
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Finding Adversarial Inputs for Heuristics
using Multi-level Optimization

Pooria Namyar, Microsoft and University of Southern California; Behnaz Arzani
and Ryan Beckett, Microsoft; Santiago Segarra, Microsoft and Rice University;

Himanshu Raj and Umesh Krishnaswamy, Microsoft; Ramesh Govindan,
University of Southern California; Srikanth Kandula, Microsoft
https://www.usenix.org/conference/nsdi24/presentation/namyar-finding

Finding Adversarial Inputs for Heuristics using Multi-level Optimization

Pooria Namyar†‡, Behnaz Arzani†, Ryan Beckett†, Santiago Segarra†⋆,
Himanshu Raj†, Umesh Krishnaswamy†, Ramesh Govindan‡, Srikanth Kandula†

†Microsoft, ‡University of Southern California, ⋆Rice University

Abstract– Production systems use heuristics because they
are faster or scale better than their optimal counterparts. Yet,
practitioners are often unaware of the performance gap be-
tween a heuristic and the optimum or between two heuristics
in realistic scenarios. MetaOpt is a system that helps analyze
these heuristics. Users specify the heuristic and the optimal
(or another heuristic) as input, and MetaOpt encodes these
efficiently for a solver to find performance gaps and their
corresponding adversarial inputs. Its suite of built-in opti-
mizations helps it scale to practical problem sizes. We used
MetaOpt to analyze heuristics from three domains (traffic
engineering, vector bin packing, and packet scheduling). We
found a production traffic engineering heuristic can require
30% more capacity than the optimal in realistic cases. We
modified the heuristic based on the patterns in the adversar-
ial inputs MetaOpt discovered and reduced the performance
gap by 12.5×. We examined adversarial inputs to a vector
bin packing heuristic and proved a new lower bound on its
performance.

1 Introduction
Many solutions to network and systems problems are heuris-
tic approximations to potentially intractable optimal algo-
rithms [3, 20, 35, 38, 39, 53, 57, 58, 76]. These heuristics are
often faster or scale better than their optimal counterparts.
However, operators often do not fully understand how these
heuristics will behave with new and untested inputs or how
far from the optimal their results may drift in realistic use.

For example, Microsoft uses a heuristic, demand pinning
(DP), on its wide-area network [46, 56]. It routes small de-
mands (i.e., demands ≤ a threshold) through their shortest
path and uses a more computationally complex optimization
to route the rest [38] (DP reduces the number of demands the
optimization routes and completes faster). In Fig. 1, we show
an example where DP allocates 40% less demand than the
optimal routing. With this gap, Microsoft may have to either
over-provision its network by 40%, delay 40%, or drop 40%
of its customers’ demands! Note that the 40% gap is a lower
bound, and the worst-case gap can be higher.

We often do not understand the potential impact of such
heuristics at scale: Does their gap depend on the problem size?
Which inputs make them perform poorly? Are there realistic
scenarios that they struggle with? We ask if we can develop
techniques to analyze heuristics and answer such questions.

As a first step towards this goal, we have developed

1 2 3

4 5

100 100

50

50
50

Demand DP (thresh = 50) OPT
src-dest value path value path value

1-3 50 1-2-3 50 1-4-5-3 50
1-2 100 1-2 50 1-2 100
2-3 100 2-3 50 2-3 100

Total DP 150 Total OPT 250

FIGURE 1: Suboptimal performance of DP. (left) Topology with
unidirectional links. (right) A set of demands and their flow allo-
cations using the DP heuristic and the optimal (H′) solution. DP
first sends the demands at or below the threshold (50) over their
shortest paths and then optimally routes the remaining demands.

MetaOpt, a system that allows users to automatically dis-
cover the performance gap between a heuristic H and any
other function H′ for much larger problem sizes than in Fig. 1.
MetaOpt also returns the adversarial inputs to these functions
that cause large performance gaps. Users can use MetaOpt
to (a) understand the performance gap of H relative to the
optimal or to another heuristic; and (b) examine adversarial
inputs to provide performance bounds on H or to modify H to
improve its performance gap (§2).

In many problem domains, such as traffic engineering [38,
39, 46, 58], vector bin packing [35, 60], and packet schedul-
ing [5, 64, 74], we can specify both H′ and H either as an
optimization (with an objective and several constraints) or
as a feasibility problem (with a set of constraints). Then, we
can model the problem of finding large performance gaps
between H and H′ in the language of optimization theory:

arg max
s.t. input I∈ConstrainedSet

H′(I)−H(I), (1)

where H() and H′() take I as input and solve the correspond-
ing algorithms. ConstrainedSet specifies a set of constraints
that limit the set of values I can take.

In theory, we could throw this model at a solver [16, 36]
and find performance gaps, but existing solvers do not support
these optimizations. This model is an instance of a bi-level op-
timization [15] (with connections to Stackelberg games [23],
see §6), and practitioners have to rewrite them into single-
level optimizations before using a solver [15]. Rewriting a
bi-level optimization into a single-level one by hand is tedious
and can lead to poor performance if done incorrectly.

MetaOpt abstracts away this complexity and only asks users
to specify H′ and H (§3). It also provides helper functions to
make it easier to specify H′ and H. These functions are espe-
cially useful for constructs (e.g., conditionals, randomization)
that are harder to express as optimization constraints.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 927

Under the hood, MetaOpt performs rewrites automatically
and supports multiple solvers (Gurobi [36] and Zen [16]).
We add three techniques to scale MetaOpt to large problems
(e.g., large topologies and demands for traffic engineering).
First, since many rewrites can introduce non-linearities, we
carefully select which part of the input to rewrite. Second, we
introduce a new rewriting technique (Quantized Primal-Dual)
that allows MetaOpt to trade-off between scale and optimality.
Third, we design a new partitioning technique for graph-based
problems to improve MetaOpts scalability further.

We show the versatility of MetaOpt1 by using it to study
several heuristics in traffic engineering [38, 39, 46, 58], vector
bin packing [35, 60], and packet scheduling [5, 64, 74]. We
have applied MetaOpt to (a) study performance gaps of these
heuristics, (b) analyze adversarial inputs to prove properties,
and (c) devise and evaluate new heuristics (see Table 1):
• DP can allocate 33% less demand compared to the optimal

in large topologies. We analyzed adversarial inputs MetaOpt
found and designed modified-DP which reduced this gap
by an order of magnitude.

• We show for the first time that a two-dimensional vector
bin packing heuristic FFDSum can require at least twice as
many bins as the optimal across all problem sizes.

• A recently proposed programmable packet scheduler, SP-
PIFO [64], an approximation of PIFO [64], can delay the
highest priority packet by at least 3× relative to PIFO.

2 Heuristic Analysis at a Glance
Network and systems designers use heuristics when the opti-
mum is too expensive to compute at relevant problem scales.
We use examples of heuristics to motivate the types of anal-
yses designers might wish to perform and describe how
MetaOpt can aid these analyses.

2.1 Heuristics and their Importance
We describe heuristics from traffic engineering, cluster re-
source allocation, and switch packet scheduling.

Traffic engineering (TE). There are many techniques to scale
TE solutions to large networks/demands (see §A.2 for details):

Demand Pinning (DP) [46,56] is a heuristic that Microsoft
uses in production. It pre-allocates flows along the shortest
path for any node pair with demand smaller than a threshold
Td and uses the SWAN [38] optimizer on the rest. When many
demands are small, this can result in substantial speedup.

Partitioned Optimization Problems (POP) [58] divides
node pairs (and their demands) uniformly at random into
partitions. It then assigns each partition an equal share of
the edge capacities and solves the original problem (e.g., the
SWAN LP optimization [38]) once per partition. POP is faster
than SWAN because it can solve each LP sub-problem much

1Our code is available at https://github.com/microsoft/MetaOpt.

faster than the original [22] and can do so in parallel.

Vector bin packing (VBP). Production deployments use VBP
to allocate resources in clusters efficiently [2, 35, 37, 53, 68].
One version of VBP takes a set of balls and bins with spe-
cific sizes and multiple dimensions (e.g., memory, CPU,
GPU [32, 48, 69]) and tries to pack the balls into the fewest
number of bins. The optimal algorithm for this version is
APX-hard [71]. Instead, many practitioners use a heuristic,
first fit decreasing (FFD), which is greedy and iterative. At
each step, FFD picks the unassigned ball with the largest
weight and places it in the first bin that fits (has enough
capacity). Prior works propose different ways to weigh the
balls [35, 37, 53, 60, 66, 67, 72]. One variant, FFDSum, uses
the sum across all dimensions as the weight of a ball.

Packet scheduling [5, 74]. Push-In-First-Out (PIFO [64])
queuing is a scheduling primitive that enables various
packet scheduling algorithms for programmable switches. SP-
PIFO [5] uses n priority FIFO queues to approximate PIFO
and presents a heuristic we can implement at line rate. In SP-
PIFO, each queue has a priority (usually equal to the priority
of the last packet in it). A queue only admits a new packet if
its priority is higher than the packet’s priority. The algorithm
scans queues from lowest to highest priority and places the
new packet in the first queue that accepts it. SP-PIFO updates
all queue priorities if no queue admits the packet.

Performance Analyses. Often, heuristic designers wish to
answer questions such as:
• How far is my heuristic from the optimum?
• What inputs cause my heuristic’s performance to degrade

at practical problem instances?
• How can I redesign my heuristic to improve its perfor-

mance?
• How can I compare the performance of two heuristics?
• Can I prove lower bounds on a heuristic’s performance

relative to another standard algorithm?

2.2 MetaOpt, a Heuristic Analyzer
MetaOpt is a heuristic analyzer that can help designers answer
these questions. It finds (a) the performance gap between
a given H() and an alternative H′() (where H′() can be the
optimal solution) and (b) the adversarial inputs to H() that
cause the performance gap. The performance of a heuristic
measures its solution quality. Users decide what performance
metric to use; for example, they can define the performance
as the total flow that the heuristic admits in TE or the average
packet delay in packet scheduling. The performance gap is the
difference between the performance of H() and H′(). MetaOpt
can analyze a broad set of well-defined heuristics (see §3).
We discuss its limitations in §5.

2.3 Using MetaOpt to Analyze Heuristics
Heuristic designers can use MetaOpt to answer the questions
we presented in §2.1. They can use MetaOpt in two ways:

928 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/microsoft/MetaOpt

MetaOpt finds performance gaps MetaOpt helps prove properties MetaOpt helps modify heuristics

TE DP and POP can be 33.9% and 20% less efficient than
optimal. MetaOpt finds realistic demands with strong
locality that produce the same gap.

– Modified-DP (which we designed with
MetaOpt’s help) has an order of magnitude
lower gap than DP. We cannot improve the
gap by running DP and POP in parallel.

VBP MetaOpt finds tighter performance gaps under realistic
constraints. It also finds the same examples which took
theoreticians decades to find and prove a tight bound for
1d-FFD.

MetaOpt helped prove a tighter ap-
proximation ratio for 2-d FFDSum
than previously known [60].

–

PIFO MetaOpt finds SP-PIFO can delay the highest priority
packet by 3×, and also finds inputs where AIFO incurs
6× more priority inversion than SP-PIFO.

MetaOpt helped prove a new
bound on the weighted average de-
lay of SP-PIFO.

Modified-SP-PIFO (which MetaOpt helped de-
sign) has 2.5× lower weighted average packet
delay.

TABLE 1: MetaOpt (1) finds the performance gap between the heuristic and optimal; (2) helps prove various properties about the heuristic;
and (3) helps modify them to improve their performance.

(a) to find performance gaps and (b) to prove properties or
improve heuristics based on the adversarial inputs it finds. We
next describe the results we obtained by applying MetaOpt
to the heuristics in §2.1. We present more details and other
results in §4. These use cases are not the only way operators
can use MetaOpt, but they demonstrate its versatility (see §8).

Finding performance gaps. We show how MetaOpt helps
find performance gaps in TE and packet scheduling.

Performance gaps in traffic engineering. We use MetaOpt
to find the performance gaps for DP and POP, where H′()
is the optimal multi-commodity flow algorithm (§A.1). We
measure the performance gap as the difference between the
heuristic’s and the optimal’s total flow, normalized by the total
network capacity. The performance gap is a lower bound on
the optimality gap, the worst-case gap between the two.

We find DP and POP incur 33.9% and 20% relative perfor-
mance gaps on a large topology (Cogentco, §4). This means
there exists (and we can find) adversarial traffic demands that
cause DP to use at least 33.9% more capacity than optimal.
Network operators that use DP may need to over-provision
the network by that much to satisfy this demand.

MetaOpt, by default, searches for adversarial inputs among
all possible demands. We can constrain MetaOpt to search
over realistic demands. These are sparse and exhibit strong
locality, which means few node pairs that are close to each
other exchange most of the traffic [3]. When we run MetaOpt
with these constraints, the gap for POP and DP remains almost
the same as before, but the discovered adversarial demands
exhibit stronger locality and are sparser (i.e., the adversarial
demands that MetaOpt finds becomes more realistic).

Performance gaps in packet scheduling. We compare
SP-PIFO to PIFO. We compute and compare the priority-
weighted average packet delay (§4) between the two algo-
rithms, which penalizes them if they increase the delay of
high-priority packets. MetaOpt shows there exists an input
packet sequence where SP-PIFO is 3× worse than PIFO.

We also use MetaOpt to compare SP-PIFO and AIFO [74]

(two heuristics). AIFO emulates PIFO through a single FIFO
queue and replaces H() in this scenario. MetaOpt finds inputs
for which AIFO incurs 6× more priority inversions than SP-
PIFO. Such analyses can help designers weigh performance
trade-offs against switch resource usage.

Proving properties of and improving heuristics. MetaOpt
discovers performance gaps and the corresponding adversarial
inputs. We show how to prove performance bounds for these
heuristics or to improve them in several cases2. These require
the user to analyze the inputs further to see if they share a
common pattern (see §B.2 for an example).

A new bound for vector bin-packing. VBP heuristics try to
minimize the number of bins they use. Theoreticians prove
bounds on their approximation ratio: the worst-case ratio of
the number of bins the heuristic uses compared to the optimal
over any input. Recent work [60] showed 2-dimensional FFD-
Sum asymptotically approaches an approximation ratio of 2
(where the optimal uses nearly infinite bins). We prove (§4)
that the approximation ratio is always at least 2 — even when
the optimal requires a finite number of bins!

A new bound and a better heuristic for packet scheduling.
We analyzed adversarial inputs MetaOpt found for SP-PIFO
and proved a lower bound on its priority-weighted average
delay relative to PIFO. The bound is a function of the priority
range and the number of packets.

Adversarial inputs to SP-PIFO trigger priority inversions,
which means they cause SP-PIFO to enqueue high-priority
packets behind low-priority ones. We tested a Modified-SP-
PIFO that splits queues into groups; it assigns each group
a priority range and runs SP-PIFO on each group indepen-
dently. This modification reduces the possibility of packets
with vastly different priorities interfering with each other and
causing priority inversions. Modified-SP-PIFO reduces the
performance gap of SP-PIFO by 2.5×. Users should weigh
the trade-off between the improved performance gap, the

2One may have to sacrifice other metrics such as run-time to improve the
gap. Users have to weigh this trade-off and decide if it is acceptable.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 929

 Followers: H’ H
 Leader: max gap Formulate

Heuristic PartitioningOne-shot
rewrite

MetaOptUser

one or more
one-shot opt.

Existing solvers

FIGURE 2: MetaOpt’s workflow involves four steps; (1) User en-
codes H and H′ §3.2, (2) MetaOpt automatically applies rewrites
to obtain a single-level optimization §3.3, (3) it partitions the
problem into smaller subproblems to achieve scalability §3.5,
(4) MetaOpt feeds the resulting optimizations into existing
solvers [36, 55] and finds large performance gaps.

Optimal Heur. Formul. Rewrite

OptMaxFlow
POP Convex(Random) §A.3 KKT/PD
DP Convex(Conditional) §A.3 KKT/PD

VBP MILP FFD NonConv.(Greedy) §B.1 Feasibility

PIFO MILP SP-PIFO NonConv.(Priority) §C.1 Feasibility
AIFO NonConv.(Admission) §C.2 Feasibility

TABLE 2: Overview of the five heuristics we explored in this
paper. We cover how to formulate the heuristics as optimizations
in the appendix and discuss their rewrites as constraints in §3.3.

memory allocation, and the impact on ongoing traffic to de-
cide if they should deploy Modified-SP-PIFO.

Improving traffic engineering heuristics. We found that
DP performs poorly when small demands traverse long paths.
We used MetaOpt to analyze a Modified-DP, which routes
demands on their shortest paths if the shortest path is less
than k hops and the demand is less than Td. This simple
change reduced the performance gap by an order of magnitude.
Modified-DP presents a trade-off between the speed and the
performance gap of the heuristic. Users can control this trade-
off through k and Td. MetaOpt can guide users in choosing
these values by quantifying each choice’s performance gap.

3 MetaOpt Design
Our goal is to build a widely applicable system that finds large
performance gaps between H and H′quickly and at scale.

3.1 MetaOpt Approach
This is a hard problem when H and H′ are arbitrary algorithms,
but we observe that we can formulate many heuristics in
networks and systems as:
Convex optimization problems in which the heuristic
seeks to optimize an objective subject to a collection of con-
straints. DP and POP fall into this category: DP solves opti-
mization for large demands, and POP solves optimization for
each partition.
Feasibility problems in which the heuristic searches for a
solution that satisfies a collection of constraints. FFDSum
and SP-PIFO fall into this category: FFDSum packs balls into
bins subject to weight and capacity constraints, and SP-PIFO
places packets into the queues based on their priorities.

We can find the performance gap between any H′ and H
through a bi-level or meta optimization (hence MetaOpt) as
long as H falls in one of these two classes. We do not need
convexity for H′ — we need it to be either an optimization or

minw,ℓ

(
w2 + ℓ2)

2 · (w + ℓ)≥ P
P ≥ 0

solve for w,ℓ,λ

2(w + ℓ)≥ P
P ≥ 0
λ≥ 0
2w−2λ = 0
2ℓ−2λ = 0
λ

(
w + ℓ− P

2
)

= 0w = ℓ = P
4 λ = P

4

KKT
encode

optimize

solve

FIGURE 3: Rewrite using KKT in an example where we find
a rectangle’s optimal width w and length ℓ such that its perime-
ter is ≥ P . The inner variables are w and ℓ. The right panel
shows the feasibility problem using the KKT theorem. Equations
with λ variables correspond to first-order derivatives of inequality
constraints in the original problem. P is a variable of the outer
optimization but is treated as a constant in the inner problem.

a feasibility problem. We model the problem as3:

argmax
I

H′(I) − H(I) (leader problem)

s.t. I ∈ ConstrainedSet (input constraints)

H′(I) = max
f ′∈F ′

H′_Objective(f ′,I) (optimal)

H(I) = max
f∈F

H_Objective(f ,I) (heuristic) (2)

where the leader or outer optimization maximizes the differ-
ence between the two functions (i.e., the performance gap)
over a space of possible inputs I. This leader problem is sub-
ject to follower or inner problems (H′ and H). We model the
performance of H’ on input I through H’_Objective. This func-
tion decides the values for the variables f ′, internally encodes
problem constraints, and computes the overall performance
of H′. H’_Objective treats the outer problem’s variables, I, as
input and constant. We define H_Objective the same way.

Bi-level Optimization: A Brief Primer. Modern solvers do
not directly support the style of bi-level optimizations we
described in Equation 2 [36]. To solve these, users need to
rewrite the bi-level optimization as a single-level optimiza-
tion [15]. These rewrites convert an optimization problem
into a set of feasibility constraints: if the inner problems are
both optimizations, the rewrites will replace both H′() and H()
with a set of feasibility constraints in the outer optimization.
The resulting formulation is a single-level optimization that
modern solvers [16, 36] can attempt to solve.

Fig. 3 shows an example of an inner problem and the cor-
responding rewrite. This somewhat contrived example finds
a rectangle’s optimal length and width subject to some con-
straints (the outer problem may want to optimize P). The
rewrite uses the Karush–Kuhn–Tucker (KKT) theorem [22]
and converts convex optimizations with at least one strictly
feasible point [22] into feasibility problems. The theorem
states any point that solves the new problem matches the
solution of the original. We describe another technique in

3Note that we can transform minimization optimizations to maximization
by negating their objective.

930 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

if dk <= Td then

f
p̂k
k = dk

end if
end for
MaxFlow()

DP Pseudocode

OuterVar: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

ForceToZeroIfLeq(dk−f
p̂k
k ,dk,Td)

end for
MaxFlow()

Modeling DP in MetaOpt

FIGURE 4: Modeling DP in MetaOpt. (see Table A.1 for notation)

§3.4, which exploits the Primal-Dual theorem [22]. Both of
these rewriting techniques produce a single-level optimization
equivalent to the bi-level formulation if the inner problems are
convex [15]. The problem MetaOpt solves has properties that
allow us to reduce the overhead of these rewrites (see §3.3).

3.2 MetaOpt: The User View

Inputs. MetaOpt could have asked the user to input the single-
level formulation, which can be hard and error-prone. The
rewritten single-level formulation can have an order of mag-
nitude more constraints than the original bi-level formulation
(§4) and is hard to optimize for practitioners who do not
understand bi-level optimizations.

MetaOpt simply lets the user input H and H′ (Fig. 2). It then
automatically produces a single-level formulation, optimizes
the rewrites, feeds these into a solver of the user’s choice
(MetaOpt currently supports Gurobi [36] and Zen [16]), and
produces performance gaps and adversarial inputs.

How to specify H or H′. It can be hard to describe H or H′ in
the optimization language. When we modeled problems in
MetaOpt, we observed certain constructs are common across
many heuristics. We encode these as helper functions to make
it easier for users less familiar with optimization theory to
model their heuristics. The set of helper functions is not com-
plete (there may be constraints for which we have not devised
a corresponding helper function) but the interface is extensible
and we can add new functions as needed.

For instance, a user who wants to compare the performance
of DP and the optimal TE multi-commodity flow would have
to specify the formulation of both of these algorithms. Stan-
dard textbooks describe the former [17], so we focus on the
latter. DP involves a conditional (an if statement on the left
of Fig. 4) where the outcome is determined based on the de-
mands. These demand values are variables of the outer prob-
lem and unknown apriori, which means we need to determine
the outcome of these conditionals as part of the optimization
and model them as convex constraints.

We can use the big-M method [22] (§A.3) to convert this
if statement into constraints optimization solvers support.
MetaOpt provides a helper function, ForceToZeroIfLeq (see
Fig. 4), to help users do this conversion. This level of indi-
rection makes it easier for the user to specify DP and also

aligned? feasibility?

as is

convex?

as is

primal-dual
kkt

NA

H′ or H N

Y

N

Y N

Y

FIGURE 5: MetaOpt automatically converts the bi-level problem
to a single-level optimization. It supports any follower, which
either (1) is a convex optimization; (2) is a feasibility problem; or
(3) has an objective that aligns with the outer problem.

gives MetaOpt the flexibility to optimize or change the formu-
lations when needed. For example, the big-M method causes
numerical instability in larger problems, and MetaOpt uses an
alternate method to convert it to constraints (see §A.3).

Our helper functions (§D, Table A.8) codify common de-
sign patterns and help specify constraints across a diverse set
of problems. We show how to use and combine them to model
other heuristics, such as, FFD, which involves greedy deci-
sions, and SP-PIFO, which involves dynamic priority updates.
These helper functions encode succinct and readable models.

3.3 Automatic Rewrites
MetaOpt produces a bi-level optimization from H′ and H
(Equation 2) and then automatically rewrites it. While the
underlying theory behind rewrites is well-known [15], to our
knowledge, there are no automated rewriters, and the pro-
cess has required human intervention until now. We need
to be careful when we automate rewrites. For example, one
challenge is modeling non-linear constraints that involve the
multiplication of variables. In the Primal-Dual rewrite (§3.4),
the constraints in the dual depend on the type of optimization
(maximization or minimization) and whether the correspond-
ing primal variable is unconstrained, positive, or negative [22].

We have developed automatic rewrite techniques for KKT,
Primal-Dual, and a new variant of the latter (i.e., Quantized
Primal-Dual §3.4). Users can choose which rewrite they use.

MetaOpt does not naïvely rewrite the bi-level formulation
and only rewrites the inner problems if necessary. We call this
technique selective rewriting. It avoids rewriting in two cases
(Fig. 5): when the inner problem is a feasibility problem or
when it is “aligned”. In these cases, we can directly merge
the inner problem’s constraints into the outer problem and
remove its objective if they have one.

An aligned inner problem is one where optimizing the outer
problem’s objective directly or indirectly optimizes the inner
problem as well. We observe that the objective of MetaOpt
is such that one of H′ or H is always aligned with the outer
problem. The outer problem maximizes H′ and minimizes H to
maximize the gap. This aligns with H′ if H′ is a maximization
problem and with H when H is a minimization (both H and H′

solve the same problem, so they are either both maximizations
or both minimizations).

For all other instances, we need to rewrite the inner problem.
MetaOpt currently rewrites an inner problem only if it is an

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 931

solve for w,ℓ,λ

2(w + ℓ) ≥ P
λ ≥ 0
P ≥ 0
P λ − 2λ2 = w2 + ℓ2

Primal-dual

solve for w,ℓ,λ

2(w + ℓ) ≥
Q∑

j=1
Ljxj

λ ≥ 0

xj ∈ {0,1}
∑Q

j=1 xj ≤ 1

Q∑
j=1

Ljzj − 2λ2 = w2 + ℓ2

zj = λxj ∀j ∈ {1, . . . ,Q}

Quantized Primal-dual

P =
Q∑

j=1
Ljxj

FIGURE 6: Left shows rewrite using primal-dual theorem. It
has fewer constraints and different multiplicative terms (P λ ver-
sus λ(w + ℓ − P

2) in the KKT rewrite). On the right, we show
how to quantize the parameters of the outer problem (P). The
QPD rewrite no longer has any multiplicative terms since we can
linearize the multiplication of binary (xj) and continuous vari-
ables (λ). The quadratic terms (e.g., w2) is due to the quadratic
objective of the original problem. Ljs are constants.

unaligned convex optimization. KKT and Primal-Dual apply
to these cases. MetaOpt also supports unaligned non-convex
inner problems that can be written as a feasibility problem
(e.g.,SP-PIFO and FFD). See §5 for other extensions.

With all this, MetaOpt generates a single-level formulation
that is equivalent to the bi-level optimization, preserves the
theoretical properties, and scales well.

3.4 The Quantized Primal-Dual Rewrite
The KKT rewrite does not scale beyond small problems. It
introduces multiplicative terms (pink highlighted constraint in
Fig. 3) that commodity solvers support (special ordered sets
in Gurobi [36] and disjunctions in Z3 [55]). However, these
constraints with multiplicative terms slow down the solvers
and dictate their latency.

A similar observation holds for the Primal-Dual
rewrite [15]. It uses the strong duality theorem [22] to convert
an optimization into a feasibility problem. According to this
theorem, any feasible point of a convex problem is optimal
iff the primal objective at that point is the same as the dual.
Therefore, the Primal-Dual rewrite contains a constraint that
ensures the primal and dual objectives are equal in addition
to the primal and the dual constraints. Fig. 6 (left) shows
the Primal-Dual rewrite for the optimization in Fig. 3. This
rewrite can generally result in non-linear constraints that
impact the scalability.

To scale, we have developed a technique called Quantized
Primal-Dual (QPD) that converts the Primal-Dual rewrite into
a simpler problem (see Fig. 6). In QPD, we replace the input
P with

∑Q
j=1 Ljxj where Ljs are constants we choose a

priori and xjs are binary variables. We require
∑

j xj ≤ 1,
which means the outer problem has to pick one of the Q+1
values (0,L1, . . . ,LQ) for P . We only need to quantize the
leader’s variables that appear in the multiplicative terms of

Cluster 3

Cluster 1
Cluster 2

(a) Clustered Topology.

d35d30

d50 d53

d05d03

0

d34

0 d04

0

0 d24

d43

d02

d10

d20

d40

d60

d70

d01

0

d21

d31

d41

d51

d61

d71

d12

d32

d42

d52

d62

d72

d13

d23

d63

d73

d14

0

d54

d64

d74

d15

d25

d45

d65

d75

d06

d16

d26

d36

d46

d56

0

d76

d07

d17

d27

d37

d47

d57

d67

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

D11 D12 D13

D21 D23

D31 D32 D33

D22

(b) Clustered Demand Matrix.

3.2

9.7

00

0

0.80.3

1.1 00

0

0

0

0

0

0

0 0

0

0

0 0 0 0

00 0

00

0

0.8

8.9

1.1

1.4

000

0

0 0

0

0 0

4.9

0

0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

0 0

0

0

0.1

0

0

0

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0.7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

0 0

0.1

3.6

3.2

0.1

1.4

5.9

2.4

0.7

0

0

0.5

0.1

0.6

1.5

8.9

1.5

9.9

1.3

7.6

0

5.9

0

0

0.7

2.6

0

0

0

0

0.2

1.9

0.3

6.5

0

4.1

0.8

2.0

9.5

0.5

2.4

0

9.8

6.2

0.4

1.6

5.8

4.6

0.8

0.7

0

Cl
us

te
r

1
Cl

us
te

r
2

Cl
us

te
r

3

Cluster 1 Cluster 2 Cluster 3

Initialization
D = 0

Intra-Cluster Demands (Dii)
Ex. Find worst-case D11
Fix rest of the demands

Inter-Cluster Demands (Dij)
Ex. Find worst-case D31
Fix rest of the demands

(c) MetaOpt’s Clustering Method.

FIGURE 7: Partitioning in MetaOpt. We first find the demands
that maximize the gap between H′ and H in each cluster. We then
fix the demands within each cluster and, one by one, find the
demands between pairs of clusters that increase the gap.

the Primal-Dual rewrite. The inner problem is still optimal
under this rewrite, but we trade off the optimality of the outer
problem for speed by quantizing the input space.

Two challenges remain: (a) determining the number of
quanta and (b) picking the values (Lj). Using more quanta
leads to more integer variables, slowing down the solver. Us-
ing fewer quanta results in lower-quality adversaries as we
will limit the input to only a few pre-selected values.

Since QPD rewrites are much faster to solve than the other
rewrites, we can sweep multiple quanta choices and pick the
best. We use the exact KKT rewrite on smaller problems to
find good candidates. We observe empirically that adversarial
inputs occur at so-called extreme points. For example, the
worst-case demands have either 0 or the maximum possible
value in POP4. Although we do not have a formal proof,
we conjecture that the intuition behind these observations is
similar to the intuition behind the simplex theorem [18].

We evaluate how these rewrites impact the scalability and
investigate the approximation gap of QPD in §4.

3.5 Partitioning to Scale MetaOpt

We have found it necessary to use more aggressive scaling
techniques to analyze problem instances at practical scales,
such as TE heuristics for realistic topologies and demands.
One such technique is partitioning. We can partition any

4For DP, the worst-case demands take values of 0, the demand pinning
threshold Td, or the maximum possible demand.

932 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Topology #Nodes #Edges #Part. DP POP
Cogentco 197 486 10 33.9% 20.76%

Uninett2010 74 202 8 28.4% 20.15%
Abilene [65] 10 26 – 12.69% 17.31%

B4 [39] 12 38 – 13.16% 17.89%
SWAN [38] 8 24 – 2.29% 22.08%
TABLE 3: Details of the topologies used in §4.1 and discovered gap.

problem, but we show the key steps in Fig. 7 for the TE
heuristics where the problem has an intrinsic graph structure.

First, we partition nodes in the underlying network graph
into clusters and solve the rewritten single-level optimization
on each cluster in parallel. In this step, we only consider the
intra-cluster demands (the diagonal pink blocks in Fig. 7).

We then freeze the demands from the last step and find the
demands between pairs of clusters that worsen the gap by solv-
ing the rewritten problem on each pair. This step iteratively
fills the blue blocks of the demand matrix in Fig. 7.

We can parallelize the second step between cluster pairs
with little overlap and produce an overall demand by adding
the values MetaOpt discovers after invoking each optimiza-
tion. This method speeds up MetaOpt because each individual
optimization, whether per cluster or per cluster pair, is much
smaller than the overall problem.

We empirically find this partitioning approach consistently
discovers inputs with large performance gaps. This is because
more than one adversarial input exists, and our partitioning
method does not bias against them. For example, the adver-
sarial inputs for DP follow a common pattern where demands
between distant nodes are just below the threshold. For such
inputs, the heuristic wastes the capacity of many links by
routing the demands on their shortest paths. In contrast, the
optimal routing allocates those link capacities to multiple de-
mands between nearby nodes. Our partitioning method still
allows MetaOpt to find many inputs with this pattern.

4 Evaluation
We apply MetaOpt to traffic engineering, vector bin pack-
ing, and packet scheduling heuristics to show its generality.
MetaOpt helped us quantify and understand the performance
gaps of heuristics, prove theoretical properties, and design
heuristics with lower performance gaps. Table 1 summarizes
our findings. We also show the importance of our optimiza-
tions in MetaOpt and quantify its speed and scalability.

Implementation. Our prototype is in C# and uses Gurobi
v9.5.2 [36]. We also have a port that uses Z3 [55]. To partition
the graph, we adapt the previous code [3, 25] for spectral
clustering [59] and FM partitioning [19,24] and report results
for different cluster numbers and clustering techniques.

4.1 Heuristics for WAN Traffic Engineering
In this section, we (a) obtain performance gaps for DP and
POP with respect to the optimal max-flow algorithm and (b)
devise modified versions of these heuristics based on our

Heu Additional Constraints on I Density Gap

DP
– 54.06% 33.9%
locality (distance of large demands ≤ 4) 12.03% 33.4%

POP
– 16.14% 20.76%
locality (distance of large demands ≤ 4) 4.74% 20.70%

(a) Impact of adding locality constraints on gap and density.

0 5 10 15 20 25
distance

0
10
20
30
40
50

Fr
ac

tio
n

of

 d
em

an
ds

 (%
)

Large Demands ≤ 4
No Constraint

(b) Impact of adding locality constraints on DP

0 5 10 15 20 25
distance

0
10
20
30
40
50

Fr
ac

tio
n

of

 d
em

an
ds

 (%
)

Large Demands ≤ 4
No Constraint

(c) Impact of adding locality constraints on POP

FIGURE 8: Using MetaOpt to find practical adversarial inputs on
Cogentco. We can find more local and sparser adversarial inputs
by constraining the input space.

analysis of their adversarial patterns.

Experiment Setup. We use K-shortest paths [73] to find the
paths between node pairs (= 4 if unspecified). We constrain
the demands to be below a maximum value (half the average
link capacity if unspecified) to ensure they are realistic and a
single demand does not create a bottleneck. For DP, we vary
the demand pinning threshold (=5% of average link capacity
if unspecified). For POP, we vary the number of partitions
(=2 if unspecified) and report the average gap over 5 random
trials (see §A.3). We report runtimes on an AMD Opteron
2.4GHz CPU (6234) with 24 cores and 64GB of memory and
use all available threads (unless mentioned otherwise). We
timeout each optimization after 20 minutes.

Topologies. We use two large topologies from [1] and three
public production topologies [38, 39, 65] (Table 3).

Metrics. We normalize the performance gap by the sum of
the link capacities so we can compare across different scales.

Finding performance gaps. We compare DP and POP to the
optimal max-flow on topologies that range from 8 to nearly
200 nodes (Table 3). We use the QPD rewrite (§3.4) and
partitioning (§3.5) for most experiments but do not need the
partitioning technique for small topologies (SWAN, B4, and
Abilene). DP’s performance gap ranges from 2% to over 33%.
POP also exhibits a large performance gap (up to 22%).

These performance gaps are over any possible input de-
mand. We can also use MetaOpt to obtain performance gaps
on realistic inputs. Production demands are sparse and ex-
hibit strong locality [3]. We can express these properties in
MetaOpt through constraints on the input space (I in Equa-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 933

http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/Uninett2010.jpg

0.0 2.5 5.0 7.5 10.0 12.5
norm threshold (%)

0

10

20

30
no

rm
 a

dv
er

s
 g

ap
 (%

) Abilene B4 SWAN

(a) Gap vs. the threshold value for DP.

2 4 6 8
#connected nearest neighbors

0
10
20
30
40
50

no
rm

 a
dv

er
s

 g
ap

 (%
) #nodes

13 11 9

(b) Gap vs. connectivity.

FIGURE 9: DP’s performance gap increases with the threshold
and decreases with the connectivity.

tion 2). The gaps for DP and POP on those inputs are only
slighly lower than in the unconstrained case, but we find ad-
versarial demands that are sparser and more local (Fig. 8).

Designing heuristics with lower performance gap. We can
use the adversarial inputs from MetaOpt to design new heuris-
tics or explore whether we can combine heuristics to improve
their gap. We first describe how we identified patterns in the
adversarial inputs of DP and POP and then show how we used
these patterns to improve these heuristics’ performance gap.

Adversarial input patterns for DP. Intuitively, DP’s per-
formance gap increases as we increase its threshold since the
heuristic forces more demands on their shortest path. Yet, the
gap grows faster on some topologies even though they have
roughly the same #nodes, #edges, and diameter.

We used synthetic topologies to study DP. To create each
topology, we start with a ring graph and then connect each
node to a varying number of its nearest neighbors. The re-
sults (Fig. 9(b)) indicate that the performance gap grows with
the (average) shortest path length (fewer connections across
nearest neighbors = longer shortest paths). Intuitively, if the
shortest path lengths are longer on average, DP will use the
capacity on more edges to route the small demands. This re-
duces the available capacity to route the rest of the demands.

Adversarial input patterns for POP. Since POP is a ran-
dom heuristic, we search for inputs that maximize the ex-
pected gap. We approximate this expectation by an empirical
average over n random partition samples. Then, we check
whether the adversarial inputs can generalize by testing them
on 100 other random instances. When MetaOpt uses a small
number of samples to estimate the expected gap, the adver-
sarial inputs overfit. We can improve its generalization by
increasing the number of samples but at the cost of scalability.
We find n = 5 permits scaling without overfitting (Fig. 10(a)).

POP’s performance gap increases as we increase the num-
ber of paritions because each partition (1) gets a smaller frac-

1 2 3 4 5 6 7 8 9 10
#random instances of Pop to compute average

8
12
16
20
24

no
rm

 a
dv

er
s

 g
ap

 (%
) Discovered 100 other random inst.

(a) Gap vs. instances to approximate the expected value.

1 2 3 4
num paths

10
20
30
40
50

no
rm

 a
dv

er
s

 g
ap

 (%
)

5-part 4-part 3-part 2-part

(b) Gap vs. #paths and #partitions for avg POP.

FIGURE 10: POP’s performance gap when varying (a) #instances
to approximate average and (b) #paths and #partitions.

Heuristic Distance Threshold wrt avg link cap
DP – 0.1%

modified-DP
≤ 6 1% (10x)
≤ 4 5% (50x)

(a) Maximum threshold such that discovered gap ∼ 5%.

modified-DP
 ≤ 4

modified-DP
 ≤ 6

modified-DP
 ≤ 8

DP
0

10
20
30
40

no
rm

 a
dv

er
s

 g
ap

 (%
)

1.40 5.16 5.04

26.41

7.79

32.64

17.49

33.39
Td = 1%
Td = 5%

(b) DP vs. modified-DP

FIGURE 11: We propose modified-DP based on insights from
MetaOpt. It only pins small demands between near nodes, is more
resilient, and pins more demands with the same gap.

tion of each edge’s capacity, and (2) has less information
about the global state. We can reduce this gap by increasing
the number of paths as it helps each partition better allocate
the fragmented capacity.

Modified-DP. DP has a higher performance gap when
nodes have a larger average distance. We use this insight to
modify DP and design a heuristic with a lower gap. Modified-
DP only pins demands that are (a) smaller than a threshold
and (b) between nodes less than k hops apart (user specifies
k). This heuristic routes small demands between distant nodes
optimally, leaving more capacity for other demands. Its gap
is 12.5× smaller than DP for Td = 1% and k = 4.

Increasing the distance threshold in modified-DP allows
for better scalability by pinning more demands but at the cost
of a higher performance gap. MetaOpt can help users adjust
the parameter k based on their needs.

Modified-DP has another benefit. We can use a higher
demand threshold (10 - 50×) and maintain the same gap as
the original DP. We show this by using MetaOpt to compute
the maximum threshold each method can admit while having a

934 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

max #balls ball size granularity FFD(IMetaOpt)
20 0.01× 8
20 0.05× 7
14 0.01× 7

TABLE 4: MetaOpt finds slightly tighter bounds when constrain-
ing the number and size of balls. For OPT(I)=6, the tightest
known theoretical bound for FFD [30] is 8. This assumes the
input can have unlimited balls of any size.

OPT(I) MetaOpt theoretical bound [60]
#balls approx ratio #balls approx ratio

2 6 2.0 4 1.0
3 9 2.0 12 1.33
4 12 2.0 24 1.5
5 15 2.0 40 1.6

TABLE 5: MetaOpt finds adversarial examples with tighter ap-
prox. ratio for 2d-FFD than the best known theoretical bound [60].

gap≤ 5% (Fig. 11(a)). Operators can leverage this to pin more
demands when small demands exhibit strong locality [3].

Meta-POP-DP. This meta-heuristic runs POP and DP in
parallel and selects the best solution for each input. The two
heuristics appear to have distinct adversarial inputs: DP under-
performs when distant pairs have small demands, and POP
when large demands that go through the same link end up
in the same partition. We expected combining them would
reduce the performance gap significantly compared to each
one. But MetaOpt shows the new heuristic only improves
the performance gap by 6% on the Cogentco topology. It
finds inputs where small demands are between distant pairs
(adversarial to DP) and large demands are between nearby
nodes that end up in the same partition (adversarial to POP).

4.2 Heuristics for Vector Bin Packing

We use MetaOpt to (a) derive performance gaps that verify
known results for FFD in one dimension and (b) prove a new
property for FFD in 2 dimensions.

Finding performance gaps. Performance in FFD is measured
by the number of bins required to fit a given number of balls.
After decades of theoretical studies on 1d-FFD [14, 30, 43,
52], the work in [30] established the tight bound FFD(I)≤
11
9 H′(I)+ 6

9 for any I (H′ is the optimal). To prove tightness,
the authors craft a careful example where H′(I) = 6 bins
and FFD(I) = 8. MetaOpt found the same example when we
constrained its inputs to H′(I) = 6 and proved FFD needs 8
bins in the worst-case.

[30] assumes (1) I can have an unlimited number of balls
and (2) the balls in I can have any size (even 0.00001cm3!).
However, when packing jobs (balls) in machines (bins) [68],
we often know a priori an upper bound on the number of jobs
or the quantization levels for resource requirements. We can
incorporate such constraints and ensure MetaOpt finds practi-
cal performance gaps. As Table 4 shows, when we constrain
the number of balls and the ball sizes, MetaOpt finds adver-

SP-PIFO PIFO(OPT)
0

2

4

6

No
rm

 A
vg

 d
el

ay

3

11

3
4 4

Better

Priorities: 100 1 0

FIGURE 12: SP-PIFO can delay the highest priority packet (rank
= 0) by 3×. We show the average delay of packets with the same
priority normalized by the average delay of the highest-priority
packets in PIFO. We assume packets have priorities between
0 - 100, and the queues can admit all the packets (similar to
SP-PIFO). When 10K packets arrive at the same time, and the
queues drain at 40 Gbps, the average delay for the highest priority
packets in PIFO is 0.74ms (the performance gap in this figure is
independent of the number of packets).

MetaOpt max objective #priority inversions
SP-PIFO [5] AIFO [74]

AIFO()−SP-PIFO() 6 37
SP-PIFO()−AIFO() 24 11

TABLE 6: Using MetaOpt to compare two heuristics. We show
the number of priority inversions on an 18-packet trace from
MetaOpt. The total queue size is 12 and SP-PIFO has 4 queues.

sarial inputs that produce a tighter bound compared to [30].

Proving properties. While multi-dimensional FFD is widely
used in practice [35,37,53], its theoretical guarantees are less
well understood. Recently, [60] crafted an example where 2-
dimensional FFDSum uses α times more bins than the optimal.
α ∈ [1,2) and α→ 2 as the optimal tends to infinity. In other
words, α is strictly less than 2 for a finite size problem.

MetaOpt found adversarial inputs with α = 2 for every
problem size we considered (Table 5). For example, when the
optimal uses 4 bins, MetaOpt finds an adversarial input with
12 balls causing FFDSum to use 8 bins. In constrast, [60] uses
24 balls and only achieves approximation ratio of 1.5.

We studied the adversarial inputs from MetaOpt and proved
the following theorem, establishing an approximation ratio of
at least 2 for FFDSum. §B.2 contains the detailed proof.

Theorem 1. In 2-dimensional VBP, for any k > 1, there exists
an input I with OPT (I) = k and FFDSum(I)≥ 2k.

4.3 Heuristics for Packet Scheduling
We use MetaOpt to compare the performance of SP-PIFO with
both optimal (PIFO [64]) and another heuristic (AIFO [74]).
Unlike SP-PIFO, AIFO uses a single queue but adds admission
control based on packet priorities to approximate PIFO.

Finding performance gaps. We use the average delay of
packets weighted by their priorities to compare PIFO and SP-
PIFO. MetaOpt discovers packet traces where SP-PIFO fails
to prioritize packets correctly and incurs 3× higher delays for
high-priority packets than PIFO (Fig. 12).

We also use MetaOpt to compare SP-PIFO and AIFO. Un-
like SP-PIFO, AIFO is designed for shallow-buffered switches,
and its admission control can drop packets. For a fair compar-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 935

10 2 10 1 100 101 102 103 104104

time (s) - log scale
0.0

0.5

1.0

1.5

2.0

2.5

no
rm

 a
dv

er
s g

ap
 (%

)

Better

MetaOpt SA HC Random

(a) Gap vs. latency for B4 + DP (Td = 1%)

MetaOpt SA HC Random
0
2
4
6
8

10
12

no
rm

 a
dv

er
s g

ap
 (%

)

10.26

0.96 0.88 0.92

Better

(b) B4 + DP (Td = 5%)

MetaOpt SA HC Random
0

5

10

15

20

no
rm

 a
dv

er
s g

ap
 (%

)

17.11

10.21 10.22

5.85

Better

(c) B4 + average gap of POP

10 2 10 1 100 101 102 103 104104 105

time (s) - log scale
0
2
4
6
8

10
12
14

no
rm

 a
dv

er
s g

ap
 (%

)

Better

MetaOpt SA HC Random

(d) Gap vs. latency for Cogentco + DP (Td = 1%)

MetaOpt SA HC Random
0
5

10
15
20
25
30

no
rm

 a
dv

er
s g

ap
 (%

) 26.48

10.64 10.55 8.79

Better

(e) Cogentco + DP (Td = 5%)

MetaOpt SA HC Random
0

5

10

15

20

no
rm

 a
dv

er
s g

ap
 (%

)

18.42

7.83 7.90 7.17

Better

(f) Cogentco + average gap of POP

FIGURE 13: MetaOpt is faster and finds larger gaps between OPT and POP or DP on Cogentco and B4. We report the gap relative to the
total capacity and use only one thread to run each method for fair comparison (SA = Simulated Annealing, HC = Hill Climbing).

ison, we assume both heuristics use the same switch buffer
size, and we split the buffer evenly across SP-PIFO queues.
With limited buffers, these algorithms may drop packets, so
we need to consider the impact of their respective drop rates
when comparing their performance. We borrow a metric from
SP-PIFO: we count k priority inversions when a packet is
inserted in a queue after k lower priority packets (even if the
queue is full and the packet would have been dropped). We
found (Table 6):

AIFO sometimes outperforms SP-PIFO because (1) it has
one large queue instead of n smaller ones – SP-PIFO drops
many packets when faced with a burst of packets with the
same priority since it assigns them to a single smaller queue;
and (2) SP-PIFO lacks admission control – we can create an
adversarial pattern where lower-priority packets arrive right
before a group of high-priority ones to make SP-PIFO admit
the lower-priority packets and drop the higher-priority ones.

But SP-PIFO also sometimes outperforms AIFO because
(1) AIFO lacks a sorting mechanism, which can cause high-
priority packets to get delayed behind lower-priority ones,
and (2) AIFO depends on an estimate of the distribution based
on the most recent window of packets. MetaOpt found traces
in which a few packets with entirely different priorities com-
pared to others can disrupt AIFO’s distribution estimate!

Proving properties. MetaOpt shows that SP-PIFO’s adver-
sarial inputs exhibit significant priority inversions. We used
these inputs to prove a lower bound on the worst-case per-
formance gap, in terms of priority-weighted average delay,
between SP-PIFO and PIFO (see §C.3):

Theorem 2. For any number of packets N ≥ 1, integer pri-
orities between 0−Rmax and q ≥ 2 queues, there exists
a sequence of packets I where the difference between the
weighted average packet delay that results from SP-PIFO is

(Rmax−1)(N −1−p)p where p = ⌈(N −1)/2⌉ (3)

worse compared to PIFO.

Designing better heuristics. SP-PIFO uses the same set of
queues to schedule packets with a wide range of priorities. We
found it underperforms when the difference between packet
priorities is large. Theorem 2 also confirms this, as the gap is
proportional to Rmax.

We evaluated a Modified-SP-PIFO, in which we limited the
range of packet priorities that can compete with each other:
we formed m queue groups where each group served a fixed
priority range. SP-PIFO runs on queues within a group. This
modified version can reduce the gap of SP-PIFO by 2.5×.

4.4 Evaluating MetaOpt

We show MetaOpt can find solutions faster than other baseline
search methods and helps users describe H′ and H in a compact
way. We also show how our various design choices help.

How fast MetaOpt discovers a performance gap. Alterna-
tives to MetaOpt include random search, hill climbing [29],
and simulated annealing [45]. Random search repeatedly
picks new random inputs and returns the one with a max-
imum gap. Hill climbing (HC) and simulated annealing (SA)
use information from past observed inputs to guide the search
(more details in §E).

936 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

#binary var #contin var #constr
100

102

104

106

lo
g

sc
al

e

0.
0K

0.
4K

0.
2K

0.
0K

0.
4K

0.
2K

0.
3K 1.

8K

2.
2K

0.
3K 2.

3K 3.
6K

1.
2K 2.
7K 4.
0K

1.
9K 3.
5K 6.
0K

Better

MaxFlow
DP

QPD selective
QPD always

KKT selective
KKT always

FIGURE 14: Users specify DP and OPT in MetaOpt. We show
the complexity of these specifications and the rewrites in terms of
the number of variables and constraints (see Fig. A.2 for POP).

MetaOpt finds 1.7× - 17× larger gaps than the next best
(Fig. 13). The baselines fail since they ignore the heuristic’s
details and treat it as a black box. MetaOpt uses its knowledge
of the heuristic and the topology to guide the search.

MetaOpt is the only method that consistently discovers
substantially larger gaps over time, while other techniques
get stuck in local optima and improve only slightly even after
many hours (Fig. 13(a), 13(d)).

Input and rewrite complexity. Users specify H′ and H, and
MetaOpt automatically applies selective rewrites (§3.3) to
scale better. We evaluate how complex these specifications
and rewrites are regarding the number of binary variables,
continuous variables, and constraints (Fig. 14). In general,
solvers perform better if these quantities are lower.

We use DP as an example to highlight three features in
MetaOpt’s design (Fig. 14). The three metrics show the user’s
inputs are more compact than the rewritten optimization; they
have a fifth of the constraints and half the number of con-
tinuous variables. This quantifies how MetaOpt’s automatic
rewrites can reduce the user’s burden. Selective rewrites are
important: we can use them to reduce the number of con-
straints (2.2K vs. 3.6K for QPD) and continuous variables
(1.8K vs. 2.3K for QPD) compared to when we always rewrite
the bi-level optimization. We can produce more compact spec-
ifications (with fewer variables and constraints) through QPD
compared to KKT, even with selective rewrites. This explains
why it helps MetaOpt scale.

The impact of partitioning. MetaOpt partitions the problem
to find larger gaps faster than both (non-partitioned) quan-
tized primal-dual and KKT, even on medium-sized topologies
(Fig. 15(a)). For larger topologies, KKT and primal-dual can-
not find large gaps without partitioning.

As we increase the number of partitions, MetaOpt scales
better and finds larger gaps until it eventually plateaus (10 for
Cogentco in Fig. 15(b)). We can slightly improve the gap if
we double the solver timeout.

The inter-cluster step in partitioning is important, especially
for heuristics that underperform when demands are between
distant nodes (DP in Fig. 15(c)). The partitioning algorithm
also impacts the discovered gap (Fig. 15(d)).

The impact of quantization. To quantify, we compare the
relative difference between the gap from quantized primal-

100 101 102 103 104104 105

time (s) - log scale

0
10
20
30
40

no
rm

 a
dv

er
s

 g
ap

 (%
) BetterQuantized PD w clustering

Quantized PD
KKT

(a) KKT vs Quantized primal-dual vs w partitioning on Uninett2010

4 6 8 10 12 14 16
0

10
20
30
40

no
rm

 a
dv

er
s

 g
ap

 (%
)

timeout
600 1200

(b) Number of partitions and solver timeout on Cogentco

DP (1%) DP (5%) Avg POP0
5

10
15
20
25
30
35

no
rm

 a
dv

er
s g

ap
 (%

) wo inter
w inter

(c) Inter-cluster on Cogentco

FM Spectral0
5

10
15
20
25
30
35

no
rm

 a
dv

er
s g

ap
 (%

)

(d) Graph partitioning on Cogentco

FIGURE 15: Partitioning helps MetaOpt find larger gaps faster.

dual and KKT (which does not use quantization). We found
quantization has little impact on solution quality: 4% for
DP and 0 for POP on B4 (we can not scale KKT to larger
topologies). For POP, we use two quantiles: 0 and the max
demand. If a demand d in an uncongested partition falls in
between these values, forcing the demand to zero cannot
decrease the gap: the rewrite’s throughput would drop by d,
and the optimal throughput by some value between 0 and d.
A similar argument applies to the congested case.

We use three quantiles for DP: 0, the threshold, and the max
demand. For a high enough threshold, quantized primal-dual
may avoid assigning the threshold value to demands between
distant nodes to not violate capacity constraints, whereas KKT
can assign any value, which causes the relative difference in
solution quality.

5 Discussion
We have shown MetaOpt applies to various heuristics in mul-
tiple domains. We have developed a simple partitioning tech-
nique to scale MetaOpt to large problem instances (with parti-
tioning, it focuses on finding large performance gaps instead
of the worst-case). We defer the following to future work:

Application to a broader set of heuristics. MetaOpt only ap-
plies to heuristics, which we can model as convex or feasibility
problems. A number of heuristics in systems and networking
do not fit in either of these two categories (e.g., mixed integer
maximizations or minimizations [76] that we cannot cast as
a feasibility problem). Our approach in MetaOpt has roots
in the theory of Stackelberg games and goes beyond bi-level

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 937

optimization. We discuss how the theory in this space can
help extend MetaOpt’s scope in §6.

Finding adversarial settings. The set up (e.g., topology in
DP) influences the performance gap as well. Users can model
this aspect as part of MetaOpt and find adversarial problem
settings. This may impact MetaOpt’s scalability.

Ease of use. In MetaOpt, users have to write their heuristics in
the optimization language, which requires expertise. MetaOpt
provides a set of helper functions to simplify the process.
However, there is room for improvement in enabling users to
model their heuristics and extending MetaOpt to explain why
a heuristic underperforms automatically.

6 Extending MetaOpt’s scope
We observe the dynamics of the problem MetaOpt addresses
resembles leader-follower games (Stackelberg equilibria [49]).
In such games, a leader maximizes their payoff and controls
the inputs to one or more followers. With this fixed input from
the leader, the followers have to respond and optimize for
their own payoff and decide outputs, which the leader does
not control but influences their payoff.

These games apply to a variety of leader-follower combi-
nations (e.g., optimization-based and Bayesian) and there
are various techniques to find the equilibrium in such
games [21, 44, 70, 75]. Hence, in theory, we can use these
techniques to analyze the performance gaps of a broader class
of heuristics than MetaOpt currently supports, as long as we
have a leader-follower combination where we know how to
compute the equilibrium. This is future work.

7 Related Work
To the best of our knowledge, no prior work finds provable ad-
versarial inputs for heuristics that approximate optimal prob-
lems. Our techniques (e.g., big-M, convex rewrites, and gener-
ally translating the problem to one that is amenable to off-the-
shelf solvers) are not per-se novel [8, 26, 31], and prior work
in networking have used some of these theories [6, 11, 12, 42].
However, no other work has combined them in this way. We
also extend them to randomized, conditional, and sequential
non-convex heuristics. Without our changes, we could not
apply existing solvers directly or quickly find large gaps.

Our qualitative results – the optimality gap and hard exam-
ples for POP, DP, FFD, SP-PIFO, and AIFO – are novel. We
also find and prove tighter bounds for the optimality gap of
FFD and SP-PIFO.

Our work is different from most prior techniques. Tradi-
tional algorithmic worst- or average-case analyses [27,54] are
specific to an individual heuristic and must be applied case by
case. We cannot do such analyses for some heuristics as they
only find loose bounds or do not account for realistic input
constraints (none exist for DP, POP, or [63, 76]).

Verification methods seek inputs that violate an statically-
specified safety or correctness invariant on a given func-

tion [41]. In contrast, we look for inputs that maximize the
performance gap.

Model checking approaches based on SMT solvers [4, 7, 9,
10, 34] can search for adversarial inputs that result in perfor-
mance gaps greater than a fixed bound when users can encode
both the optimal and heuristic as pure feasibility problems.
However, these approaches cannot handle bi-level optimiza-
tion, where the optimal or heuristic must be formulated as
optimizations (e.g., traffic engineering).

Local search algorithms [29, 45] apply to any (potentially
black-box) heuristic or optimal algorithm. However, the flip
side of such generality is that they are slow on large input
spaces, get stuck in local optima, and fail to find practical
inputs because they ignore the inner workings of the heuristic.

Recent work finds malicious inputs to learned tech-
niques [33, 51]. However, none of these find provably large
gaps or even consider the optimal algorithm. Other broadly
related work include [13, 28, 50, 61].

Our partitioning approach is different from [3,58]. NCFlow
and POP need to return a feasible solution given an input
(e.g., one that respects capacity and path constraints). As a
result, they have to combine the solutions from all partitions to
ensure their feasibility. This makes them complex when they
have to enforce global constraints. For example, POP [58]
sacrifices quality and partitions demands separately to ensure
the sub-problems enforce rigorous constraints. MetaOpt does
not need such constraints because it generates an input for the
problem, not the solution. Notice a certain ‘coming full circle’
aspect here: we use a similar (but not the same) partitioning
to analyze the optimality gap of POP quickly.

This paper is an extended version of [56]. Compared to this
workshop paper, we changed the methodology to improve
generality and scalability, added helper functions for ease
of use, added support for heuristics from VBP and packet
scheduling, and did a more extensive evaluation.

8 Conclusion
MetaOpt is a heuristic analyzer for heuristics that can be posed
as an optimization or a feasibility problem. It can be used to
find performance gaps at scale, prove lower bounds on worst-
case gaps, and devise improvements to heuristics. At its core,
MetaOpt solves a bi-level optimization problem. To do this
efficiently, it selectively rewrites heuristic specifications as
a single-level optimization, and incorporates several scaling
techniques. Future work can include using it to evaluate and
improve other heuristics, increasing its expressivity (§6), and
identifying infeasible inputs instead of adversarial ones.

Acknowledgments. We thank our shepherd, Marco Chiesa,
and the anonymous reviewers for their insightful comments.
We also thank Siva Kakarla, Rodrigo Fonseca, Jeff Mogul,
Jay Lorch, and Daniel Berger for their helpful feedback. This
material is based upon work supported in part by the U.S.
National Science Foundation under grant No. CNS-1901523.

938 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Internet Topology Zoo. http://www.topology-

zoo.org/.

[2] Yarn resource allocation of multiple resource-types.
https://bit.ly/3YMDL2Z.

[3] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In NSDI, 2021.

[4] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Mar-
tins, and Srinivasan Seshan. Automating network heuris-
tic design and analysis. In HotNets, 2022.

[5] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. {SP-PIFO}: Approximating {Push-In}{First-
Out} behaviors using {Strict-Priority} queues. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 59–76, 2020.

[6] David Applegate and Edith Cohen. Making intra-
domain routing robust to changing and uncertain traf-
fic demands: Understanding fundamental tradeoffs. In
Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 313–324, 2003.

[7] Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit
Agarwal. Formal methods for network performance
analysis. In NSDI, 2023.

[8] Bryan Arguello, Richard L. Chen, William E. Hart,
John D. Siirola, and Jean-Paul Watson. Modeling
bilevel program in pyomo. https://www.osti.gov/
servlets/purl/1526125.

[9] Venkat Arun, Mohammad Alizadeh, and Hari Balakr-
ishnan. Starvation in end-to-end congestion control. In
SIGCOMM, 2022.

[10] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. Toward
formally verifying congestion control behavior. In SIG-
COMM, 2021.

[11] Behnaz Arzani, Alexander Gurney, Bo Li, Xianglong
Han, Roch Guerin, and Boon Thau Loo. Fixroute: A uni-
fied logic and numerical tool for provably safe internet
traffic engineering. arXiv preprint arXiv:1511.08791,
2015.

[12] Behnaz Arzani, Nicholas Iodice, Steven Hwang, Praha-
lad Venkataramanan, Roch Geurin, and Boon Thau Loo.
Sunstar: A cost-effective multi-server solution for reli-
able video delivery. arXiv preprint arXiv:1812.00109,
2018.

[13] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang,
and Justine Sherry. Surgeprotector: Mitigating tem-
poral algorithmic complexity attacks using adversarial
scheduling. In SIGCOMM, 2022.

[14] Brenda S Baker. A new proof for the first-fit decreasing
bin-packing algorithm. Journal of Algorithms, 1985.

[15] Y. Beck and M. Schmidt. A Gentle and Incom-
plete Introduction to Bilevel Optimization. https:
//optimization-online.org/?p=17182, July 2023.

[16] Ryan Beckett and Ratul Mahajan. A general framework
for compositional network modeling. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
pages 8–15, 2020.

[17] Dimitri Bertsekas and Robert Gallager. Data Networks.
Englewood Cliffs, 1992.

[18] Dimitris Bertsimas and John N Tsitsiklis. Introduction
to linear optimization, volume 6. Athena Scientific
Belmont, MA, 1997.

[19] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks, 2008.

[20] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi,
Ishai Menache, Nikolaj Bjørner, Asaf Valadarsky,
and Michael Schapira. TEAVAR: striking the
right utilization-availability balance in WAN traffic
engineering. In SIGCOMM, 2019.

[21] Branislav Bosansky and Jiri Cermak. Sequence-
form algorithm for computing stackelberg equilibria
in extensive-form games. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29, 2015.

[22] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

[23] Wu chang Feng, Francis Chang, Wu chi Feng, and
Jonathan Walpole. Provisioning on-line games: A traffic
analysis of a busy counter-strike server.

[24] A. Clauset, M.E.J. Newman, and C. Moore. Finding
community structure in very large networks. Phys. Rev.,
2004.

[25] Aaron Clauset. Fast Modularity Community Structure
Inference Algorithm. https://bit.ly/3aAVGQH.

[26] Benoît Colson, Patrice Marcotte, and Gilles Savard.
Bilevel programming: A survey. 4OR, 2005.

[27] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 939

http://www.topology-zoo.org/
http://www.topology-zoo.org/
https://bit.ly/3YMDL2Z
https://www.osti.gov/servlets/purl/1526125
https://www.osti.gov/servlets/purl/1526125
https://optimization-online.org/?p=17182
https://optimization-online.org/?p=17182
https://bit.ly/3aAVGQH

[28] Anthony Corso, Robert Moss, Mark Koren, Ritchie Lee,
and Mykel Kochenderfer. A survey of algorithms for
black-box safety validation of cyber-physical systems.
Journal of AI Research, 2021.

[29] L. Davis. Bit-climbing, representational bias, and test
suit design. Proc. Intl. Conf. Genetic Algorithm, pages
18–23, 1991.

[30] György Dósa. The tight bound of first fit decreasing
bin-packing algorithm is ffd(i) ≤ 11/9opt(i) + 6/9.
In Combinatorics, Algorithms, Probabilistic and Exper-
imental Methodologies: First International Symposium,
ESCAPE. Springer, 2007.

[31] Pablo Garcia-Herreros, Lei Zhang, Pratik Misra, Erdem
Arslan, Sanjay Mehta, and Ignacio E Grossmann. Mixed-
integer bilevel optimization for capacity planning with
rational markets. Computers & Chemical Engineering,
86:33–47, 2016.

[32] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

[33] Tomer Gilad, Nathan H. Jay, Michael Shnaiderman,
Brighten Godfrey, and Michael Schapira. Robustify-
ing network protocols with adversarial examples. In
HotNets. ACM, 2019.

[34] Saksham Goel, Benjamin Mikek, Jehad Aly, Venkat
Arun, Ahmed Saeed, and Aditya Akella. Quantitative
verification of scheduling heuristics. arXiv preprint
arXiv:2301.04205, 2023.

[35] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In SIGCOMM,
2014.

[36] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2022.

[37] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: Vm allocation service at scale. In
OSDI, 2020.

[38] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In SIGCOMM, 2013.

[39] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, and Min Zhu. B4: Experi-
ence with a globally-deployed software defined WAN.
In SIGCOMM, 2013.

[40] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Bren-
dan Lucier, and Ishai Menache. Dynamic pricing and
traffic engineering for timely inter-datacenter transfers.
In SIGCOMM, 2016.

[41] Ranjit Jhala and Rupak Majumdar. Software model
checking. ACM Comput. Surv., 41:21:1–21:54, 2009.

[42] Chuan Jiang, Sanjay Rao, and Mohit Tawarmalani. Pcf:
provably resilient flexible routing. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 139–153, 2020.

[43] David S Johnson. Near-optimal bin packing algo-
rithms. PhD thesis, Massachusetts Institute of Tech-
nology, 1973.

[44] Jan Karwowski, Jacek Mańdziuk, and Adam Żychowski.
Sequential stackelberg games with bounded rationality.
Applied Soft Computing, 132:109846, 2023.

[45] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[46] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BLASTSHIELD. In NSDI,
2022.

[47] Alok Kumar et al. Bwe: Flexible, hierarchical bandwidth
allocation for wan distributed computing. In SIGCOMM,
2015.

[48] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa
Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah, Samir
Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Mar-
cus Fontoura, and Ricardo Bianchini. Pond: Cxl-based
memory pooling systems for cloud platforms, 2022.

[49] Tao Li and Suresh P Sethi. A review of dynamic stackel-
berg game models. Discrete & Continuous Dynamical
Systems-B, 22(1):125, 2017.

[50] Zinan Lin, Hao Liang, Giulia Fanti, and Vyas Sekar.
Raregan: Generating samples for rare classes. arXiv
preprint arXiv:2203.10674, 2022.

[51] Roland Meier, Thomas Holterbach, Stephan Keck,
Matthias Stähli, Vincent Lenders, Ankit Singla, and Lau-
rent Vanbever. (self) driving under the influence: Intox-
icating adversarial network inputs. In HotNets. ACM,
2019.

940 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[52] Yue Minyi. A simple proof of the inequality ffd(l)≤
11/9opt(l) + 1, ∀l, for the ffd bin-packing algorithm.
Acta Mathematicae Applicatae Sinca, 1991.

[53] Jayashree Mohan, Amar Phanishayee, Janardhan Kulka-
rni, and Vijay Chidambaram. Looking beyond GPUs
for DNN scheduling on Multi-Tenant clusters. In OSDI,
2022.

[54] Rajeev Motwani and Prabhakar Raghavan. Randomized
algorithms. Cambridge university press, 1995.

[55] Leonardo de Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[56] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago
Segarra, Himanshu Raj, and Srikanth Kandula. Mind-
ing the gap between fast heuristics and their optimal
counterparts. In HotNets, 2022.

[57] Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santi-
ago Segarra, Daniel Crankshaw, Umesh Krishnaswamy,
Ramesh Govindan, and Himanshu Raj. Solving Max-
Min Fair Resource Allocations Quickly on Large
Graphs. In NSDI, 2024.

[58] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving large-scale
granular resource allocation problems efficiently with
POP. In SOSP, 2021.

[59] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On
spectral clustering: Analysis and an algorithm. In NIPS,
2002.

[60] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. January 2011.

[61] Pedro Reviriego and Daniel Ting. Breaking cuckoo hash:
Black box attacks. IEEE Transactions on Dependable
and Secure Computing, 2021.

[62] Thomas Sauerwald. Sorting networks. https:
//www.cl.cam.ac.uk/teaching/1415/AdvAlgo/
advalg.pdf.

[63] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-effective ca-
pacity provisioning in wide area networks with Shoofly.
In SIGCOMM, 2021.

[64] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling

at line rate. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 44–57, New York,
NY, USA, 2016. Association for Computing Machinery.

[65] Stanford University IT. Abilene core topology, 2015.

[66] Mark Stillwell, David Schanzenbach, Frédéric Vivien,
and Henri Casanova. Resource allocation algorithms
for virtualized service hosting platforms. Journal of
Parallel and Distributed Computing, 2010.

[67] Chunqiang Tang, Malgorzata Steinder, Michael Spre-
itzer, and Giovanni Pacifici. A scalable application
placement controller for enterprise data centers. In
WWW, 2007.

[68] Abhishek Verma, Madhukar Korupolu, and John Wilkes.
Evaluating job packing in warehouse-scale computing.
In 2014 IEEE International Conference on Cluster Com-
puting (CLUSTER), 2014.

[69] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Eu-
roSys, 2015.

[70] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao
Li. Fast algorithms for stackelberg prediction game
with least squares loss. In International Conference on
Machine Learning, pages 10708–10716. PMLR, 2021.

[71] Gerhard J. Woeginger. There is no asymptotic ptas for
two-dimensional vector packing. Inf. Process. Lett.,
1998.

[72] Timothy Wood, Prashant Shenoy, Arun Venkataramani,
and Mazin Yousif. Black-box and gray-box strategies
for virtual machine migration. In NSDI, 2007.

[73] Jin Y. Yen. Finding the K Shortest Loopless Paths in a
Network. Management Science, 17(11):712–716, 1971.

[74] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun,
Vladimir Braverman, Mosharaf Chowdhury, Zhenhua
Liu, and Xin Jin. Programmable packet scheduling
with a single queue. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page
179–193, New York, NY, USA, 2021. Association for
Computing Machinery.

[75] Yunxiao Zhang and Pasquale Malacaria. Bayesian stack-
elberg games for cyber-security decision support. Deci-
sion Support Systems, 148:113599, 2021.

[76] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj,
Jonathan Leach, Yiting Xia, and Ying Zhang. Arrow:
Restoration-aware traffic engineering. In SIGCOMM,
2021.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 941

https://www.cl.cam.ac.uk/teaching/1415/AdvAlgo/advalg.pdf
https://www.cl.cam.ac.uk/teaching/1415/AdvAlgo/advalg.pdf
https://www.cl.cam.ac.uk/teaching/1415/AdvAlgo/advalg.pdf

Term Meaning

V,E,D,P Sets of nodes, edges, demands, and paths

N,M,K Number of nodes, edges, and demands, i.e., N =
|V|,M = |E|,K = |D|

ce,p ce: capacity of edge e ∈ E
path p: set of connected edges

(sk, tk,dk) The kth element in D has source and target
nodes (sk, tk ∈ V) and a non-negative vol-
ume (dk)

f ,fp
k

f : flow assignment vector with elements fk

fp
k

: flow for demand k on path p

TABLE A.1: Multi-commodity flow problems’ notation.

A Details of Traffic Engineering
Table A.1 summarizes our notation.

A.1 Multi-commodity flow problem
The optimal form of WAN-TE typically involves solving a
multi-commodity flow problem. Given a set of nodes, capac-
itated edges, demands, and pre-chosen paths per demand, a
flow allocation is feasible if it satisfies demand and capac-
ity constraints. The goal is to find a feasible flow to opti-
mize a given objective (e.g., total flow [3], max-min fair-
ness [38,39,57], or utility curves [47]). We define the feasible
flow over a pre-configured set of paths as (see Table A.1)

FeasibleFlow(V,E ,D,P) ≜
{

f | (4)

fk =
∑

p∈Pk

fp
k , ∀k ∈ D (flow for demand k)

fk ≤ dk, ∀k ∈ D (flow below volume)∑
k,p|p∈Pk,e∈p

fp
k ≤ ce, ∀e ∈ E (flow below capacity)

fp
k ≥ 0 ∀p ∈ P,k ∈ D (non-negative flow)

}
Among all the feasible flows, the optimal solution seeks to

maximize the total flow across the network:

OptMaxFlow(V,E ,D,P) ≜argmax
f

∑
k∈D

fk (5)

s.t. f ∈ FeasibleFlow(V,E ,D,P).

A.2 More details on DP and POP heuristics

Demand Pinning (DP) [46]. First, it routes all demands at or
below a predefined threshold Td through their shortest path.
It then jointly routes the rest of the demands optimally over
multiple paths:

DemandPinning(D,P) ≜
{

f | (6)

fp
k =

{
dk if p is shortest path in Pk

0 otherwise
, ∀k ∈ D : dk ≤ Td

}
,

We can pose DP as an optimization with constraints that
route demands below the threshold on the shortest paths:

DemPinMaxFlow(V,E,D,P) ≜argmax
f

∑
k∈D

fk (7)

s.t. f ∈ FeasibleFlow(V,E,D,P)
f ∈ DemandPinning(D,P)

Partitioned Optimization Problems (POP). [58] POP di-
vides node pairs (and their demands) uniformly at random
into partitions, assigns each partition an even share of edge
capacities, and solves the original problem (e.g., the SWAN
optimization [38]) in parallel, once per partition.

POPMaxFlow(V,E ,D,P) ≜ (8)⋃
part. c

OptMaxFlow(V,Ec,Dc,P),

where ∪ is the vector union, the per-partition demands Dc

are disjoint subsets of the actual demands drawn uniformly at
random, and the per-partition edge list Ec matches the original
edges but with proportionally smaller capacities.

A.3 Formulation of DP and POP

Demand Pinning formulation for quantized demands. DP
has conditional or if clauses: if a demand is smaller than the
threshold Td, then route it over its shortest path; otherwise,
use the optimal algorithm to route it.

We describe the shortest path for demand k using p̂k and
write the if clause as:

f p̂k

k ≥
Q∑

q=1
1 [Lq ≤ Td]Lqxk

q , ∀k ∈ D. (9)

The {0,L1, . . . ,LQ} are the quantas and xk
q s are binary vari-

ables that pick which quanta is active for demand k. The term
1 [Lq ≤ Td] is constant at runtime and only shows which
terms exist in the sum.

Note that dk =
∑

q Lqxk
q by the definition of quantization.

Thus, if the demand dk is smaller than the threshold Td, Equa-
tion 9 will ensure that the allocation on the shortest path is
equal to dk.5

Demand Pinning big-M formulation. We can also encode
DP using the standard big-M approach from optimization
theory. This formulation does not require quantized demands
and is useful for the KKT rewrite. However, big-M can cause
numerical instability at scale.

5When dk ≤ Td, Equation 9 effectively becomes f
p̂k
k
≥ dk . In the

converse case (dk > Td), Equation 9 becomes f
p̂k
k
≥ 0 (a no-op).

942 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

if dk <= Td then

f
p̂k
k

= dk

end if
end for
MaxFlow()

DP Pseudocode

OuterVar: dk requested rate of demand k

Input: Pk paths for demand k

Input: p̂k shortest path
Input: Td demand pinning threshold
for all demand k ∈ D do

ForceToZeroIfLeq(dk−f
p̂k
k

,dk,Td)
end for
MaxFlow()

Modeling DP in MetaOpt

MetaOpt

FIGURE A.1: The pseudocode for DP and how users can model it in MetaOpt using the helper functions.

#binary var #contin var #constr
100

102

104

106

lo
g

sc
al

e

0.
0K

0.
4K

0.
2K

0.
0K

0.
3K

0.
1K0.
1K 5.

5K

5.
2K

0.
1K 6.

0K

6.
0K

3.
7K 7.
6K 11
.9

K

4.
4K 8.
5K 13
.9

K

Better

MaxFlow
POP

QPD selective
QPD always

KKT selective
KKT always

FIGURE A.2: The complexity of user’s input for POP and the
subsequent rewrites in terms of the size of the optimization.

∑
p∈Pk, p ̸=p̂k

fp
k ≤ max(M(dk − Td),0) , ∀k ∈ D,

dk − f p̂k

k ≤ max(M(dk − Td),0) , ∀k ∈ D,

where M is a large pre-specified constant. Notice that when-
ever demand dk is below the threshold Td, the constraints
allocate zero flow on all but the (default) shortest path — DP
routes the full demand on the default path in such cases. We
can use standard optimization theory to convert the max in
these constraints into a set of linear constraints [22] (this re-
quires us modifying the objective but does not impact the final
solution’s quality).

Partitioned Optimization Problems Formulation. POP is
convex as it is the union of solutions to disjoint linear opti-
mizations (Equation 8). It is hard to encode POP as it uses
random partitions, which makes POP (I) a random variable
in the leader problem, but MetaOpt needs a deterministic
representation of the heuristic. We can consider a specific
instance of each random variable (e.g., one random assign-
ment of demands to partitions). However, it will overfit to that
instance and not reflect POP’s true behavior.

We use the expected value or tail percentile of the gap from
multiple random trials. To compute the average, we replace
H in Equation 2 with its expected value and approximate the
expectation through empirical averages over a few randomly
generated partitions (see §4.1). To find the tail, we use a

sorting network [40, 62] to compute the desired percentile
across multiple random trials.

In addition, we encode an advanced version of POP in §A.4
that splits large demands across multiple partitions instead of
assigning each demand to one partition.

A.4 POP Client Splitting
In §2, we introduce the (basic) POP heuristic [58], which
incorporates resource splitting for our WAN TE problem,
and in §A.3, we present POP as a convex optimization. The
work in [58] also specifies an extended full-fleshed version of
POP that incorporates “client splitting”. We next show how
to express this variant as a convex optimization problem.

We can think of POP client splitting as an operation that
takes in a set of demands D and returns a modified set Dcs =
ClientSplit(D) that can then be input into POP as in (8). The
function ClientSplit() generates several duplicates of the
existing demands and reduces their volume in proportion. It
performs several operations where it replaces (sk, tk,dk)∈D
with two elements of the form (sk, tk,dk/2). It iterates and
repeats this operation until it terminates (see [58]).

We encode a version of client splitting where we split an
element in D if its demand value dk is larger than or equal
to a threshold dth, and we keep splitting it until either we get
to a predefined number of maximum splits (of the original
demand6) or the split demand is lower than dth.

Without loss of generality, we describe this idea for a single
demand d1: we can replicate this process for all demands in
D. Take for example the scenario where we split the demand
at most twice (which creates at most 4 virtual clients). We
a-priori encode all the flow variables for all possible splits
of d1: we use seven variables of the form fi,j instead of the
single fi where f11 is the flow if we do not split the client;
f1,2 and f1,3 are the flows if we split the client once and f1,4
through f1,7 are the flows if we split the client twice. These

6Notice that [58] pre-specifies a total aggregated number of splits across
all clients whereas we set the a maximum for per-client splits. This slight
modification facilitates the convex representation of the heuristic.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 943

Term Meaning

i, j,d indexes for ball, bin and dimension

Yi,Cj Multi-dim vectors of ball and bin sizes

Wi Weight of ball i

αij = 1 if ball i is assigned to bin j and 0 otherwise

xij Vector of resources allocated to ball i in bin j

fij = 1 if ball i can fit in bin j and 0 otherwise

TABLE A.2: Our notation to formulate FFD as a feasibility
problem. We use bold to indicate multi-dimensional vectors and
capitalize variables, which are typically constants for FFD, but
can be variables of the outer problem in MetaOpt.

flows have to satisfy:

0≤ f1,1 ≤ d1,

0≤ f1,i ≤
d1
2 , for i ∈ {2,3}

0≤ f1,i ≤
d1
4 , for i ∈ {4,5,6,7}.

The variable f1,1 should be zero unless d1 < dth (when we
do not split clients), which we can achieve using big-M con-
straints (§A.3):

f1,1 ≤max(M(dth−d1),0).
We want f1,2 and f1,3 to be exactly zero unless d1 ≥ dth and
d1/2 < dth, which we can achieve by doing

f1,i ≤max(M(d1−dth + ϵ),0), for i ∈ {2,3},
f1,i ≤max(M(dth−d1/2),0), for i ∈ {2,3},

where we added the small pre-specified ϵ > 0 to allow for the
case where d1 = dth. Lastly, we want f1,4 through f1,7 to be
exactly zero unless d1 ≥ 2dth. We encode this as:

f1,i ≤max(M(d1−2dth + ϵ),0), for i ∈ {4,5,6,7}.
We can replicate this procedure for all dk and encode POP
with client splitting as a convex optimization problem. Once
this is done, the techniques in §3.4 apply.

B Details of Vector Bin Packing
B.1 Formulation of FFD (First-Fit-Decreasing)
We formulate the first-fit-decreasing heuristic as a feasibility
problem (a set of constraints and no objective). Such a formu-
lation allows the bi-level optimization in MetaOpt to become
a single-level optimization without a rewrite (§3.3). To our
knowledge, this formulation of FFD is novel.

Modeling FFD using MetaOpt’s helper functions.
Fig. A.3 (right) shows how users can easily model FFD
without having to go through the mathematical details. It
also shows the mapping between the helper functions and the
pseudocode using different colors.

Details of how we model FFD as an optimization. Table A.2
lists our notation. The model uses binary variables. It is not

Bin index j −→
Fit fij 0 0 1 0 1 1
RHS of Equation 11 0 1

2 1 2
4

4
5

4
6

αij 0 0 1 0 0 0
TABLE A.3: Illustrating how we model first-fit in Equation 11.

a scalable method to solve FFD in practical systems, and we
propose it only as an effective method to find adversarial
inputs for the FFD heuristic.

Modeling decreasing ball weights: Recall that FFD places
the unassigned ball with the largest weight in each iteration.
We can use a sorting network [62] to ensure we pick balls in
decreasing order. Instead, we propose a simpler alternative:

We observe the ball-weighting functions are a fixed func-
tion of the ball size. Let Y be a multi-dimension vector that
captures the size of the i’th ball on each dimension. Then, the
weight of the i’th ball, Wi, is

∑
d Y d

i in FFDSum [66],
∏

d Y d
i

in FFDProd [72] and Y 1
i /Y 2

i in FFDDiv [67] respectively.7

We constrain the input space (ConstrainedSet in Equa-
tion 2) to ensure that we assign balls in decreasing order of
their weight if we assign them based on their index:

Wi ≥ Wi+1 ∀item i (10)

Modeling first-fit: FFD assigns each ball to the first bin that
has enough capacity. Let bins be ordered by their index and
αij be a binary variable with value of 1 iff bin j is the first bin
(i.e., the one with the smallest index) that has enough capacity
for ball i. We model the first-fit constraint as:

αij ≤
fij +

∑
bin k<j(1 − fik)

j
∀itemi, ∀bin j (11)∑

bin j

αij = 1 ∀item i (12)

Table A.3 shows an example that illustrates this constraint in
action. It is easy to prove that the right-hand-side of Eqn. 11 is
1 for the first bin where the ball can fit (i.e., smallest index in
set of bins {j∥ fit fij = 1}) and less than 1 for all other bins.
The second constraint is necessary to ensure that αij = 1 for
exactly the first-fitting bin for each ball.

Modeling resource allocation and capacity constraints:
We first ensure our allocation is consistent with the ball as-
signment: we allocate sufficient resources only from the as-
signed bin (not any other bin). We can do this simply by:
xij ≜ Yiαij . Here, the resource assigned to a ball i at bin j
(xij) is simply the product of the ball size vector Y with the
assignment indicator variable α. But Y is a variable of the
outer (or leader) problem, so such equations are non-linear.
To linearize, we use a technique similar to what is colloqui-
ally known as big-M in optimization literature. Let Z be an

7The FFDDiv function applies only to two dimensions.

944 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: Y(size of balls), C(capacity of bins)
for all ball i do

for all bin j do
rij = Cj −Yi−

∑
ball u<i

xd
uj

if ∀d : rd
ij ≥ 0 and ∀d,k < j : xd

ik = 0 then

xij = Yi

else
xij = 0

end if
end for

end for

FFD Pseudocode

OuterVar: Y(size of balls)
Input: C(capacity of bins)
for all ball i do

for all bin j do
rij = Cj −Yi−

∑
ball u<i

xd
uj

fij = AllLeq([−rd
ij]d,0)

γij = AllEq([xd
ik]d,k<j,0)

αij = AND(fij ,γij)

IfThenElse(αij, [(xij ,Yi)], [(xij ,0)])
end for

end for

Modeling FFD in MetaOpt

MetaOpt

FIGURE A.3: The pseudocode for FFD and how users can model it in MetaOpt using the helper functions.

appropriately large postive constant, then:

xd
ij ≤ Zαij ∀item i ∀binj ∀dimd (13)∑

bin j

xd
ij = Y d

i ∀item i ∀dimd (14)

We define the residual capacity of bin j after placing ball i
in it as (remember we allocate ball i only after we place all
the balls with a lower index):

rij ≜ Cj − Yi −
∑

balls u<i

xuj ∀item i ∀binj (15)

The sum on the right captures how much resources we have
already allocated to other balls from this bin. We next ensure
fij is 1 iff the bin j has adequate resources to fit ball i. Let
M be some appropriately large positive constant:

min
d

rd
ij ≤ Mfij ≤ M + min

d
rd

ij , ∀item i ∀binj ∀dimd (16)

Here, if ball i fits in bin j, the residual capacity rd
ij should

be greater than 0 across all dimensions d. Therefore, Equa-
tion 16 clamps Mf between a positive number and M plus
that positive number (remember rij is the remaining capacity
of bin j after placing ball i in it).8 Since f is a binary variable,
the only feasible assignment in this case is 1. Conversely, if
the ball does not fit in a bin, the residual capacity rd

ij is below
0 on at least one dimension d and the constraint in Eqn. 16
clamps Mf to be between a negative number and M plus that
negative number which forces f to be 0. In practice we set
the value of M to be larger than the largest single-dimension
bin capacity (i.e.,maxj,d Cd

j).

8Corner case: when the residual capacity is precisely 0 on all dimensions,
we want f to still be 1, but these constraints will allow f to be 0 as well. This
is a rare case, but it can occur in practice. We can solve this corner case in
a few different ways, including adding a small value ϵ to the left-most term
in Equation 16.

Unique solution for FFD: The Equations 11–16 uniquely
specify a solution to the iterative first-fit-decreasing heuristic.
These constraints are linear even if the ball and bin sizes are
variables in the outer problem. This is key because MetaOpt
can apply without having to rewrite the heuristic follower.
Counting the number of bins: In this case, MetaOpt seeks in-
puts that cause the heuristic to use more bins than the optimal.
To find such adversarial inputs, the outer (leader) problem
needs the number of bins used by FFD:

Num. bins used by FFD ≜
∑
bin j

max
ball i

αij . (17)

The term simply counts bins that have at least one ball. This
is linear (max has a linear rewrite) and does not give rise to
any additional concerns.

B.2 Proof of Theorem 1
Our goal is to show that for any k > 1, an input I exists where
FFDSum(I) needs at least 2k bins while OPT(I) only needs
k. Since we are proving a lower bound on the approximation
ratio of FFDSum, it suffices to show an example for each k.
We do this by the following; for every value of k > 1, we can
find m and p such that k = 2m + 3p and p ∈ {0,1}. Then,
we create an example consisting of 6m + 9p balls where
FFDSum(I) = 2OPT(I) = 2k. We show the constructed
example in Table A.4 along with the allocation from OPT
and FFDSum.

C Details of Packet Scheduling Heuristics
We describe how we model SP-PIFO [5] and AIFO [74] as
feasibility problems. These formulations are to the best of
our knowledge novel. Table A.5 lists our general notations,
and Table A.6 and Table A.7 show our specific notations for
SP-PIFO and AIFO respectively.

Definition (Ranks and Priorities). Packet scheduling pa-
pers [5, 74] use both ranks and priorities: a packet with a

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 945

Ball Ball Wei Num Bin ID Bin ID
ID Size ght (OPT) (FFD)
1 [0.92, 0.00] 0.92 m B1 B1
2 [0.91, 0.01] 0.92 m B2 B2
3 [0.48, 0.20] 0.68


×p

C1 C1
4 [0.68, 0.00] 0.68 C2 C2
5 [0.52, 0.12] 0.64 C3 C1
6 [0.32, 0.32] 0.64 C3 C2
7 [0.19, 0.45] 0.64 C2 C3
8 [0.42, 0.22] 0.64 C1 C3
9 [0.10, 0.54] 0.64 C1 C4
10 [0.10, 0.54] 0.64 C2 C5
11 [0.10, 0.53] 0.63 C3 C6
12 [0.06, 0.48] 0.54 m B2 B1
13 [0.07, 0.47] 0.54 m B1 B2
14 [0.01, 0.53] 0.54 m B1 B3
15 [0.03, 0.51] 0.54 m B2 B4

TABLE A.4: Constructed example to prove the approximation
ratio of 2d-FFDSum is always lower bounded by 2 for any value
of OPT(I) > 1.

higher rank has a lower priority and vice-versa. If a packet
has rank Rp, and Rmax is the maximum possible rank, we
can compute the the packet’s priority by Rmax−Rp. This
ensures that all the packets with a rank lower than Rp have
higher priority values, and all those with a rank higher than
Rp have lower priority values.

C.1 Formulation of SP-PIFO
SP-PIFO approximates PIFO [64] using n strict priority FIFO
queues. It keeps a packet rank for each queue (i.e., queue rank)
that shows the lower bound on packet ranks the queue admits.
For each packet, it starts from the lowest priority queue until
it finds the first queue that can admit the packet (packet rank
≥ queue rank). If a queue admits the packet, SP-PIFO adds
the packet to the queue and updates the queue rank to the
recently admitted packet’s rank (i.e., push up). If none of
the queues admit the packet (packet rank < highest-priority
queue rank), it reduces the rank of all the queues such that the
highest-priority queue can admit the packet (i.e., push down).
Fig. A.4 (left) shows the pseudocode for SP-PIFO.

Modeling SP-PIFO using MetaOpt’s helper functions.
Fig. A.4 (right) shows how users can easily model SP-PIFO
without having to go through the mathematical details. It
also shows the mapping between the helper functions and the
pseudocode using different colors.

Modeling push down. SP-PIFO reduces the rank of all the
queues if none of the queues can admit the packet. This hap-
pens when the rank of the highest priority queue is higher
than the packet rank (Rp). We model this as:

l̂pq = lp−1
q + max(0, lp−1

N − Rp) (18)

This constraint keeps the queue ranks the same if the packet

Term Meaning

P,p Number of packets and index for packet

Rmax,Rp Maximum rank and Rank of packet p

wp Weight of packet p

dpj = 1 if packet p dequeued after j, o.w. = 0

TABLE A.5: Our notation for formulating packet scheduling
heuristics as feasibility problems. We capitalize variables which
are typically constants for heuristic but can be variables of the
outer problem in MetaOpt.

Term Meaning

N,q number of queues, and index for queue

lp−1 vector of queue ranks when deciding for packet p

l̂p vector of queue ranks after push down for packet p

xpq = 1 if packet p is in queue q, o.w. =0

TABLE A.6: Additional Notations for SP-PIFO.

rank Rp is greater than the highest priority queue lp−1
N . Oth-

erwise, it applies push down and reduces the rank of all the
queues so that the highest priority queue can admit the packet
(after the update, the rank of highest priority queue N is the
same as packet rank Rp).

Deciding on the proper queue. Recall SP-PIFO adds a
packet to the queue with the lowest priority among the ones
that can admit the packet; that is the q that admits the packet
(Rp ≥ l̂pq) but the one lower priority queue q− 1 does not
admit the packet (Rp < l̂pq−1). We model this as following:

Mxpq ≤ M + Rp − l̂pq ∀packetp ∀queueq (19)

Mxpq ≤ M + l̂pq−1 − Rp − ϵ ∀packetp ∀queueq (20)∑
q

xpq = 1 ∀packetp (21)

where M is a large constant (≥ Rmax) and ϵ is a small
constant (< 1). The first constraint ensures a queue with rank
greater than the rank of the packet does not admit the packet (if
Rp < l̂pq , the constraint forces xpq to 0). The second constraint
ensures a queue does not admit the packet if a lower priority
queue admits the packet (if Rp ≥ l̂pq−1, the constraint forces
xpq to). The last constraint forces the optimization to place
the packet in one of the queues.

Modeling push up. Recall SP-PIFO updates the rank of the
queue to the most recently admitted packet’s rank. We model
this as:

lpq = l̂pq + xpq(Rp − l̂pq) ∀packetp ∀queueq (22)

This constraint only updates the rank of queue q to Rp if the
packet is placed in the queue (xpq = 1). We can linearize this
constraint [22].

Unique solution for SP-PIFO. We can combine these con-

946 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input: incoming packets p with rank Rp

Input: number of queues N

l0 = 0
for all packet p do

if Rp < lp−1
N then

l̂p = lp−1 + (Rp− lp−1
N)

end if
for queue q ∈ {1, . . . ,N} do

if l̂pq ≤Rp < l̂pq−1 then

xpq = 1

lpq = Rp

else
xpq = 0

end if
end for

end for

SP-PIFO Pseudocode

OuterVar: incoming packets p with rank Rp

Input: number of queues N

l0 = 0
for all packets p do

αp = IsLeq(Rp− lp−1
N − ϵ,0)

IfThen(αp, [(̂lp, lp−1 + Rp− lp−1
N)])

for all queue q ∈ {1, . . . ,N} do

upq = IsLeq(Rp− l̂pq−1− ϵ,0)

lpq = IsLeq(l̂pq −Rp,0)

fpq = AND(up, lp)

IfThenElse(fpq , [(xpq ,1),(lpq ,Rp)], [(xpq ,0)])
end for

end for

Modeling SP-PIFO in MetaOpt

MetaOpt

FIGURE A.4: The pseudocode for SP-PIFO and how users can model it in MetaOpt using the helper functions.

straints to uniquely specify SP-PIFO’s decisions on a se-
quence of incoming packets. All these constraints are linear
or linearizable using standard techniques even though packet
ranks are variables in the outer problem.

Computing weighted average delay. We measure the gap in
terms of the average delay of forwarding packets weighted
by their priority. To measure delay of a packet, we count
how many packets SP-PIFO decides to dequeue before it. Let
dpj indicate whether packet p is dequeued after packet j. We
model the weighted average delay as:

Weighted avg delay = 1
P

∑
pktp,j ̸=p

(Rmax − Rp)dpj (23)

Next, we define dpj . We first assign weights to the packets
such that the weights respect the order in which the packets
should be dequeued (a packet p has a higher weight than j if
it should be dequeued before j). We assign weights wp as:

wp = −p +
∑

queueq

qP xpq (24)

This weighting guarantees that (1) a packet from a higher
priority queue always has a higher weight than a packet from
a lower priority queue, and (2) among the packets in the same
priority queue, the one arrived earlier has a higher weight.
Packet p is dequeued after packet j if the weight of packet j
is higher.

wj − wp ≤ Mdpj ≤ M + wj − wp ∀packetsp,j (25)

Note that weights are unique.

C.2 Formulation of AIFO
AIFO [74] is an admission control on top of a FIFO queue that
tries to approximate the same set of packets a PIFO queue
would admit and is specifically designed for shallow buffers.
AIFO keeps a window of recently seen packet ranks and com-
putes the relative rank of the new packet with respect to this
window. Then, it compares this quantile estimate with the
fraction of available space in the queue (multiplied by some
constant burst factor). If the quantile is lower or equal, AIFO
admits the packet. Otherwise, it drops the packet.

Finding quantile estimate. Recall that AIFO computes how
many packets in its recent window have lower ranks than an
incomming packet p. We model this as:

Rp − Rj ≤ Mgpj ≤ M + Rp − Rj − ϵ (26)

∀packetp∀packetj : p − K ≤ j ≤ p − 1

gp =
∑

pkt j:p−K≤j≤p

gpj (27)

where M is a large constant (M ≥ Rmax) and ϵ is a small
constant (ϵ < 1). Observe that the first constraint compares
the current packet with the last K packets (the ones in the
window). For every pair, if Rp > Rj , the left constraint in
Equation 26 forces Mgpj to be positive and consequently
gpj = 1 (packet j in the window has a lower rank). If Rp≤Rj ,
the right constraint forces gpj to be 0. Equation 27 keeps
track of the number of packets in the window with rank less
than the rank of packet p. For packets p < K, we add some
additional variables that represent the rank of packets arrived

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 947

Term Meaning

B burst factor

C queue size in the number of packets

ap 1 if packet p is admitted, = 0 if dropped

K number of samples in the window to estimate the
quantile

gp number of packet ranks in the window smaller
than rank of packet p

gpj 1 if rank of packet j in the window is smaller than
rank of packet p

TABLE A.7: Additional Notations for AIFO.

and departed before this sequence.

Deciding to admit or drop. Recall that AIFO admits the
packet if the quantile estimate of the current packet rank is
less than some factor of the available capacity of the queue.
We model this as:

ĉp = B
C −

∑
pkt i<p ai

C
∀packetp (28)

ĉp − gp + ϵ ≤ Zap ≤ Z + ĉp − gp ∀packetp (29)

where Z is a large constant (≥ maximum of window size
and queue size). The first constraint computes the fraction
of available capacity multipled by a constant (burst factor
in [74]) and the second constraint ensures ap = 0 (i.e., we
drop the packet) if the quantile estimate is higher than the
available capacity metric ĉp and ap = 1 otherwise.

Computing the final ordering of packet is similar to SP-
PIFO. These constraints in combination find AIFO’s unique
solution. All the constraints are also linear.

C.3 Proof of Theorem 2

We use the same approach as our proof for FFDSum. We
show a constructive example that matches the gap. In our
example, first p packets with the lowest rank (=0) arrive, then 1
packet with the highest possible rank (=Rmax), and finally, p∗

packets with the second highest possible rank (=Rmax−1).
Given this sequence of packets; SP-PIFO first adds all the

p packets with the lowest rank to the lowest priority queue
and then, updates the queue rank to 0 (i.e., push up). Then, it
adds the highest rank packet to the lowest priority queue and
updates the queue rank to Rmax. Lowest priority queue can
not admit the packets with rank=Rmax−1 anymore because
the condition to admit a packet is that the queue rank should
be lower than the packet rank. So, all the p∗ packets are
enqueued in a higher priority queue. As a result, all these p∗

packets are going to be forwarded before the p packets with
highest priority (Fig. A.5 shows this using an example).

We can compute the weighted sum of packet delays for
SP-PIFO and PIFO as:

77

SP-PIFO
…

p*
008 …

p

H
igher priority

0 …7 087

Incoming Packets
…

pp*

FIGURE A.5: Example of the input trace for SP-PIFO when
Rmax = 8. In this case, SP-PIFO dequeues all the packets with
the lowest rank (highest priority) after all the second lowest pri-
ority packets (r = Rmax − 1). Packets arrived earlier are on the
right side of the queue.

WdelayPIFO = Rmaxp(p − 1)
2 + pp∗ + p∗(p∗ − 1)

2 (30)

WdelaySP-PIFO = p∗(p∗ − 1)
2 + Rmaxpp∗ + Rmaxp(p − 1)

2
(31)

We can compute the difference in the weighted sum of
delays as:

WdelaySP-PIFO − WdelayPIFO = (Rmax − 1)pp∗ (32)

= (Rmax − 1)(N − 1 − p)p

Note that p + p∗ = N − 1. We can derive Theorem 2 by
finding the maximum of Equation 32.

D List of MetaOpt Helper Function
Table A.8 lists the helper functions in MetaOpt. MetaOpt
internally and automatically translates these into constraints.
For specific use cases, please refer to Fig. A.1 for DP, Fig. A.3
for FFD, and Fig. A.4 for SP-PIFO.

E Black-box search methods
We next describe our baselines in more detail. We compared
MetaOpt to these baselines in §4.

Random search. This strawman solution picks random in-
puts, computes the gap, and returns the input that resulted in
the maximum gap after .

Hill climbing is a simple local search algorithm. It first ran-
domly chooses an arbitrary input d0 and then generates its
neighbors (daux): it adds to d0 a value, which it draws from
a zero-mean σ2-variance Gaussian distribution. If this neigh-
boring input increases the gap the hill climber moves to it.
Otherwise it draws another neighbor.

The hill climber repeats these steps until it fails to make
progress and terminates. This happens when it fails to increase
the gap for K consecutive iterations. The hill climber outputs
its current solution as a local maximum once it terminates
(Algorithm 1).

948 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Helper Function Description

IfThen(b, [(xi,Fi())]) if binary variable b = 1 then xi = Fi() for all i.

IfThenElse(b, [xi,Fi()], [(yj,Gj())]) if binary variable b = 1 then xi = Fi() for all i, otherwise yj = Gj() for all j.

b = AllLeq([xi],A) b = 1 if all xis are ≤ a constant A, otherwise b = 0.

b = IsLeq(x,y) b = 1 if x≤ y, otherwise b = 0.

b = AllEq([xi],A) b = 1 if all xis are = a constant A, otherwise b = 0.

b = AND([ui]) b = 1 if all uis are = 1, otherwise b = 0.

b = OR([ui]) b = 1 if at least one ui = 1, otherwise b = 0.

y = Multiplication(u,x) Linearizes multiplication of a binary variable u and a continuous variable x.
(Internally, we choose a simpler encoding if x is non-negative)

y = MAX([xi],A) y = maximum of xis and a constant A.

y = MIN([xi],A) y = minimum of xis and a constant A.

[bi] = FindLargestValue([xi], [ui])
bi = 1 if xi is the largest among the group of variables xj with corresponding
uj = 1, otherwise bi = 0. At least one bi = 1.

[bi] = FindSmallestValue([xi], [ui])
bi = 1 if xi is the smallest among the group of variables xj with corresponding
uj = 1, otherwise bi = 0. At least one bi = 1.

r = Rank(y, [xi]) r = rank of variable y among the group of variables [xi] (quantile).

ForceToZeroIfLeq(v,x,y) Forces v = 0 if x ≤ y (users can model this with IfThen, but this one is cus-
tomized and faster). Internally, we choose a simpler encoding if v is binary.

TABLE A.8: MetaOpt’s helper functions. (b and u are binary variables, and x and y are continuous variables)

Algorithm 1 Hill climbing

Input: d0, σ2, K

d← d0, k← 0
while k < K do

daux←max(d + z,0) where z∼N (0,σ2I)
if gap(daux) > gap(d) then d← daux, k←−1 end if
k← k + 1

end while
Output: d

We re-run the hill climber Mhc times with different initial
inputs and return the solution that produces the maximum gap
to minimize the impact of the starting point.

Simulated annealing refines hill-climbing and seeks to avoid
getting trapped in a local maxima [45]. The difference be-
tween the two algorithms is simulated annealing may still
(with some probability) move to a neighboring input even if
that input does not improve the gap.

Simulated annealing gradually decreases the probability
of moving to inputs that do not change the gap: it defines
a temperature term, tp, which it decreases every Kp itera-
tions to tp+1 = γtp. Here, 0 < γ < 1 which ensures tp→ 0.
If gap(daux) ≤ gap(d), we have d← daux with probabil-
ity exp(gap(daux)−gap(d)

tp
). We repeat the process Msa times

and return the best solution.

Hill climbing vs simulated annealing. Hill climbing has
less parameters and is better suited for smooth optimizations
where there are few local-optima. But simulated annealing
is better suited for intricate non-convex optimizations with
many local-optima because its exploration phase, although
slower, allows it to avoid local optima and works better in the
long run.

Both of these algorithms have a number of hyperparam-
eters: we run grid-search to find the ones that produce the
highest gap.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 949

	Introduction
	Heuristic Analysis at a Glance
	Heuristics and their Importance
	MetaOpt, a Heuristic Analyzer
	Using MetaOpt to Analyze Heuristics

	MetaOpt Design
	MetaOpt Approach
	MetaOpt: The User View
	Automatic Rewrites
	The Quantized Primal-Dual Rewrite
	Partitioning to Scale MetaOpt

	Evaluation
	Heuristics for WAN Traffic Engineering
	Heuristics for Vector Bin Packing
	Heuristics for Packet Scheduling
	Evaluating MetaOpt

	Discussion
	Extending MetaOpt's scope
	Related Work
	Conclusion
	Details of Traffic Engineering
	Multi-commodity flow problem
	More details on DP and POP heuristics
	Formulation of DP and POP
	POP Client Splitting

	Details of Vector Bin Packing
	Formulation of FFD (First-Fit-Decreasing)
	Proof of Theorem 1

	Details of Packet Scheduling Heuristics
	Formulation of SP-PIFO
	Formulation of AIFO
	Proof of Theorem 2

	List of MetaOpt Helper Function
	Black-box search methods

