these twelve telemetry applications.

# Application Description

1 New TCP Connections Count the number of newly opened
TCP connections exceeds threshold.

2 TCP Incomplete Flows Count the number of incomplete TCP
connections exceeds threshold.

3 Port Scan Detect the end-hosts that send traffic
over more than threshold destination
ports.

4 DDoS Detect the end-hosts that receive traf-
fic from more than threshold unique
sources.

5 TCP timeouts Count the number of timeouts for
each TCP connection, by checking for
packet inter-arrival times around 300
ms (retransmission timer).

6 TCP non-monotonic Count the number of packets per con-
nection with sequence numbers lower
than the maximum so far.

7 TCP out-of-sequence Count the number of packets per con-
nection arriving with a sequence num-
ber that is non-consecutive with the
last packet.

8 Superspreader Detect the end-hosts that contact more
than threshold unique destinations.

9 Cardinality Count the number of flows in the net-
work.

10 Heavy Hitter Identify large flows that consume more
than threshold during a time interval.

11 SYN Flood Detect the end-hosts whose half-open
TCP connections exceeds threshold.

Table 7: Description of telemetry applications.

1 n_syn[precision_min=95%,recall_min=95%,confidence
=95%] = PacketStream()

2 .filter(ipv4.protocol==TCP)
3 .filter(tcp.flags==SYN)
4 .map((ipv4.dstIP , count), count=1)
5 .reduce((ipv4.dstIP), val=count)
6 .filter(count >=Thld)
7 .distinct((ipv4.dstIP))

Application 1: New TCP Connections

1 n_fin = PacketStream()
2 .filter(ipv4.protocol==TCP)
3 .filter(tcp.flags==FIN)
4 .map((ipv4.srcIP , fin_cnt), fin_cnt=1)
5 .reduce((ipv4.srcIP), val=fin_cnt)
6
7 diff[precision_min=95%,recall_min=95%,confidence

=95%] = PacketStream()
8 .filter(ipv4.protocol==TCP)
9 .filter(tcp.flags==SYN)

10 .map((ipv4.dstIP , syn_cnt), syn_cnt=1)
11 .reduce((ipv4.dstIP), val=syn_cnt)
12 .zip(stream=n_fin , (ipv4.srcIP))
13 .map((ipv4.dstIP , diff), diff=syn_cnt -fin_cnt)
14 .filter(diff >=Thld)
15 .distinct((ipv4.dstIP))

Application 2: TCP Incomplete Flows

1 port_scan[precision_min=95%,recall_min=95%,
confidence =95%] = PacketStream()

2 .distinct((ipv4.srcIP , tcp.dport))
3 .map((ipv4.srcIP , count), count=1)
4 .reduce((ipv4.srcIP), val=count)
5 .filter(count >=Thld)
6 .distinct((ipv4.srcIP))

Application 3: Port Scan

1 ddos[precision_min=95%,recall_min=95%,confidence
=95%] = PacketStream()

2 .distinct((ipv4.dstIP , ipv4.srcIP))
3 .map((ipv4.dstIP , count), count=1)
4 .reduce((ipv4.dstIP), val=count)
5 .filter(count >=Thld)
6 .distinct((ipv4.dstIP))

Application 4: DDoS

1 def to(tin):
2 if tin - last_ts > Thld:
3 to_count += 1
4 last_ts = tin
5 timeout[precision_min=95%,recall_min=95%,ARE_max

=3%,confidence =95%] = PacketStream()
6 .filter(ipv4.protocol==TCP)
7 .groupby({5tuple:(last_ts , to_count)}, to))

Application 5: TCP timeouts

1 def nonmt(tcp.seq):
2 if maxseq < tcp.seq:
3 maxseq = tcp.seq
4 else:
5 nm_count += 1
6 nm[precision_min=95%,recall_min=95%,ARE_max=3%,

confidence =95%] = PacketStream()
7 .filter(ipv4.protocol==TCP)
8 .groupby({5tuple:(maxseq , nm_count)}, nonmt)

Application 6: TCP non-monotonic detection
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1 def oos(tcp.seq , payload_len):
2 if lastseq != tcp.seq:
3 oos_count += 1
4 lastseq = tcp.seq + payload_len
5 tcp_oos[precision_min=95%,recall_min=95%,ARE_max

=3%,confidence =95%] = PacketStream()
6 .filter(ipv4.protocol==TCP)
7 .groupby({5tuple:(lastseq , oos_count)}, oos)

Application 7: TCP out-of-sequence detection

1 super_spreader[precision_min=95%,recall_min=95%,
confidence =95%] = PacketStream()

2 .distinct((ipv4.dstIP , ipv4.srcIP))
3 .map((ipv4.srcIP , count), count=1)
4 .reduce((ipv4.srcIP), val=count)
5 .filter(count >=Thld)
6 .distinct((ipv4.srcIP))

Application 8: Superspreader

1 cardinality[ARE_max=3%,confidence =95%] =
PacketStream()

2 .distinct((5tuple))
3 .map((5tuple , count), count=1)
4 .reduce((), val=count)

Application 9: Cardinality

1 heavyhitter[precision_min=95%,recall_min=95%,
confidence =95%] = PacketStream()

2 .map((5tuple , count),count=ipv4.totalLen)
3 .reduce((5tuple), val=count)
4 .filter(count >=Thld)
5 .distinct((5tuple))

Application 10: Heavy Hitter

1 def remap_key(tcp.flag):
2 if tcp.flag == SYNACK:
3 nkey = ipv4.srcIP
4 else:
5 nkey = ipv4.dstIP
6 return nkey
7 def sf(tcp.flag , tcp.seq, tcp.ack):
8 if tcp.flag == SYNACK:
9 nextseq = tcp.seq + 1

10 cnt += 1
11 else if nextseq == tcp.ack
12 cnt -= 1
13 return cnt
14 syn_flood[precision_min=95%,recall_min=95%,

confidence =95%] = PacketStream()
15 .filter(ipv4.protocol==TCP)
16 .filter(tcp.flags contains ACK)
17 .groupby(null , remap_key)
18 .groupby({nkey:(nextseq , cnt)}, sf)
19 .filter(cnt > Thld)
20 .distinct((nkey))

Application 11: SYN Flood
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