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Abstract
Public clouds typically adopt (1) multi-tenancy to increase

server utilization; (2) virtualization to provide isolation be-

tween different tenants; (3) oversubscription of resources to

further increase resource efficiency. However, prior work all

focuses on optimizing one or two elements, and fails to con-

siderately bring QoS-aware multi-tenancy, virtualization and

resource oversubscription together.

We find three challenges when the three elements coexist.

First, the double scheduling symptoms are 10× worse with

latency-critical (LC) workloads which are comprised of nu-

merous sub-millisecond tasks and are significantly different

from conventional batch applications. Second, inner-VM re-

source contention also exists between threads of the same

VM when running LC applications, calling for inner-VM core

isolation. Third, no application-level performance metrics can

be obtained by the host to guide resource management in

realistic public clouds.

To address these challenges, we propose a QoS-aware core

manager dubbed UFO to specifically support co-location of

multiple LC workloads in virtualized and oversubscribed

public cloud environments. UFO solves the three above-

mentioned challenges, by (1) coordinating the guest and host

CPU cores (vCPU-pCPU coordination), and (2) doing fine-

grained inner-VM resource isolation, to push core manage-

ment in realistic public clouds to the extreme. Compared with

the state-of-the-art core manager, it saves up to 50% (aver-

age of 22%) of physical cores under the same co-location

scenario.

1 Introduction

Motivation. Most cloud data centers operate at very low

resource utilization[25, 26, 29, 44]. Other than users over-

provisioning their resources [19, 26, 46], resource is espe-

cially underutilized in public clouds due to two additional rea-

sons. First, most cloud providers, if not all, provide monthly or

yearly subscriptions, which are much cheaper than on-demand

pricing[1, 3, 15]. Most users therefore almost never release

their resources even when their virtual machines (VMs) are

completely idle. Second, there is no explicit label such as on-

line/offline, or high-/low-priority workloads for users’ VMs.

*Equal contribution.

This forms the black-box nature of public clouds: co-located

VMs on the same host machine are equally important, similar

to the co-location of multiple LC workloads studied in re-

cent years[22, 48, 51]. This leads to generally lower resource

utilization of public clouds than private clouds.

Resource isolation leverages software and hardware mech-

anisms to partition resources between co-located workloads,

and to increase the degree of workload co-location without

hurting application’s quality of service (QoS)[23, 37, 38]. Re-

source isolation is especially important for interactive LC

workloads such as web search and key-value stores[22, 26,

51]. However, when attempting to apply resource isolation

in real public clouds, we find that the state-of-the-art QoS-

aware resource managers are (1) sub-optimal due to lack of

consideration of the virtualization layer and resource over-

provisioning, and (2) inapplicable to public clouds due to lack

of labels, inputs, or feedback for dynamic resource manage-

ment.

Challenge 1. In virtualized environments, there are two layers

of resource management: one in the host OS (e.g., scheduling

physical CPU cores, pCPUs, for VMs), and another in the

guest OS (e.g., scheduling virtual CPU cores, vCPUs, for

users’ applications). This is a common problem known as

double scheduling, and prior work[36, 41, 55, 58, 62] has

proposed co-scheduling or guest-host coordination to improve

locks, interrupts, synchronization, preemption, load balancing,

etc.

However, we find previous studies are ineffective for LC ap-

plications that suffer uniquely from double scheduling. Specif-

ically, if the guest OS is oblivious of the allocated resources

on the host, the host OS (rather than guest OS) would expe-

rience extensive context switches and high scheduling delay,

leading to substantial QoS violations. This is intrinsically

related to the sub-millisecond nature of tasks in LC applica-

tions. In addition, resource contention also happens between

thread groups that belong to the same VM. Such inner-VM

contention is especially intense under LC applications.

Challenge 2. Prior work relies on application-level input

(such as real-time 99th percentile latency) to guide QoS-aware

resource management [22, 23, 43, 44]. This makes two as-

sumptions that do not hold for realistic public clouds. The

first assumption is that an application has to monitor its own

latency. In reality, many applications do not trace their own
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latency, and it is impossible to ask users to provide tracing

points to probe their user-level QoS satisfaction degree. The

second assumption is that the monitored value can be lever-

aged by the host OS. This requires interfaces for users to

communicate with the cloud provider, to pass application-

level information down to components outside the user’s VM.

Opportunities. Major cloud providers all provide their own

guest OS images [2, 4]. With Cent OS Linux reaching its

end of life[5], an increasing number of users are migrating

to in-house guest OS images. This leads to a great opportu-

nity for cloud providers to explore guest-host coordination

in guest/host kernels, to tackle the two challenges above. By

transmitting host’s core isolation decision to the guest OS and

adjusting core management in the guest accordingly, we ob-

serve up to 4.3× throughput improvement under QoS require-

ments for LC workloads. By leveraging guest’s scheduling

frequency as a VM’s performance indicator, the host OS is

able to make QoS-aware core allocation decisions without

disturbing users’ applications inside the VMs. Furthermore,

we observe that core isolation between different thread groups

of the same VM leads to an additional 20% of improvement

under the same amount of hardware.

Our work. In this paper, we propose UFO, a practical QoS-

aware resource manager that targets virtualized public cloud

environments, and push core isolation to the next level. Lever-

aging guest-host coordination, it solves the above-mentioned

two challenges that prior work fails or misses to address, and

aims to accommodate as many VMs as possible without QoS

violations. We make the following contributions:

1. We find that the state-of-the-art QoS-aware core managers

neglected the virtualization layer, and made unrealistic as-

sumptions of the interactions between users and the cloud

platform. Therefore, they are sub-optimal and inapplicable

for virtualized public clouds.

2. We present a comprehensive characterization study to

showcase how guest-host coordination and inner-VM isola-

tion can greatly improve resource efficiency in virtualized

environments in a black-box manner.

3. We devise UFO, a practical QoS-aware core manager for

virtualized and oversubscribed public clouds. UFO does

not require user-level QoS input, and instead leverages

scheduling frequency from the guest OS as QoS indica-

tors; this makes UFO applicable for public clouds. UFO

dynamically adjusts core allocations for each VM on the

host and the guest OS concurrently; this makes UFO con-

siderate for virtualization overhead, especially when cores

are oversubscribed. Furthermore, UFO dynamically man-

ages an emulator pool to avoid core contention between

emulator and vCPU threads.

4. We evaluate UFO under constant and dynamic loads, and

show that UFO outperforms prior work by up to 50% (av-

erage of 22%) in core saving under the same co-location

scenario, and up to 60% (average of 27%) higher input load

Figure 1: Double scheduling in a typical cloud server. The host OS

schedules VMs’ vCPU threads to physical cores (pCPUs), while the

guest OS of each VM schedules users’ application threads to vCPUs.

under the same amount of cores, with negligible overhead.

2 Background and Related Work

2.1 QoS-Aware Resource Management

There are mainly two types of workloads in the public cloud.

Latency-critical (LC) workloads have strict quality-of-service

(QoS) requirements, usually defined in tail latency. Best-effort

(BE) applications are typically throughput-oriented, and are

at lower priority than LC applications. QoS-aware resource

management refers to techniques that can co-locate various

workloads on the same server node [26, 45] while meeting LC

workloads’ QoS requirement; BE applications can be slowed

down or even suspended when needed. Recent work is able

to co-locate multiple LC applications on the same node while

meeting each LC application’s QoS target [22, 43, 48, 51].

However, previous studies have two drawbacks. First, they

all rely on application-level performance metrics to guide

QoS-aware resource management, and claim this could be

achieved by monitoring on the client side, or relying on the

application itself to report latency[22, 43]. In public clouds,

there is no explicit QoS target defined for LC workloads,

and it is impossible to ask users to provide tracing points to

probe their user-level QoS satisfaction degree. Instead, cloud

providers should find server-side indicators that generally

correlate well with QoS, and the cloud providers can legally

obtain the indicators without user intervention. A series of

work like Arachne [53], Shinjuku [34] and Caladan [28] aim

to provide sub-millisecond QoS satisfaction. However, they

all rely on deep coordination with users’ applications and

make intrusive modifications to applications or their runtime

libraries. Second, the virtualization overhead is significantly

overlooked under (most if not) all QoS-aware resource man-

agers.

2.2 Virtualization and Double Scheduling

In public cloud, virtualization is prevalent to ensure user pri-

vacy and security. Virtual machines and hosts interact through

the hypervisor, and are independent and unaware of each other.

Figure 1 shows the current software stack in a typical public

cloud. The host OS scheduler schedules the logical CPUs
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(vCPUs) of many virtual machines on the physical CPUs

(pCPUs) of a server. The users’ applications are scheduled

by a task-level scheduler (Guest OS scheduler) of VMs, and

most operations within the virtual machines are opaque to

the hypervisor. Due to the use of multi-core processors and

multi-threaded applications, this mutually unaware double-

scheduling [57] introduces a semantic gap between hosts

and VMs, which leads to problems including lock-holder pre-

emption (LHP) [35, 59], lock-waiter preemption (LWP) [59],

blocked-waiter wakeup (BWW) [27], etc. There are two types

of solutions to resolve the double scheduling symptom.

2.2.1 Pure-host Solutions

These solutions modify the hypervisor and the host OS to

reduce the overhead of virtualization and double scheduling.

Adjusting scheduling priority on the host OS is one of the

most common approaches, to alleviate LHP and LWP [27, 33],

achieve fairness between VMs or load balancing [40, 63], and

reduce CPU fragmentation [52, 54]. Advanced hardware sup-

ports, such as Intel’s Pause Loop Exit (PLE) [41, 56] and

AMD’s Pause Filter (PF) [47], are also leveraged by the hy-

pervisor and the host OS to detect excessive spinning in the

guest OS, to address various preemption problems.

2.2.2 Guest-Host Coordination

These solutions bridge the semantic gap by coordinating the

guest and the host OSes, and involves modifications to both

the guest and the host OSes.

vCPU ballooning [24, 57] is one of the pioneer works in

this line. It leverages CPU hot-(un)plugging to make #vCPUs

match #pCPUs, so it completely avoids the double scheduling

symptoms. The core allocation is static based on VM priority,

making vCPU ballooning fail to adapt to varying load, and

fail to handle co-location of LC applications. UFO inherits the

same philosophy of vCPU ballooning, to make #vCPUs match

#pCPUs. However, UFO targets LC applications, and features

in finding the right metric, designing a proper algorithm and

an effective controller to support dynamic core adjustment.

eCS [18, 36] annotates critical sections in the guest OS so

that the host OS can adjust scheduling priority accordingly.

The host states are further transmitted to the guest OS allevi-

ating LWP and BWW problems. PLE-KVM [32] annotates

vCPU status in the guest OS, and adjusts vCPU scheduling in

the host OS, to mitigate excessive pause-loop-existing (PLE)

events and excessive spinning. Similar to vCPU ballooning,

eCS and PLE-KVM do not study LC workloads. But since

they are open-sourced, we are able to conduct a quantitative

comparison with eCS and PLE-KVM in Section 3.6.

3 Characterization

In this section, we characterize three typical LC cloud appli-

cations and compare them with BE applications. We illustrate

the limitations of current CPU core isolation mechanisms,

and show the potential of core management in virtualized and

oversubscribed public clouds.

3.1 Methodology

We launch four 8-vCPU VMs on a 16-core host, i.e., 32 vC-

PUs on 16 pCPUs. This simulates an oversubscription ratio of

two.1 We enable hyper-threading because real public clouds

always enable it, so a pCPU is essentially a hyperthread of

a physical core. We avoid different VMs sharing the same

physical core. Therefore, an 8-vCPU VM can be allocated

on 2, 4, 6 or 8 pCPUs. We mainly experiment with three LC

applications, Memcached, NGINX, and MySQL. Section 5

includes more details on the evaluated applications, the test

bed, and the testing strategy. For simplicity, we run the same

workloads in the four VMs such that all the VMs perform

homogeneously. This makes core allocation decisions trivial:

all the VMs should be allocated with the same number of

cores. This allows us to focus on observing the performance

differences under various core allocation mechanisms. For

each LC application, we experiment with increasing amount

of load measured in request-per-second (RPS). Each RPS is

tested three times, each lasting for 60s. The geometric mean

of the 99th percentile of latency of the four VMs is reported

after each test. We then report the average result of the three

tests for any given RPS.

3.2 Guest OS Should Coordinate with Host OS

Conventional approaches [22, 44, 51] manage core allocation

completely on the host OS. The guest OS is unaware of the

host OS; it does not know how many physical cores are ac-

tually allocated to the VM. We show that this is insufficient;

guest being aware of the host allocations can achieve much

higher resource efficiency.

We compare three core allocation mechanisms:

• Default: We rely on the scheduling policy of OS to sched-

ule VMs. All the VMs share the same 16 pCPUs, and can

be freely scheduled on these pCPUs.

• Isolation: We isolate the four VMs, each assigned four

pCPUs on the host.

• Host-Aware Isolation: On top of Isolation, the guest OS

is aware that the VM is allocated with only four pCPUs ,

and schedules jobs to only four vCPUs. We implement this

by statically hot-unplugging four vCPUs in the guest OS.

Figure 2 shows how VMs perform when running different

workloads under the three mechanisms. We find that under

QoS targets (horizontal dotted lines in Figure 2), isolation

achieves up to 33% (average of 18%) higher load than default,

and host-aware isolation furthers increases the maximum load

under QoS by up to 25%-125% than isolation. This is because

under host-aware isolation:

• Host-side context switches are reduced by 92%. Fig-

ure 3a shows the number of context switches per second

(i.e., scheduling frequency) happening in the guest and the

host OS. Memcached, NGINX and MySQL run at RPS of

1 Higher oversubscription ratio usually signals higher resource efficiency,

e.g., VMware suggests an oversubscription ratio of at least three [10].
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Figure 3: Scheduling frequency and scheduling delay under default

(D), isolation (I), and host-aware isolation (H), decomposed into

host-side (blue bars) and guest-side (orange bars).

60k, 50k and 20k, respectively, which are the maximum

RPS under QoS with the default core manager (see the

cross points of gray curves and the horizontal dotted lines

in Figure 2a). Because host-aware isolation ensures #vC-

PUs=#pCPUs, the host OS rarely needs to schedule vCPU

threads off a physical core. Note that users’ applications

are unchanged and the number of application threads does

not decrease with fewer vCPUs, so context switches in

the guest OS are not reduced. Since a context switch of a

vCPU thread on the host involves additional switches of

the VMCS structure [55, 60], which is more expensive than

a normal context switch of an application thread, we can

obtain huge benefits from the reduction of only host-side

context switches in virtualized environments.

• Host-side scheduling delay is reduced by 99%. Schedul-

ing delay of a process is defined by the time between the

process wake-up and its actual running.2 Figure 3b shows

scheduling delay on the host and the guest. As a conse-

quence of reduced context switches, host-side scheduling

delay decreases to almost 0 under host-aware isolation.

Reduced scheduling delay is critical for LC applications

because scheduling delay significantly affects requests’ la-

tency. When a request comes in, the application threads

inside the guest OS are woken up, leading to schedule

2 We obtain scheduling delay of the guest/host OS by executing perf sched

record and then perf sched timehist, and reporting the sum of schedul-

ing delay of all the processes.

2pCPU 4pCPU 6pCPU 8pCPU

Figure 4: Memcached with increasing input load under various

#pCPUs. The top left figure shows Memcached’s tail latency, and

the horizontal line at y = 0.5ms represents the QoS target. The other

three figures show guest-side process runtime, scheduling frequency,

and runtime per schedule (division of the previous two metrics).

events on the guest OS, which may further lead to schedule

events on the host. Scheduling delay inside and outside the

VM both affect the degree of QoS satisfaction.

Appendix A.1 and A.2 include additional analysis on VM

exits and caches. In summary, for LC applications, the guest

should be aware of the actual physical core allocations on the

host, and dynamically adjust the number of runnable vCPUs.

3.3 Host OS Should Learn from Guest OS

In public clouds, VMs are black-box to the cloud provider,

and application-level performance metrics are hard to obtain.

It is therefore difficult to use application-level metrics as

indicators to guide resource management under a QoS target

in public cloud. This has been an open question in industry

for a long time. We successfully solve the open question by

identifying a set of great indicators from the guest OS.

• Guest-side scheduling frequency is a concave function

with input load. As the bottom left subfigure in Figure 4

shows, under a certain #pCPUs, guest-side scheduling fre-
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Figure 7: CPU utilization of vCPU and emulator threads. BE applications barely use emulator threads.

quency first increases and then decreases along with input

load increasing. This is because at low input load (i.e., few

requests per second), request inter-arrival time is longer

than request processing time, meaning that the application

is idle in between requests. As input load increases to a cer-

tain extent, new requests come when the processing for old

requests has not been finished, and the application threads

are active for longer to process consecutive requests. This

leads to longer runtime per schedule and fewer context

switches. The right two figures in Figure 4 show the total

runtime, and the average runtime per schedule, i.e., we di-

vide the total runtime by scheduling count. We see the total

time scales linearly with input load. In contrast, the runtime

curve per schedule is flat at the beginning, and increases

super-linearly after a certain threshold.

• Guest-side scheduling frequency is a great indicator of

application’s tail latency. Comparing the left two fig-

ures in Figure 4, we find that the peak point of each curve

of scheduling frequency is also the point where applica-

tion’s tail latency starts to increase super linearly with input

load. This is because the peak point implies that requests’

queuing delay starts to accumulate, which will lead to in-

creased tail latency. Meeting QoS in public clouds essen-

tially means avoiding queuing delay to grow exponentially.

This means that we should try staying to the left, or around

the peak point of the scheduling frequency curve, and avoid

deviating too much to the right of the peak point.

• Guest-side scheduling frequency can help guide QoS-

aware core management decisions on the host OS. As

Figure 4 shows, when RPS is less than 100k, 2 pCPUs are

sufficient to meet QoS. We find that scheduling frequencies

under various #pCPUs all overlap. When RPS increases to

100k, 4 pCPUs are needed. Guest-side scheduling frequen-

cies under 2 and 4 pCPUs have a 40% difference, while

the difference between 4 and 6 pCPUs is only 5%. This

motivates us to compare scheduling frequencies between

adjacent pCPU counts to obtain the best core allocation.

We show the generality of the findings above to more LC

applications in Appendix A.3. It shows that by comparing

guest-side scheduling frequencies between adjacent pCPU

counts, we can find the best core management decisions.

3.4 A Single VM Needs Core Isolation Too

A QEMU-KVM process has two main thread groups, vCPU

and emulator threads [31]. Emulator threads are responsi-

ble for handling interrupt requests for VM hardware emula-

tion [17]. We find the two thread groups have different core

demands, and interfere with each other when sharing cores.

Figure 5 shows how each application in a VM performs

when its vCPU and emulator threads (1) share the 8 pCPUs

(Shared), or (2) partition the 8 pCPUs into 6 and 2 cores

(Isolated), and adopt host-aware isolation in the vCPU core

group. We find that:

• Compared with Shared, Isolated achieves 15%-50% higher

RPS under the same core count while meeting QoS.

• Emulator threads of LC applications are quite active. Fig-

ure 7 shows that CPU utilization of emulator threads is

15%-50% of that of vCPU threads. This is because LC

applications are naturally networked applications; requests

and responses are all transmitted through network, and

part of these network operations are handled by emulator

threads. Since request processing time is at the scale of

tens of microseconds to a few milliseconds, the network

interrupt processing time is a non-negligible part of the

end-to-end request latency of LC applications.

• CPU utilization of both vCPU and emulator threads in-

crease linearly with input load.
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The observations suggest that (1) CPU utilization of either

vCPU or emulator threads is a great indicator of application’s

input load, and (2) core allocation of both vCPU and emulator

threads should be dynamically adjusted based on input load.

3.5 How about BE applications?

We have clarified three needs for LC applications: (1) host-

aware isolation, (2) monitoring of guest-side scheduling fre-

quency, and (3) isolation between vCPU and emulator threads.

However, the three techniques are not necessary for BE appli-

cations. In this section, we reveal the fundamental differences

between LC and BE applications that lead to the differences

in the effectiveness of the three techniques.

We experiment with 12 BE applications from the PAR-

SEC benchmark suite [21] (each benchmark is abbreviated

by its first five characters), and 99 queries from TPC-DS [16]

deployed in Spark [20]. The spark cluster consists of three

8-vCPU VMs, one master VM and two slave VMs. We report

the total execution time of all the 99 queries in Figure 2b, and

the average statistics of the three VMs in Figure 6 and 7b.

First, LC applications are fundamentally different from BE

applications in that LC applications are comprised of a num-

ber of short requests. Request latency of LC applications is

at sub-millisecond to millisecond granularity (Figure 2a). A

thread only runs for tens of microseconds before being sched-

uled out (Figure 4). On the contrary, BE applications typically

consist of fewer and longer tasks. When scheduled, a thread

runs for the entire timeslice before being scheduled out. This

difference is reflected in context switches that have orders of

magnitude difference (Figure 6). Section 3.2 shows that host-

aware isolation mainly reduces host-side context switches,

which consequently reduces host-side scheduling delay and

HLT VM exit handled time. Since BE applications do not

suffer from host-side context switches like LC ones, they do

not benefit much from host-aware isolation. Figure 2b shows

that host-aware isolation reduces execution time by merely

0.7% on average compared with the default core manager.

Spark achieves the most reduction (i.e., 7%) because of its

relatively higher host-side scheduling frequency (Figure 6).

Second, BE applications have almost no usage of the emu-

lator threads. As shown in Figure 7b, for BE applications, the

average CPU utilization of emulator threads is less than 1%.

Utilization of each query in Spark is detailed in Appendix A.4.

As a result, it is not necessary to separate vCPU and emulator

threads for BE applications.

3.6 Comparison with Prior Work

Section 2.2.2 mentioned that prior work on guest-host coordi-

nation evaluates only BE workloads. We study the effective-

ness of PLE-KVM [32] and eCS [36] in Figure 2, and find

that they indeed perform well for BE applications. PLE-KVM

and eCS reduce execution time by up to 30% and 42% (av-

erage of 5% and 12%), respectively. However, they behave

similarly as the default mechanism for LC applications, and

significantly under-perform host-aware isolation. This is be-

cause PLE-KVM and eCS do not attempt to reduce host-side

context-switches or scheduling delay, a severe issue when

running LC applications. Also, we find that when prioritizing

certain vCPU thread, PLE-KVM and eCS sometimes intro-

duce significant unfairness between vCPUs and VMs.

3.7 Summary

In summary, we make the following key observations:

• Partitioning cores on the host OS is insufficient. The guest

OS should be aware of the core allocation decision made

by the host, and adjust core management in the guest OS

as well such that the number of usable vCPU count is no

more than the allocated pCPU count for the VM.

• Partitioning resources between different VMs is insuffi-

cient. Threads belonging to the same VM contend for re-

sources as well; vCPU and emulator threads should be

isolated within the same VM as well.

• Without application-level performance metrics, the guest

OS can still provide useful hints like scheduling frequency

and scheduling delay to guide core management on the

host (and the guest), meeting application-level QoS targets.

• Prior work considers only BE applications, and fails to

unlock the full potential of guest-coordination for LC ap-

plications.

4 UFO Design

UFO is a feedback-based controller that dynamically man-

ages core allocation for virtualized public clouds, aiming to

accommodate more VMs on a single host without violating

applications’ QoS. In this section, we describe UFO in detail.

4.1 Design Principles

UFO is designed with three design principles in mind:

• Prioritize for LC applications: Our primary goal is to

meet QoS for LC applications. In public clouds, there is no

user-specified QoS target. So our goal is to avoid LC appli-

cations suffering from extensive queuing delay. Since prior

works on guest-host coordination all focus on conventional

throughput-oriented batch jobs [32, 36, 57], UFO focuses

on LC applications. It simply lets all BE applications share

the idle pool, and does not explicitly handle core allocation

for each BE application.

• Optimize for virtualized and oversubscribed environ-

ments: Virtualization and oversubscription are ubiquitous

in public clouds. This means that double scheduling always

exists, and VMs usually do not get as many physical cores

as their vCPU size. We tackle the challenges brought by vir-

tualization and oversubscription by guest-host coordination

and vCPU-emulator isolation.

• Focus on core management: Despite many other shared

hardware resources, UFO is currently designed for only
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Algorithm 1: UFO’s main function.

while TRUE do

monitor for 1s;

// Adjust the emulator pool first.

if emuUtil <50% then
remove cores from the emulator pool as long as

emuUtil is under 70%;

else

if emuUtil >70% then
assign more cores to the emulator pool to make

emuUtil under 50%;

continue;

// Adjust the vCPU pool for each VM

for i = 1..N do

// Record the sample; fit model upon sufficient

samples; adjust model upon inaccuracy detection

updateModel(i, pCPU[i], cpuUtil[i], schedFreq[i]);

// Find the best core count

p = predict(i, pCPU[i], cpuUtil[i]);

if p 6= pCPU[i] then

// Adjust core allocations on the guest& host

modify(i, p);

sleep 3s;

pCPU[i] = p;

core management. This is because other resources such

as last-level cache and memory bandwidth do not require

special treatment in virtualized and oversubscribed envi-

ronments, and there are many prior work that specifically

targets management of these resources [38, 50, 61, 64].

4.2 Resource Pool

UFO splits all the physical cores on each host into three pools:

• vCPU Pool consists of N core groups for N running VMs,

and one group is assigned for one VM’s vCPU threads. For

VM i, UFO dynamically expands or shrinks its pCPU cores

(pCPU [i]) based on UFO’s core predictor (Section 4.5).

• Emulator Pool consists of cores allocated for running

VMs’ emulator threads. All the VMs share the emulator

pool. The emulator pool dynamically expands or shrinks

based on its CPU utilization (Section 4.3).

• Idle Pool consists of all the leftover cores on the host. It

provides the source of free cores. An increasingly larger

idle pool signals capability to host more VMs, while a

shrinking pool signals system overload (Section B.4). The

vCPU and emulator pools interact with the idle pool con-

stantly. We introduce how cores flow between pools below.

Note that idle VMs (i.e., vCPU utilization is consistently

below 1%) are also placed in the Idle Pool. When UFO

detects an increase in vCPU utilization, it will move the

active VM to the vCPU pool.

4.3 UFO Controller

As shown in Algorithm 1, UFO consists of three stages:

1. Monitor: UFO monitors the CPU utilization of the em-

ulator pool on the host OS, and the CPU utilization and

scheduling frequency on each guest OS every second.

2. Adjust the emulator pool: UFO always makes sure the

emulator pool is large enough to satisfy the need of emula-

tor threads. This is achieved by keeping CPU utilization of

the emulator pool under 70%. Upon detection of low uti-

lization (i.e., emuUtil < 50%) of the emulator pool, more

cores will be moved from the emulator pool to the idle

pool. The thresholds can all be adjusted based on practical

needs. UFO checks and adjusts the emulator pool before

the vCPU pool. This is because the resource demand of

emulator threads is only a fraction of the demand of vCPU

threads. However, if emulator threads do not get enough

cores, vCPU threads will have to be assigned more cores to

meet application’s performance target (Section 3.4), lead-

ing to lower resource efficiency.

3. Adjust the vCPU pool: Figure 8 shows the system com-

ponents for vCPU adjustment in UFO. CPU utilization

and scheduling frequency are continuously monitored in-

side each guest OS, and are fed to the collector in the

host OS. The collector in the host OS is responsible for

collecting data samples and fitting models upon enough

samples (updateModel(), Section 4.4, detailed algorithm

in Appendix B.1). Then, UFO calculates the best core allo-

cation through the core predictor (predict(), Section 4.5,

detailed algorithm in Appendix B.2). If differing from the

current core allocation, UFO will adjust core allocations

through the enforcer components on the host and the guest

OS (modi f y(), Section 4.6).

UFO is monitored and scheduled at a fine-grained level of

seconds. Refer to Appendix B.3 for more details.

4.4 Modeling of Scheduling Frequency

As discussed in Section 3.3, guest-side scheduling frequency

is a great indicator of application’s QoS level, and can be

used to guide core management decisions. However, it is

impractical to obtain the entire curve of scheduling frequency

under any input load and any pCPU count. Therefore, UFO

leverages VM’s CPU utilization as a proxy of application’s

input load, and builds a model to predict guest-side scheduling

frequency under any CPU utilization given a number of (guest-

side CPU utilization, guest-side scheduling frequency) pairs.

Figure 10a shows an example of the fitted curves of

Nginx’s guest-side scheduling delay under eight pCPUs.

We find quadratic function fits the bests, represented by

f (u) = Au2 + Bu +C where u is CPU utilization ranging

from [0,100 ∗ #pCPU ]. R2 [6] is a goodness-of-fit measure

for predictions. R2 closer to 1 represents higher accuracy.

The collector in the host OS continuously collects guest-

side scheduling frequency and CPU utilization. As each VM
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Figure 8: Guest-host coordination in UFO.

Monitored events from the guest OSes are

fed to the host OS for core prediction. Core

adjustment is enforced in the guest and host

at the same time.

(a) Initial stage. (b) Collection stage. (c) Fitting stage. (d) Full profile.

Figure 9: Four stages in UFO’s vCPU adjustment. (a) and (b) are early stages with few samples,

so UFO has to try various core counts. (c) starts model fitting as long as three samples are

accumulated for a certain core count. (d) obtains more samples under each core count, fitting more

curves and adjusting previous fittings. The best core count can be directly predicted in this stage.

(a) Good samples: R2 = 0.962 (b) Bad samples: R2 =−0.029

Figure 10: Fitted curves of Nginx’s guest-side scheduling delay

under eight pCPUs. All the samples are marked blue, while the

samples used for the fitting are marked red. Both fitted curves use

three samples. The left figure has samples spanning both low and

high CPU utilization, while the right figure is fitted with samples

only from high CPU utilization.
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Figure 11: Model accuracy (R2) of scheduling frequency with in-

creasing number of fitting points. Seven points are enough to reach

R2 > 0.95 in most cases.

runs, more samples under various core counts and various

CPU utilization are collected. For any given pCPU count,

when sufficient samples are collected (e.g., Figure 9c), the

curve of scheduling frequency with CPU utilization can be

fitted. Ideally, three points determine a quadratic function.

However, due to data instability, we find three may not be

enough generally. Figure 10 shows a good and a bad case us-

ing three fittings points. In Figure 10a, the three samples span

both sides of the concave function, and we can successfully

fit a model with R2 > 0.95. However, if the three samples all

fall into the same side of the curve as shown in Figure 10b,

the fitted model can be totally inaccurate. In general, more

samples lead to higher accuracy. Practically, we find eight

samples to be more than enough for a fitted model to achieve

R2 > 0.9, shown in Figure 11. Therefore, UFO maintains the

last eight samples under each core count for each VM.

For a given pCPU count, when three samples are recorded,

UFO starts fitting the model, though the model may be inac-

curate due to skewed samples. The inaccuracy will eventually

come to light as the VM continuously runs. Upon detection

of inaccuracy (i.e., the difference between the fitted value and

the true value is more than 5%), the model will be refitted

using the latest and more samples. Storing the latest eight

samples and refitting models upon detection of inaccuracy

allow UFO to adjust to workload churn inside the VM. For

instance, if a VM previously runs Memcached and later runs

Nginx, the models will all be updated with the latest samples.

4.5 Core Adjustment

The goal of UFO’s core predictor on the host OS is to find the

best core allocation for each VM. After the best core count is

predicted, the enforcer components on the host and the guest

OS will adjust pCPU count for the VM.

As discussed in Section 3.3, c pCPUs is the best core allo-

cation if and only if:

• Scheduling frequency (SF) does not increase much under

c+2 cores, i.e.,
SF [c+2]−SF [c]

SF [c+2] < x.

• Scheduling frequency drops significantly under c−2 cores,

i.e.,
SF [c]−SF [c−2]

SF [c] > x.

In this paper, we set the threshold x to 30%. Figure 4 shows

why. The vertical lines on the left pictures show the maxi-

mum RPS that each pCPU count can sustain while meeting

QoS, which are 98k/180k/260k under 2/4/6 pCPUs. The ver-

tical lines run through the figure of guest-side scheduling

frequency, such that we can compare scheduling frequency of

different #pCPUs under these input loads. We find the differ-

ence in scheduling frequency between 2&4/4&6/6&8 pCPUs

under 98k/180k/260k RPS is 30%/29%/27% (double-headed

arrows in Figure 4). Considering other applications (elabo-

rated in Appendix A.3), we find 30% to be a practically good

threshold that universally works for most LC applications.

In reality, UFO will go through four stages in the core pre-

dictor, shown in Figure 9. Initially, each VM is given #vCPU

pCPUs (8 in the example). Without any model fitting, UFO
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has to iteratively try fewer pCPUs, obtain and record SF, check

if SF decreases by more than 30%, and finally find the best

core count (2 in Figure 9a). When the input load increases

in Figure 9b, UFO has to iteratively try increasing #pCPUs

until SF increases by less than 30%, and reverts back to last

#pCPUs (2->4->6->4 in Figure 9b). To reduce these trials,

UFO adopts some heuristics based on CPU utilization when

models are not completely fitted, to keep per-core CPU utiliza-

tion (PCU) roughly within 40%-80%. Suppose current pCPU

count is p and current PCU is u. This means that UFO will

stop reducing cores if u∗ p
p−2

> 80%, and will stop increasing

cores if u∗ p
p+2

< 40%. As the VM runs, more samples are

collected, and UFO will start fitting curves when 3 samples

are accumulated under a certain pCPU count (Figure 9c), so

that UFO can directly infer SF under this pCPU count next

time. UFO fits more curves and continuously adjusts the fit-

ting with the latest samples. When the full profile is obtained

(Figure 9d), UFO can directly predict the best count without

any trial.

4.6 UFO Implementation

Sharing information between guests and the host. Simi-

lar to the kvm_steal_time implementation [14, 36], when

launching a new VM, the guest OS allocates a 32B read-write

memory segment that is shared between the guest and the

host OS. After the memory allocation, the guest OS sends

the memory address of the memory segment to the host OS

through a hypercall. The host OS handles the hypercall from

each guest OS, recording the memory address.

This segment consists of three 8B integers: two integers are

written by the guest-side kernel module, including the latest

guest-side CPU utilization and scheduling frequency; another

integer is written by the host-side kernel module, denoting

the number of pCPUs allocated for this VM.

Guest-side kernel module. A kernel module is installed on

each guest OS, recording the guest-side CPU utilization and

scheduling frequency to the shared memory every second. It

also monitors if #pCPUs in the shared memory changes. If

so, it will offline/online some vCPUs in the guest OS.

Host-side kernel module. A kernel module is also installed

on the host OS. It periodically does the following tasks: it

first reads all the guest-side CPU utilization and scheduling

frequency samples, and maintains the latest 8 samples under

each pCPU count for each VM. It then fits or adjusts the

model, and predicts the pCPU count for each VM. Finally, it

writes the prediction result to the shared memory, and adjusts

the core allocation of each VM on the host OS accordingly

by executing virsh vcpupin.

Host-side emulator management. There is another script

running continuously on the host OS. This script reads the

aggregate CPU utilization of emulator threads of all the VMs

every second, and adjusts the emulator pool using virsh

emulatorpin.
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Figure 12: Colocation of 2 Memcached VMs. Each cell represents

the minimum required #pCPUs to meet QoS when each Memcached

run at the fraction of their max loads indicated in the x and y axes. A

brown cell with cross mark represents unreachable load combination,

meaning that 16 #pCPUs are still insufficient to meat QoS target of

both Memcached instances.

5 Experimental Setup

5.1 Hardware Platform

Table 1 shows the specifications of our experimented platform.

Both Hyperthreading and turbo boost are enabled to emulate

real cloud setups. Since UFO is an intra-node manager, we

only experiment with one server node. Clients (i.e., load gen-

erators) run on another Intel Xeon machine, with a 10Gbps

network link to the server node.

5.2 Applications

We follow testing strategies from prior work [22] to set up

our applications, load generators, constant and dynamic load

experiments. Table 2 shows the details of our experimented

LC applications and the testing strategy. These applications

are widely used in industry, and cover different application

domains. All the load generators use the default exponential

inter-arrival time distributions to simulate a Poisson process,

where requests are independent with each other [42]. This

means that even under a given constant request-per-second,

requests are not generated uniformly. Load still fluctuates at

sub-second granularity as shown in Figure 20.

We set the QoS target of each application as the 99th per-

centile latency of the knee of the latency-with-RPS curve, as

marked in Figure 2a and Figure 5, and listed in Table 2 [22].

We define max load of each application (also listed in Table 2)

as the maximum RPS under the QoS target when 8 vCPUs

exclusively run on 8 pCPUs, without emulator interference

(emulator threads are allocated on another 8 pCPUs). Note

that this means the actual resource need to reach 100% of

max load under QoS is more than 8 pCPUs.

We sweep the input load in 10% increments from 10% to

100% of the max load, and record the number of total pCPUs

allocated while meeting QoS targets.

5.3 Baselines

We compare UFO with two baselines:

• Default: We rely on the OS to schedule VMs. For a given

colocation scenario, we increase the number of pCPUs until

all the colocated VMs meet QoS target. This is an ideal

version of the default manager. Default does not isolate

between vCPU and emulator threads.
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Table 1: Platform Specification

Model Intel Xeon Platinum 8378

Microarchitecture Icelake

Cores/Socket 32 (2 sockets in total)

Threads/Core 2

Hyperthreading Enabled

Turbo Boost Enabled

Virtualization Technology QEMU-KVM

Host and Guest Kernel 5.10

VM Size 8 vCPU, 16 GB memory

Table 2: Latency-critical applications.

Application Memcached [11] Nginx [13] MySQL [12]

Domain Key-value store Web server Database

QoS Target 0.5ms 2ms 15ms

Max Load under QoS 350k 120k 50k

Load Generator Mutated [7] wrk2 [9] sysbench [8]

Dataset
One million

<key,value> pairs

10,000 html files

of 4KB each

20 tables, each with one

million entries

Request Type
100% GET

requests
Get file content

OLTP transactions, each with

18 select and 2 update queries
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Figure 13: Colocation of 2 VMs. A+B means that V M1 and V M2 run application A and B, respectively. The y-axis represents the maximum

aggregated load that each core manager is able to sustain while meeting QoS of both VMs under a certain #pCPU.

• DynIso: Similar to the Isolation mechanism in Section 3.2,

this mechanism does core isolation of vCPU threads be-

tween VMs. Since the input load may vary with time, we

leverage the feedback-control loop like PARTIES [22] to

dynamically decide #pCPUs for each VM, by comparing

the application’s tail latency with the QoS target. It is an

ideal version of the Isolation mechanism. DynIso does not

isolate between vCPU and emulator threads.

6 Results and Analysis

In this section, we first evaluate UFO with constant load, and

then with dynamic load. We also decompose UFO into vCPU

management only and isolation of emulator threads, to show

the effectiveness of each component in UFO. Finally, we

quantify the overhead of UFO.

6.1 Constant Load

Figure 12 shows colocations of 2 VMs, both running Mem-

cached, under the three core managers. The x and y axes

denote the load of Memcached run at the fraction of max

loads, and the values in the heatmap denote the minimum

number of pCPUs required to meet both VMs’ QoS targets.

Smaller values (or lighter colors) indicate higher resource

efficiency. The brown cells with "x" marked indicate that

16 pCPUs are still insufficient to meet QoS Target of both

Memcached instances under certain load combinations.We

find that:

• DynIso is superior to Default when both VMs run at

medium loads, e.g., 40% of max load. This is because

DynIso physically separates the two VMs, and is able to

eliminate interference at a higher extent.

• Default outperforms DynIso when VMs’ loads are imbal-

anced for two reasons. First, Default manages resources at

the granularity of timeslices (i.e., tens of milliseconds). It

allows a VM to utilize only a fraction of a pCPU under very

low load, and leave the rest of the pCPU to other colocated

VMs. Second, DynISO has the restriction to allocate at

most #vCPU pCPUs to a VM, while Default could poten-

tially assign more than this amount when any VM is under

very high load. For example, when the two Memcached

VMs run at 70% and 10% of their max loads, VM2 requires

only 2 pCPUs to meet QoS, so the remaining 14 pCPUs

cores are all used by VM1, including 8 pCPUs for VM1’s

vCPU threads, and 4 pCPUs for its emulator threads.

• UFO significantly outperforms Default and DynIso. The

number of blue cells is 64 under UFO, meaning that UFO is

able to meet QoS of both Memcached instances under 64%

of all the load combinations, while Default and DynIso can

only achieve 19% and 16%, respectively.

For easier quantitative comparison, for each pCPU count,

we record the maximum aggregated load (MAL) that each

core manager is able to sustain while meeting QoS of both

VMs. Figure 13 plots MAL of six 2-VM co-location mixes

(Appendix C.1 shows all the heatmaps). Comparing with

DynISO, UFO achieves up to 60% (average of 27% ) higher

MAL under the same number of pCPUs. On the other hand,

under the same input load of each VM, UFO saves up to 50%

(average of 22%) cores than DynISO.

In summary, UFO is able to achieve higher MAL under the

same pCPU count, and save pCPUs under the same load.

6.2 Dynamic Load

In this section, we evaluate how UFO reacts to various load

fluctuation patterns. Figure 14 shows a 3-VM co-location

mix, each VM running a different application with a different

fluctuation pattern. We assume no prior samples and no previ-

ously fitted model in UFO in this experiment. In order to focus
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Figure 14: UFO’s reactions to fluctuating load patterns. Horizontal

dotted lines in Figure 14f, 14g and 14h represent QoS targets.

on evaluating the effect of dynamic core adjustment for vCPU

threads among different core managers, we exclude the inter-

ference of emulator threads by also applying vCPU-emulator

isolation to Default and DynIso, and keep the emulator pool

large enough. To compare tail latency, we keep #pCPUs the

same on the host OS under all the core managers.

Initially, each VM is given 8 pCPUs. UFO detects low per-

core CPU utilization (PCU), and gradually reduces #pCPU.

After each adjustment, UFO checks (1) if PCU is higher than

80%, and (2) if guest-side scheduling frequency decreases by

more than 30%. Due to the super low load, UFO successfully

reduces #pCPU to 6, 4, and 2 at 2s, 6s, and 9s, respectively.

QoS is consistently satisfied in this phase. We notice that

every time vCPU offlining is performed, CPU utilization of

the corresponding VM suddenly drops to 0, then recovers in

1-3s (see the first 10s in Figure 14d).

We also compare UFO with Default and DynIso without

guest-host coordination. Default and DynIso are both unable

to meet QoS if allocating the same number of cores as UFO.

6.2.1 Diurnal Load Fluctuations

Cloud applications typically have diurnal load fluctua-

tions [30], i.e., load gradually increases during the day, and

decreases during the night. Nginx (red lines in Figure 14)

mimics such a pattern. The load gradually increases from

20% to 100% in units of 20%, and then drops back to 20%,

each step lasting for 30s, and the total duration is 270s.

At 30s, Nginx’s load increases and is reflected in an in-

crease in CPU utilization to 184% (PCU of 92%). UFO in-

creases its #pCPUs to 4 and waits for 3s. At 34s, UFO finds

that increasing #pCPUs to 6 will lead to PCU lower than 40%

(55%*4/6=37%), so it stops increasing #pCPUs further. In

this phase, QoS violation only lasts for 3s (Figure 14f) be-

cause it takes 1s for UFO to observe load surge and increase

#pCPUs, and it takes an additional 2s for system to stabilize

and for tail latency to recover. Note that every time vCPU is

hot-plugged, CPU utilization bursts and then recovers in 1-3s.

At 60s, UFO detects increase in CPU utilization, and in-

creases #pCPUs to 6. However, after waiting for 3s, UFO

finds that guest-side scheduling frequency increases by only

21%, less than the 30% threshold. This means that 6 #pCPUs

is too much. Therefore, UFO reverts #pCPUs back to 4 at 64s.

Similarly, UFO increases #pCPUs at 90s and 120s, and

successfully resolves the QoS violations of Nginx in 1-3s. At

150s, UFO detects load drop. Since UFO has experienced the

same load before, it quickly decreases #pCPUs to the right

count without any reversion of #pCPUs.

In summary, UFO is capable of handling diurnal load

changes. It reacts to one second after any load change is

detected, and performs better as more samples are collected.

On the contrary, Default and DynIso consistently violate QoS

under the same core count.

6.2.2 Sub-Second Load Bursts

Load bursts refer to a sudden load increase, followed by a

load drop. We test two types of bursts that last for varying

amounts of time, to test UFO’s responsiveness to bursty loads.

We follow testing strategy in Shenango [49] to test sub-

second load bursts. The load of MySQL (blue lines in Fig-

ure 14a) suddenly changes from the default 15% to 20%,
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40% and 80% at 45s, 100s and 160s, respectively. Each burst

lasts for only 1s. UFO is able to observe the load burst, and

it increases #pCPUs accordingly. However, soon after UFO

reacts, the burst has disappeared and application’s tail latency

recovers by itself. In fact, there is no need for UFO to take

reaction. Also, because MySQL is assigned 2 pCPUs initially,

if the load burst exceeds the processing capability of 2 pCPUs

(i.e., 30% in this case), requests would be dropped, showing

in the difference between input load and achieved load in

Figure 14a and 14b. Note that latency suffers more under

Default (Figure 14g) and DynIso (Figure 14h) despite the re-

action time. This shows the effectiveness of UFO’s guest-host

coordination.

UFO is designed to operate at second-granularity like prior

work [22, 44]. Recent studies [28, 34, 49, 53] show the ability

to resolve microsecond-scale QoS violations. However, as

discussed in Section 2.1, they have to intrude users’ applica-

tions, and are applicable only in private clouds. Achieving

sub-second QoS in public clouds remains an open problem.

6.2.3 Bursts with Increasing Duration

We then increase the burst duration to 5s and 15s. As the grey

lines in Figure 14a show, Memcached bursts from 10% to

80% at 130-135s, and 187-202s. Note that this vast degree of

load burst is not realistic; loads usually gradually increase or

decrease with small spikes [30]. This stress test aims to show

the boundary of UFO’s responsiveness.

When bursting to 80% of load, Memcached in fact needs 6

pCPUs to meet QoS. Since UFO adjusts 2 pCPUs at a time

(with no prior samples and model fitting), it takes two steps

to reach the desired core count. At 130s, UFO detects load

increase and increases #pCPUs to 4 and 6 at 131s and 134s,

respectively, reaching the desired core count in 4s. The second

spike lasts longer for 15s. UFO still reaches the desired core

count after two steps, and resolves the QoS violation in 4s.

This shows that the responsiveness of UFO depends on the

number of steps for UFO to adjust. Upon vast load increases,

the longer the burst, the better UFO handles.

6.3 Decomposition of UFO

Figure 15 shows the effectiveness of each component in UFO.

We experiment with 16-vCPU VMs to show more #pCPU

options. UFO-vCPU does not separate emulator and vCPU

threads, while UFO-emulator does not online/offline vCPUs

to match pCPU count. We find that:

• Compared with the max load under Default, UFO-vCPU

and UFO-combined are able to achieve an average of 19.8%

and 69.8% higher load under QoS, respectively.

• UFO-emulator sometimes even underperforms Default.

This is because after reserving some cores for emulator

threads, vCPUs are stacked onto fewer pCPUs, causing

severe double scheduling symptoms. This is especially

detrimental for VMs with high emulator activity. There-

fore, it is important to apply vCPU-emulator separation and
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Figure 15: Decomposition of UFO’s effectiveness.

vCPU-pCPU coordination at the same time.

6.4 UFO Overhead

UFO mainly involves the following overhead:

• Guest-side monitoring: We compare CPU and memory

resource utilization, and application’s latency with and with-

out guest-side monitoring. The CPU and memory resource

consumption is barely observable, and application’s tail

latency remains the same.

• Host-side kernel module: The host OS is responsible for

data collection and core prediction. This kernel module

takes less than 5% of CPU utilization on average, since it

is only active for a few tens of milliseconds every second.

Memory consumption scales linearly with the number of

VMs and the total number of pCPUs on the host. Assum-

ing a maximum of 50 VMs and 200 pCPUs on the host,

memory usage is less than 2MB.

• Time to online or offline vCPUs in the guest OS: It takes

20-30ms to online or offline a single vCPU for LC applica-

tions. This overhead increases almost linearly (i.e., slightly

sublinear) with the number of vCPUs to online or offline

(more details in Appendix C.2). Prior work [24] shows

that the overhead can be reduced to tens of microseconds

per vCPU. We hope similar techniques could be merged to

mainline of Linux kernel in the future.

• Performance impact of onlining/offlining vCPUs in the

guest OS: As shown in Figure 14, onlining vCPUs cause

a sudden burst in guest-side CPU utilization, and offlining

vCPUs cause a sudden decrease in CPU utilization down

to 0. It takes up to 3s for CPU utilization to recover. This

explains why we wait for 3s after each vCPU adjustment.

7 Conclusion

We have presented UFO, a core manager for latency-critical

applications in virtualized and oversubscribed public clouds.

UFO leverages guest-host coordination and inner-VM core

isolation, to push core management to the extreme. UFO

outperforms state-of-the-art core managers by up to 50% in

core saving under the same colocation scenario. It also in-

creases the aggregate system load by up to 60% under the

same amount of core resources while still ensuring QoS.
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Appendix

A Extended Characterization

A.1 Impact on VM Exits under Host-Aware
Isolation
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Figure 16: VM exit frequency and VM exit handled time under

default (D), isolation (I), and host-aware isolation (H), decomposed

by VM exit reason.

VM exits are handled 2x faster on the host under host-aware

isolation. Figure 16 shows the number of VM exits and the

handling time of VM exits per second under the three core

managers, decomposed by exit reason, collected and reported

by perf kvm. We find that the number of VM exits does not

vary much among the three mechanisms, but the handling

time is reduced by more than 60%.

For LC applications whose requests come and go, a HLT

VM exit is triggered every time when the application becomes

idle in between requests, and a VM entry is triggered every

time when a new request is received. HLT handling time

is the time between a HLT vm exit and the subsequent vm

entry. It signals how fast the system reacts to new requests.

Under host-aware isolation, running vCPU count never ex-

ceeds pCPU count, so that there are always free pCPUs to

handle VM entries as quickly as possible. However, under

other mechanisms, vCPU count is more than pCPU count,

and VM entries cannot be consumed immediately since there

may be no idle pCPU.

A.2 Impact on Caches under Host-Aware Iso-
lation

Caches are better utilized under host-aware isolation. Fig-

ure 17 shows misses-per-kilo-instructions (MPKI) of L1 in-

struction cache (L1I), L1 data cache (L1D), and last-level

cache (LLC). Compared with Default, Isolation reduces L1D

and L1I MPKI by up to 5% and 15% (average of 4.1% and

11%), respectively. This is because under Default, a vCPU can

freely move around between 16 pCPUs, while Isolation re-

stricts a vCPU to a fixed set of 4 pCPUs, eliminating cache pol-

lution and context switches with other VMs’ vCPUs. This ex-

plains why Isolation outperforms Default in Figure 2, despite

occasionally higher guest-side scheduling frequency. Host-

aware isolation further reduces L1D, L1I and LLC MPKI

by up to 12.5%, 7% and 10% (average of 8.5%, 2.7%, and

6%), respectively. This is because our host-aware isolation

can reduce the context switches and in turn decrease the times

of cache line evictions.
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Figure 17: Cache misses-per-kilo-instructions (MPKI) under three

core managers.

A.3 Indications of Guest-Side Scheduling Fre-
quency

To show the generality of guest-side scheduling frequency,

we experiment with three more LC applications from Tail-

bench [39], including ImgDNN, Xapian, and Moses. Adding

Nginx and MySQL, Figure 18 shows tail latency and guest-

side scheduling frequency with increasing RPS under various

pCPU count of the five LC applications (Memcached is al-

ready shown in Figure 4).

For all the evaluated applications except for MySQL, guest-

side scheduling frequency is a concave function with RPS.

Given a certain input load, we can compare guest-side schedul-

ing frequency between adjacent pCPUs, and check if the dif-

ference is above a certain threshold. 30% universally work for

these LC applications. For instance, for Nginx at RPS=80k,

scheduling frequency under 8 and 6 pCPUs are very simi-

lar. However, when reducing pCPU count to 4, guest-side

scheduling frequency is reduced by 43%. Therefore, we have

to assign 6 pCPUs for Nginx at RPS=80k.

MySQL is the only exception: scheduling frequency in-

creases with RPS and then reaches a short plateau. We find

that MySQL is fundamentally different from other applica-

tions in that a single MySQL request involves multiple appli-

cation threads and thus multiple guest-side context switches.

Suppose one MySQL request triggers X context switches and

the current RPS is R, there will be X ∗R context switches per

second regardless of how small or large R is. On the contrary,

a request of the other five LC applications is only processed by

a single application thread. At low load, the application thread

will be scheduled in upon request arrival, and scheduled out

after request processing. When load increases and there is

no free time between consecutive requests, the application

thread will not be immediately scheduled out after a single
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2pCPU 4pCPU 6pCPU 8pCPU

(a) Nginx (b) MySQL (c) ImgDNN (d) Xapian (e) Moses

Figure 18: Relationship between application’s tail latency and guest-side scheduling frequency of five LC applications, apart from Memcached

which is already shown in Figure 4. The x-axis represents increasing input load. The horizontal dotted lines represent QoS targets. The vertical

purple lines represent the maximum RPS under QoS under each pCPU count. Purple arrows represent the difference in guest-scheduling

frequency between adjacent pCPUs.
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Figure 19: CPU utilization of vCPU threads and emulator threads when running the 99 queries in Spark. The x-axis represent time, but is

marked by query index to differentiate different queries. Vertical dotted lines also split all the queries.

request, and will keep processing the next request, resulting

in reduced context switches at higher load.

This potentially means that we need to set a different thresh-

old for MySQL, e.g., 5%. Fortunately, we find that this is not

necessary. As introduced in Section 4.5, UFO also adopts

heuristics based on CPU utilization to guide core adjustment.

This is primarily to reduce trials when models are not fitted for

most applications. However, it also sets a bottom line for core

adjustment: when 30% is too relaxed for some applications,

UFO will not keep reducing pCPUs which may cause QoS

violations. UFO will ensure that per-core CPU utilization is

under 80%.

There are some alternative methods to handle cases like

MySQL. UFO does not adopt these methods currently, but we

leave more options for comprehensiveness. The first method

is to reduce the threshold from 30% to 5%. While this is con-

servative for the other five applications, it is a simple and uni-

versal approach, and we can achieve lower tail latency (at the

cost of more resources). For instance, as shown in Figure 18a,

if the threshold is set to 30%, Nginx at RPS=40k would re-

quest only 2 pCPUs to reach a tail latency of 2ms. If setting

the threshold to 5%, Nginx at RPS=40k would be assigned 4

pCPUs, reaching a tail latency of 0.5ms. The second approach

is to differentiate the two types of LC applications, and set

different thresholds for each category. As shown in Figure 18,

when the full profile of guest-side scheduling frequency is ob-

tained, it is very easy to distinguish MySQL-like applications

from other applications since scheduling frequency does not

drop at higher load. We set the threshold to 5% once identify-

ing these applications, and keep the threshold of 30% for all

other LC applications.
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Table 3: Symbols in UFO

N Number of virtual machines

vCPU [i] Requested vCPU count of V Mi

pCPU [i] Allocated pCPU count of V Mi

emuUtil Current CPU utilization of the emulator pool

cpuUtil[i] Current CPU utilization of V Mi

schedFreq[i] Current scheduling frequency of V Mi

SF [i][c] Recorded scheduling frequency of V Mi under c pCPUs

A dictionary of (u, f) pairs, where u and f are CPU

utilization and scheduling frequency, respectively.

Model[i][c] Fitted model of scheduling frequency of V Mi under c pCPUs

using SF [i][c], a quadratic function denoted by (Aic,Bic,Cic)

Default value is NULL if not fitted yet

Pred[i][c] Max CPU utilization that can be sustained for V Mi under

c pCPUs, predicted using Model[i][c] and Model[i][c+2]

Pred[i][0] = 0. If c > 0, default is −1 if not predicted yet.

A.4 CPU Utilization of Spark SQL

Figure 19 shows CPU utilization of vCPU and emulator

threads when running each query in Spark. vCPU threads

may run up to 800% of CPU utilization (8-vCPU VMs), while

emulator threads use at most 40% of CPU utilization. The

relative low usage of emulator threads makes isolation of

emulator threads ineffective for Spark.

B Extended UFO Design

In this section, we show the detailed algorithms in the UFO

design. The algorithms cover all the four stages in UFO’s

vCPU adjustment, shown in Figure 9. Table 3 includes all the

symbols used in the algorithms.

B.1 Update Modeling of Scheduling Frequency

Algorithm 2 shows how and when the modeling of scheduling

frequency is updated. For V Mi, when it just gets launched on

the host, no samples have been recorded (i.e., len(SF [i][c]) =
0 for any c — the number of cores), and no models have been

fitted yet (i.e., Model[i][c] = NULL is for any c).

As the VM runs, an increasing number of samples at vari-

ous CPU utilization and pCPUs are recorded, and we maintain

the last eight samples in SF [i][c] for each c. For a given pCPU

count, when three samples are recorded, we will start fitting

the model, though the model may be inaccurate due to skewed

samples. The inaccuracy will eventually come to light as the

VM runs and more samples are collected. Upon detection of

inaccuracy (i.e., the difference between the fitted value and

the true value is more than 5%), the model will be refitted

using the latest and more samples. Storing the latest eight

samples and refitting models upon detection of inaccuracy

allow UFO to adjust to workload churn inside the VM. For

instance, if a VM previously runs Memcached and later runs

Nginx, SF and Model will all shortly be updated with the

latest samples.

Algorithm 2: updateModel(i,c,u, f ): Update sam-

ples and the fitted model of V Mi under c pCPUs.

V Mi’s current CPU utilization and scheduling fre-

quency are u and f , respectively.

if u is not in SF[i][c] then

// The first time for V Mi to reach util of u under c cores

add (u, f) to SF[i][c];

if len(SF[i][c]) > 8 then

// Too many samples. Maintain the latest 8 samples

for modeling

remove the eldest element in SF[i][c] ;

if Model[i][c] == NULL then

if len(SF [i][c]) == 3 then

// First time to collect enough samples for model

fitting

Fit Model[i][c];

if Model[i][c+2] 6= NULL then

// Record the maximum CPU utilization that c

pCPUS can sustain under QoS

Pred[i][c] = max
getSF(i,c,u)

getSF(i,c+2,u)≥0.7

u;

else
if | f −SF [i][c][u]|/ f > 5% or

| f − (Aic ∗u2 +Bic ∗u+Cic))|/ f > 5% then

// The current recorded value or the fitted value is

inaccurate

Fit Model[i][c];

if Model[i][c+2] 6= NULL then

// Update the max CPU utilization

Pred[i][c] = max
getSF(i,c,u)

getSF(i,c+2,u)≥0.7

u;

return;

When models of consecutive pCPUs are fitted, i.e., both

Model[i][c] and Model[i][c+2] are obtained, we start calcu-

lating Pred[i][c]. We clarify the reasoning behind Pred[i][c]
in Appendix B.2.

B.2 Core Predictor

The goal of UFO’s core predictor predict(i,c,u) is to output

the best core allocation for V Mi, given its current pCPU count

c and current CPU utilization u. Note that its scheduling fre-

quency is monitored and fed to the module of updateModel()
(see Algorithm 1), so we do not need to explicitly pass it as

an argument in the core predictor.

As discussed in Section 3.3, we can leverage guest-side

scheduling frequency to guide core allocation decisions on the

host OS. Comparing the relationship between scheduling fre-

quency and application’s tail latency, we find two conditions

to help determine the best core allocation.

Suppose V Mi current runs at CPU utilization u with

scheduling frequency f under c pCPUs, c is the best core

allocation if and only if:
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Algorithm 3: predict(i,c,u): Predict core allocation

for V Mi whose current pCPU count is c and CPU

utilization is u.

for p == 2, 4 .. vCPU[i] do

// Check if we can directly predict based on u

if Pred[i][p−2] ==−1 then

continue;

if Pred[i][p−2]< u and Pred[i][p]≥ u then

return p;

p = c;

if p+2 ≤ vCPU [i] and
getSF(i,p,u)

getSF(i,p+2,u)
< 0.7 then

// c pCPUs is not enough, check more pCPUs

while p+2 ≤ vCPU [i] and
getSF(i,p,u)

getSF(i,p+2,u)
< 0.7 do

p=p+2;

else

// c pCPUs is already enough, check fewer pCPUs

while p−2 > 0 and
getSF(i,p−2,u)

getSF(i,p,u)
> 0.7) do

p=p-2;

return p;

Algorithm 4: getSF(i,c,u): Get scheduling fre-

quency of V Mi under c pCPUs and u CPU utilization.

if u in SF[i][c] then

// A previously recorded pair

return SF[i][c][u];

if Model[i][c] 6= NULL then

// A previously fitted model

return Aic ∗u2 +Bic ∗u+Cic;

// Adjust pCPUs to collect scheduling frequency

modify(i, c);

sleep for 3s;

updateModel(i, c, cpuUtil[i], schedFreq[i]);

return schedFreq[i];

• c+ 2 is too much, i.e., scheduling frequency does not

increase much with more cores.

• c − 2 is not enough, i.e., scheduling frequency drops

significantly with fewer cores.

UFO checks the two conditions above by comparing f with

scheduling frequency f ′ under adjacent pCPU counts, and

checks if the difference between f and f ′ is within a certain

threshold.

B.3 Monitoring and Reaction Frequency

As discussed in Section 4.3, UFO operates at second granu-

larity, monitoring every second, and waiting for three seconds

after each core adjustment. This is because:

• As shown in Figure 20, monitoring at finer granularity

causes unstable results. As introduced in Section 5.2, even
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Figure 20: Data stability with increasing monitoring interval when

MySQL runs at RPS of 30000. Despite constant RPS, request inter-

arrival time follows an exponential distribution, causing significant

load and latency fluctuations at sub-second granularity.

under constant load, there are many load and latency fluc-

tuations due to the exponential request inter-arrival dis-

tribution. UFO is designed for black-box public clouds

and does not assume any application-level knowledge like

prior fine-grained approaches [28, 49]. It aims to meet

QoS in the long run (i.e., at least over tens of seconds like

Heracles [44] and PARTIES [22]).

• We find that after vCPU onlining/offlining in the guest

OS, it will be up to 3s for guest-side CPU utilization to

stabilize (more discussion in Section 6.4). We evaluate

how this affects UFO’s responsiveness to bursty loads in

Section 6.2.

B.4 Interaction with the Cluster Manager

UFO is an intra-node core management, and should interact

with the high-level cluster manager based on the size of the

idle pool. There are three cases of the idle pool size:

• If the idle pool consistently has more than a handful of idle

cores (e.g., #idle cores > 2), this signals system underload-

ing, and UFO will signal the cluster manager to schedule

more tasks to the node to make use of the idle pool.

• If the idle pool is constantly small (e.g., 0 ≤ #idle cores ≤
2), this means there is just the right amount of system load,

and the cluster manager should stop scheduling more tasks

to the node.

• If the idle pool consistently fails to supply the vCPU or the

emulator pool with more needed cores, UFO will signal the

cluster manager to migrate some tasks to other nodes.
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C Extended Evaluation

C.1 Heatmaps of 2-VM Colocation Mixes

We show heatmaps of all the 2-VM colocation mixes in Fig-

ure 21, 22, 23, 24 and 25. Heatmaps of colocation of Mem-

cached and Memcached is already shown in Figure 12.
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Figure 21: Colocation of Memcached and Nginx.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

L
o
a
d
 o

f 
M

y
S

Q
L
 (

%
)

10 12 14 14 14 14 16 16 X X

12 14 16 16 16 X X X X X

12 16 X X X X X X X X

14 X X X X X X X X X

16 X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached (%)

(a) Default

10 20 30 40 50 60 70 80 90 100

8 10 12 12 X X X X X X

8 10 12 12 X X X X X X

10 12 14 14 X X X X X X

12 14 16 16 X X X X X X

12 14 16 16 X X X X X X

12 14 16 16 X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Load of Memcached (%)

(b) DynIso

10 20 30 40 50 60 70 80 90 100

6 6 6 8 8 10 12 12 14 14

6 8 8 8 10 10 12 12 14 14

8 8 10 10 12 12 14 14 16 16

8 8 10 10 12 12 14 14 16 16

8 8 10 12 12 12 14 16 X X

10 10 12 14 14 14 16 X X X

10 10 12 14 14 14 16 X X X

12 12 12 14 14 14 16 X X X

12 14 16 16 X X X X X X

14 16 16 X X X X X X X

Load of Memcached (%)

(c) UFO

Figure 22: Colocation of Memcached and MySQL.
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Figure 23: Colocation of Nginx and Nginx.
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Figure 24: Colocation of Nginx and MySQL.
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Figure 25: Colocation of MySQL and MySQL.

C.2 UFO Overhead

Figure 26 shows the time required for onlining and offlining

increasing number of vCPUs in the guest OS under various

workloads. For each experiment, we consecutively online and

offline vCPUs for 1000 times, obtain the total overhead, and

report the average overhead per adjustment. For LC work-

loads, the overhead is about 20-30ms per vCPU. Overhead is

higher under BE workloads. This is because BE applications

tend to operate at very high CPU utilization (Figure 7). When

offlining a certain vCPU, application threads running on the

vCPU will all be migrated to other vCPUs. Therefore, higher

CPU utilization usually results in higher overhead.
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Figure 26: Average time spent on onlining or offlining 2, 4 and 6

vCPUs under various workloads. LC applications operate at their

max load.
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