é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

QuickUpdate: a Real-Time Personalization System
for Large-Scale Recommendation Models

Kiran Kumar Matam, Hani Ramezani, Fan Wang, Zeliang Chen, Yue Dong,
Maomao Ding, Zhiwei Zhao, Zhengyu Zhang, Ellie Wen, and Assaf Eisenman,
Meta, Inc.

https://www.usenix.org/conference/nsdi24/presentation/matam

This paper is included in the
Proceedings of the 21st USENIX Symposium on
Networked Systems Design and Implementation.

April 16-18, 2024 « Santa Clara, CA, USA
978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ LR S————

QuickUpdate: a Real-Time Personalization System for Large-Scale
Recommendation Models

Kiran Kumar Matam, Hani Ramezani, Fan Wang, Zeliang Chen, Yue Dong,
Maomao Ding, Zhiwei Zhao, Zhengyu Zhang, Ellie Wen, and Assaf Eisenman

Meta, Inc.

Abstract

Deep learning recommendation models play an important
role in online companies and consume a major part of the Al
infrastructure dedicated to training and inference. The accu-
racy of these models highly depends on how quickly they are
published on the serving side. One of the main challenges
in improving the model update latency and frequency is the
model size, which has reached the order of Terabytes and is
expected to further increase in the future. The large model
size causes large latency (and write bandwidth) to update
the model in geo-distributed servers. We present QuickUp-
date, a system for real-time personalization of large-scale
recommendation models, that publishes the model in high fre-
quency as part of online training, providing serving accuracy
that is comparable to that of a fully fresh model. The sys-
tem employs novel techniques to minimize the required write
bandwidth, including prioritized parameter updates, intermit-
tent full model updates, model transformations, and relaxed
consistency. We evaluate QuickUpdate using real-world data,
on one of the largest production models in Meta. The results
show that QuickUpdate provides a serving accuracy that is
comparable to a fully fresh model, while reducing the average
published update size and the required bandwidth by over 13x.
It provides a scalable solution for serving production models
in real-time fashion, which is otherwise not feasible at scale
due to the limited network and storage bandwidth.

1 Introduction

Deep Learning Recommendation Models (DLRM) are widely
used in many online companies. These models are trained
using data at scale to learn user and product characteristics,
providing personalized recommendations in a variety of con-
texts. For instance, Netflix [7] and YouTube [4] provide lists
of movies for customers; Amazon [19] and Alibaba [20] rec-
ommend relevant products based on user search queries, and
Google [3] and Meta [23] display ads and contents accord-
ing to user interests. DLRMs consume a major part of the

Al infrastructure in these companies. In Meta, for example,
DLRMs consume more than 80% of the machine learning
inference cycles [8] and more than 50% of the training cycles.

Recommendation models help the business grow. For in-
stance, they contribute to 35% of the entire purchase in Ama-
zon [8, 14]. As a result of such extensive business impact,
accuracy becomes an important performance metrics for rec-
ommendation models at scale. In particular, Meta business
required accuracy loss to be less than 0.01% in designing
checkpoint and quantization algorithms [5]. This is a very
narrow margin, indicating the importance of recommendation
models and their accuracy.

Model freshness is a key contributor to the accuracy of
personalized recommendation models [4, 6,9, 22, 25]. The
accuracy can deteriorate rapidly because the models run in-
ferences in very highly dynamic environments. For instance,
every day new users and items are registered in the system and
user interests may be impacted by recent events. If the model
is not updated frequently, it would not incorporate the changes
in users and products, leading to a gradual deterioration in
accuracy. To further highlight the impact of freshness, Figure
3 displays the significant accuracy loss when the model is not
refreshed for hours. Thus, in order to keep accuracy at an ac-
ceptable level, recommendation models need to be retrained
using the most recent data, and the updated models should be
used to serve real time inferences.

A common technique to keep inference models fresh is
online training. Instead of re-training the model from scratch
each time, it is continuously trained and refined using real-
time streaming data. Periodically, a snapshot of the model is
created and published to hundreds of servers, located across
different geographical regions. These servers then utilize the
model to perform real-time predictions for online queries.
However, updating the serving model incurs latency between
the training cluster and the distributed serving hosts, resulting
in a delay in refreshing the model, primarily due to the large
size of modern models.

Over the years, model sizes have grown rapidly, reach-
ing the scale of terabytes and containing trillions of param-

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 731

eters [5, 10, 15] to capture millions of sparse features and
improve the model accuracy. The limited write bandwidth
poses a challenge when transferring such large models to
distributed servers and storage. As a consequence, the up-
date latency can extend to the order of hours. This prolonged
latency can adversely affect accuracy, as discussed in more
detail in section 3.

To address the above challenges posed by the large model
sizes and their consequent update latency, we present Quick-
Update. QuickUpdate employs the following design elements
to provide real-time personalization of large-scale DLRM:

1. Prioritized parameter update: Performing a complete up-
date of all parameters in each of the serving models across
hundreds of geo-distributed nodes, would require substan-
tial network and storage bandwidths, which constitute a
bottleneck.

QuickUpdate minimizes the update size by performing pri-
oritized parameter selection. It ranks and selects specific
parameters to be updated in the serving model while prun-
ing the remaining ones from the update. This approach
significantly reduces the overall update size and mitigates
the bandwidth demands.

The parameter ranking algorithm is important to avoid
accuracy degradation when minimizing the update size.

2. Intermittent full model update: Intermittent full model
updates occur when a series of consecutive partial updates
are followed by a complete model update. The primary
purpose of these full updates is to maintain long-term ac-
curacy in the serving model. After each partial update, the
serving model deviates from the training model, since the
former still utilizes outdated parameter values. This devi-
ation grows larger with more partial updates, leading to
potential accuracy implications over time. To improve ac-
curacy, a full model update is published intermittently to
limit the gap between the serving model and the training
model.

3. Model transformations for real-time update: QuickUp-

date employs several model transformations to reduce the
published model size, including inference pruning and
quantization.
Quantization has been successfully implemented in some
studies [11,24,27] to reduce floating-point precision with-
out sacrificing accuracy. It helps to reduce the required size
of storage in the inference cluster and the required commu-
nication cost. Inference pruning is implemented on very
large look-up tables. Entities, such as users or videos, and
their corresponding vectors are stored as look-up embed-
ding tables in DLRMs. The entity indices (or IDs) that are
practically inactive are pruned from the serving platform
to significantly reduce the size of the served model.

4. Simplified serving design and relaxed consistency re-
quirements: In traditional serving designs, the model is
fully loaded in the serving platform before starting to serve
queries, to maintain strong consistency. In such designs,

each inference request is executed based on a specific ver-
sion of the model weights, ensuring consistent and reliable
results. However, this approach incurs considerable infras-
tructure overhead due to the use of extra buffer nodes.
In QuickUpdate, we introduce a more efficient serving
design by relaxing the consistency requirements. Instead
of using buffer nodes, the weights are directly updated
in the serving nodes. This eliminates the need for extra
infrastructure and reduces overhead. However, this relaxed
design may result in some inconsistency in the embedding
tables, as they may contain a mixture of fresh and stale
weights.

Despite the potential inconsistency in the embedding tables,

our evaluation demonstrates that the accuracy of the serving

model is not compromised, but rather it leads to accuracy
gains.

We evaluate QuickUpdate using real-world data and one
of the largest models that is deployed in production at Meta.
Overall, our results demonstrate that QuickUpdate is able to
provide a serving accuracy that is comparable to a fully fresh
model, while minimizing the required write bandwidth by
over 13x. It provides a scalable solution for serving produc-
tion DLRM in real-time fashion, which is otherwise not feasi-
ble at scale due to the limited network and storage bandwidth.
QuickUpdate achieves this by leveraging novel techniques,
including selectively publishing the most important parts of
each update, while still incorporating low-frequent intermit-
tent full model updates that ensure long term accuracy.

2 Background

2.1 Deep Learning Recommendation Models
(DLRM)

Typically, deep learning recommendation models are com-
posed of sparse and dense layers, as displayed in Figure
1 [5, 10, 26]. Sparse layers are practically the embedding
tables, where each embedding table represents a categorical
feature and each row of this table represents a specific ID (e.g.,
user ID or video ID). The embedding table transforms each
ID into a fixed size vector with float values that are trainable.
The remaining trainable parts of the model are called dense
layers.

Figure | displays how data flows in a DLRM. Sparse fea-
tures are transformed by embedding tables; and dense features
are transformed by the bottom dense layer. The transformed
features are then concatenated and further transformed in the
top dense layer to compute a likelihood for the input data.

2.1.1 Training DLRM

Parallelization is the main approach to train recommendation
models at scale [5, 8]. Different parallelization logic can be
implemented for the sparse and dense layers. Sparse layers

732 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

{ Top Dense Layers]
{ Feature Interaction
Embedding| = |Embedding
Table Table

Dense Sparse
Features Feature

Figure 1: A DLRM architecture

Sparse
Feature

contribute to > 99% of the entire model size and can be in
the order of several terabytes. Because storing all the sparse
layers in a single node is not feasible, a model parallelism
approach is used to shard the tables on several nodes. The
dense layer size, on the other hand, is small enough to be
accommodated by each node, thus they are replicated across
the nodes to leverage data parallelism.

At Meta, a typical training cluster includes 16 nodes, where
each node contains a multi-socket CPU and 8 GPUs. Sparse
layers are sharded across all the GPUs, with “all-to-all” com-
munication during both forward and backward computations.
Dense layers are replicated across all the GPUs, with “all-
reduce” communication to aggregate gradients computed in
multiple GPUs during the backward propagation [16]. During
training, the new weights are computed and updated for sparse
and dense layers synchronously to avoid accuracy degrada-
tion.

2.1.2 Serving DLRM

To efficiently serve batches of requests in a high-throughput
manner, GPUs are typically used for model serving. In Meta,
serving nodes are located in dedicated serving clusters. A
serving node consists of a host CPU and GPUs attached to it.
The serving model is replicated across the serving nodes, and
data parallelization is used for model serving at scale. Ads
embedding tables are stored in a single GPU because they re-
quire higher read throughput. The other embedding tables are
stored in the CPU, which typically has much larger memory
capacity (e.g., 1.5 TB DRAM). For storing the embedding
tables, a compact data structure is used to minimize the size
and store it in a GPU access friendly manner. In particular,
the embedding tables are stored consecutively, and each em-
bedding table is stored with row-major order in an array data
structure.

To refresh the serving model, additional buffer nodes are
utilized to avoid pausing the currently serving nodes. After the
newly published model is loaded into a buffer node, request
traffic is switched to the buffer node.

2.2 Online versus Offline Training

Online training is implemented when the serving model needs
to be continually trained and updated using a real-time stream
of data. In online training, the serving model provides pre-
dictions while being updated in regular time intervals (in the
order of minutes to hours). The training continues to operate
in the background (typically in a separate cluster) to fine tune
the model. The rate at which the trained model is published
to the serving platform can have a significant impact on the
accuracy of the predictions it generates.

In contrast, offline training does not use a real-time stream
of data for training and does not have a tight time constraint
to train and publish the model to the serving platform. Instead,
it usually uses a bulk of data that is already stored in a data
storage. The model is trained using the entire available data,
and the training stops when certain optimality conditions are
satisfied, after which it is published to the serving platform.

Deciding between online and offline training depends on
the use case. Online training systems are implemented when
the model needs to be updated in a timely fashion. A typ-
ical use case could be DLRMs for ads, search and videos
(e.g., [13,18,21]) when the environment is highly dynamic
and requires the model to be updated almost in real time (in
the order of minutes). The online training helps these mod-
els to incorporate the most recent data and to avoid accuracy
degradation. When the business requirements do not justify
real time model update, one can use an offline training ap-
proach to update models.

2.3 Optimizer State as Feature Importance
Measure

In general, large DLRMs can use hundreds of thousands of
features for training; however, some of these features and
corresponding weights do not impact the accuracy. These
features may belong to inactive users or content IDs, or some
other features may not provide training signals. Maintaining
all these parameters would consume some extra bandwidth
when the model is published, or some extra computation and
GPU storage when the inference is run in the serving platform.
To mitigate these adverse impacts, we can compute feature
importance and accordingly prune the features and weights
that practically do not impact the accuracy.

QuickUpdate uses optimizer state (or gradient momentum)
to compute feature importance. It belongs to the family of
gradient-based feature importance metrics (e.g., [2, 12, 18]).
The optimizer state is the historical average of gradient values
and is more stable than gradient values, which sometimes
oscillate between positive and negative values. The optimizer
state can give us the following indications:

1) Impact on accuracy: it practically shows how often and
how much a specific parameter has been updated during the
course of training. A high value of gradient value shows a

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 733

high impact on improving accuracy; and if this impact per-
sists historically, we can more confidently deduce that the
parameter is important for accuracy; thus the optimizer state
would be a stable indication of feature impacts on accuracy.

2) Access rate: The optimizer state of zero (or near zero)
indicates that the parameter has not been practically updated
during the course of training. This has twofold implications.
First, it can imply that the parameter has not been accessed.
This can happen for some inactive user IDs or outdated videos.
Second, if the entity is active, near-zero values can imply that
there may not be important signals to learn from the relevant
data. For instance, it can happen for a specific user ID that is
not using the platform to click on ads.

Based on the information above, QuickUpdate uses opti-
mizer state for two different tasks: 1- to perform inference
pruning when a complete model is published to reduce the
size of the complete model update. In this stage, QuickUpdate
focuses on low tail of optimizer state values and prunes the
parameters that do not have impact on accuracy 2- to perform
prioritized parameter selection when a partial update is pub-
lished. In this stage, the QuickUpdate focuses on the high
tail of the optimizer state values to update more important
parameters.

2.4 Inference Pruning

Inference pruning is performed to reduce the size of the model
when a complete snapshot is published to the serving platform.
Pruning is particularly implemented on the look-up embed-
ding tables and reduces their size by a significant amount (e.g.
50%). Since look-up tables compose more than 99% of the
size of DLRMs, the pruning considerably reduces the size
of the model without compromising the accuracy. Reducing
the size of the model helps to consume smaller bandwidth
to publish the model updates; and as a result, they can be
published to hundreds of geo-distributed clusters with shorter
latency. Additionally, it helps to perform inference faster be-
cause fewer number of rows are involved in the computations.

Figure 2 displays an example of a look-up table which
includes indices and the corresponding row. Each index repre-
sents a unique ID which is assigned to users, videos, etc. Each
row can be considered as a vector of trainable float values
used by the model to generate personalized recommendations
for users.

Intuitively, the inference pruning algorithm identifies the
rows that represent entities that are inactive or do not provide
training signals to improve accuracy. Mathematically, this is
accomplished using the optimizer state vector. In particular,
the trainer can provide a vector of optimizer state for each row.
Each element in the optimizer state vector demonstrates the
gradient momentum of the corresponding element in the row.
The average of the elements in the optimizer state vector is
used to quantify the row importance value. If the row impor-
tance value is close to zero, it implies that the row elements

Look-up table after
inference pruning

Look-up embedding table
before pruning

m Original Index | Remapped index | Embeding Vector
| 1[r0.1,03,....0.80] 1 1]0.1,03,....,0.80]

3 2[[0.3,03,...,-0.74]
6 3[106,03.....,0.85]

| 6[[06,03,...,0.85]

Figure 2: Inference pruning of embedding tables

have not been practically updated during the training; and as
a result that row can be pruned.

Figure 2 also shows how the lookup table changes before
and after pruning. Using the row importance values, the infer-
ence pruning algorithm determines the least important indices,
and prunes them before publishing the complete update to
servers. For operational purposes, the original index values
are remapped to new indices. The new indices are simply
incremented as they appear in the original table.

It should be noted that in this paper, a complete model
update refers to the model snapshot after performing inference
pruning.

3 Motivation

In this section, we present real-world data that highlights the
motivation behind the development of QuickUpdate. First,
we demonstrate how accuracy considerably drops when the
model is not updated for an hour or longer. Then, we discuss
the implications of scaling up the model size. Without modi-
fying the model publishing approach, we have to either accept
prolonged update latency and diminishing accuracy, or invest
heavily in infrastructure to keep the update latency consistent.
Finally, we highlight the limitation of lossless model updates,
emphasizing the need for prioritized updates.

Accuracy gain: Updating a full serving model is a time-
intensive process that may span several hours. As a result,
recent updates like user actions and interests (e.g., posting
new stories or engaging with specific content) would not be
reflected in the serving model for several hours, potentially
reducing the model accuracy.

Figure 3 demonstrates how accuracy drops as we postpone
the model update for one of the large scale models at Meta.
It compares the accuracy loss of a stale serving model with
different model update latencies (1 to 7 hours), to a fully fresh
model. It shows that accuracy loss significantly increases
when model updates are delayed, reaching a loss of more than
0.6% after 7 hours.

Reducing the update size can help accelerate the model
updates and improve the accuracy of the serving model.

Model size: DLRM sizes have seen a marked increase
over the past years. These models utilize a large amount of
data and parameters to better understand user interests and

734 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

0.60%
& 0.50%
o
2 0.40%
o
3 0.30%
<

0.20%

0.10%

=

2 3 4 5 6
Model update latency (hr)

~

Figure 3: Accuracy loss in the case of different update laten-
cies, when compared to a fully fresh model

60
°©
5§

€8
8 250
o9
a8
E45
40

o

250 500 750 1000 1250 1500
Training time (seconds)

Figure 4: The percentage of the model updated over time

product characteristics, leading to improved accuracy. This
progress has resulted in the development of complex models
with trillions of parameters [15] and several terabyte model
size [5]. Moreover, this trend is expected to continue in the
future.

With the growth in model size comes the challenge of ex-
tended model update latency due to the increased bandwidth
required for transfers. If left unaddressed, this is expected
to lead to model freshness degradation in the future. Simply
augmenting the infrastructure is not a viable long-term solu-
tion, given the relentless expansion of model sizes. Therefore,
performing partial updates for large DLRM appears to be a
promising strategy, aiming to reduce update latency without
the demand for more infrastructure.

Lossless model updates: To better understand the propor-
tion of the model that is modified over time, we monitored
the updated embedding rows and accordingly computed the
average fraction of the model touched. Figure 4 shows the
percentage of the model updated over time. It is evident that a
large part of the model is updated in a short span of time. For
example, in just a 10-minute interval, 58% of the model gets
updated. Updating 58% of the model is resource-intensive,
requiring considerably more infrastructure than a full model
update every hour. This leads us to explore an approach of pri-
oritized updates to significantly reduce the update footprint.

4 System Overview

Figure 5 provides an overview of QuickUpdate architecture.
The DLRM system consists of training nodes, serving nodes,
and remote storage to save the model snapshots. The publish-
ing logic of QuickUpdate has been mainly implemented in the
UpdateSelector and UpdatePatcher agents, which are respec-
tively implemented in the trainer node and serving node. The
UpdateSelector is responsible to decide which portion of the
model should be updated and quantize it before saving in the
remote storage. UpdatePatcher implements different patching
strategies depending on the type of update being performed.
Additional information is provided in the following sections.

4.1 What to Update

QuickUpdate focuses on performing partial updates specif-
ically for the embedding tables, which typically constitute
the big majority of deep learning recommendation models
(more than 99% in our workload). In such models, each table
represents a categorical feature (e.g., users, videos), and each
row within a table corresponds to a specific ID associated
with that feature.

During our exploration, we considered two options for up-
dating the embedding tables: 1. Updating all rows for selected
tables. 2. Updating selected rows for all tables (the selected
row indices may vary from one table to another).

We found that updating at the row level granularity resulted
in improved accuracy while minimizing the overall update
size. Consequently, QuickUpdate determines which specific
rows within the tables need to be updated on the serving side.
This approach enables QuickUpdate to prioritize the updates
of certain content or user IDs that are more likely to contribute
to accuracy gains, ensuring an efficient and effective update
strategy. For dense layers in the model, QuickUpdate performs
a full update. This is because the size of the update for these
layers is relatively small, and any optimization specific to
these layers would not have a significant impact on the overall
update process.

4.2 UpdateSelector

The UpdateSelector component of QuickUpdate is imple-
mented within the training cluster. This is because it requires
certain model information, such as parameter values, from
the trainer in order to prepare the model update.

During online training, the trainer operates in batch inter-
vals. At the end of each training interval, the trainer shares
both the model state and the optimizer state with the Update-
Selector. The model state includes sharded embedding tables
and dense parameter values, while the optimizer state includes
gradient values and their momentum. These states are copied
from GPU memory to the host CPU memory.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 735

Trainer node

Serving node
Upc tor
Host Model copy Serving model
Trainer state - Post-training UpdatePatcher
Sharded runing
bedding
:";,, t Select partial
ables, etc. updatci
Quantization

Figure 5: System architecture

UpdateSelector uses optimizer state to perform the follow-
ing two tasks on the copied model in CPU:

1. Prioritized parameter selection: The primary objective of
this task is to update only a small percentage of the model
parameters, while minimizing any degradation in accuracy
(compared to a full update). In this stage, QuickUpdate
selects the embedding rows based on their optimizer state
values, prioritizing those that are likely to result in a larger
improvement in accuracy.

2. Inference pruning: This task is implemented when a full
model is published. Inference pruning focuses on the sparse
embedding tables and aims to reduce the size of the full
model update. During this stage, QuickUpdate identifies the
low-tail optimizer state values and prunes the embedding
rows with values close to zero. These rows have negligible
impact on the accuracy of the model.

Once the updates (whether full or partial) are prepared, they
undergo quantization to reduce their size. The quantization is
used as a compression method and has negligible impact on
the model accuracy. The quantized updates are then stored in
remote storage, ready to be utilized for the update process.

4.3 UpdatePatcher

UpdatePatcher is responsible for loading the published snap-
shots and updating the serving model. It utilizes an efficient
non-atomic update approach for both partial and full model
updates. In the non-atomic update process, multiple threads
have access to the model parameters and gradually patch the
parameters to the servers. This allows for concurrent parame-
ter patching without the need to lock the servers or models.
As a result, the servers can continue to run inference on in-
coming traffic simultaneously while the updates are being
applied. This approach ensures efficient and uninterrupted
serving of real-time traffic during the update process.

4.4 Workflow

Figure 6 demonstrates QuickUpdate workflow. For simplicity,
we only show the timescale in the trainer, UpdateSelector, and
a serving node. The evolution of the model is a repeatable

pattern, thus we focus on one cycle, which is further divided
into intervals. At the beginning of each interval i in the cycle
¢, UpdateSelector has access to a full model F;.; to determine
which portion of the model should be updated. In particular,
first, a full snapshot (i.e., F¢,1) will be published and loaded in
the server, and then consecutive partial updates (P ; fori > 1)
will be published and patched to the full snapshot to create
the serving snapshot S ;.

Merging more partial updates with the serving model may
cause more deviation between the serving model S.; and
the current trainer state F;;. This deviation may result in
accuracy degradation. As a result, another full fresh snapshot
(i.e., Fe41,1) will be published to the serving cluster, marking
the end of the current cycle. This model evolution in the
serving side can be represented as follows:

Sc,l =F c,1

Sc,i = M(Sc,i—hPc,i) forl1 <i<I

where [is the number of intervals in a cycle, and M is
the merge operator. The merge operator simply copies the
parameter values of P.; and updates them in S ;1.

S Design

In this section, we discuss the design options and their im-
pact on accuracy metrics. We begin by defining the specific
accuracy metrics that guide our design and evaluation. By pri-
oritizing accuracy throughout the design process, we aimed to
create an effective system that provides high serving accuracy
while addressing the network and storage bandwidth bottle-
neck. Note that QuickUpdate is configurable and monitored
in production for the unlikely event of accuracy degradation.

5.1 Accuracy Metrics

Binary Cross Entropy or Entropy [17] is a well known aggre-
gate metric to evaluate accuracy of ads models. In this study,
we use Normalized Entropy (NE) which is defined as the
Binary Cross Entropy divided by a constant. The variations
of NE are computed as follows to understand how the partial
update would perform with respect to the fully fresh snapshot
and stale model. For simplicity, we drop cycle subscript ¢
from the notation.

1- NE loss: It determines the accuracy reduction when
model S; is used instead of the corresponding fully fresh
model F; to run inferences.

NEloss(S;) = NE
Fi

100 1)
where NEg, and NEF, respectively denote Normalized En-
tropy for models S; and F;.
2- NE gain: It represents how much accuracy improvement
to expect if S; is used for inference instead of the stale model:

736 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Cycle 1 Cycle 2
b t >
Interval-1 | Interval-2
I |]
F1,2 F1,3 F21
Time in %1 - Faz N
trainer ~ ”
Time in Fi1,1 YP1,2 Y13 Fz,1 Yps2 o
UpdateSelector V ~ N g
Time in ’\ ‘!.\ ’\ -
>
server ~Fi SF1,14P1 2 F1,1ilp1 24Py 3 F2,1 F21+Pz2
Figure 6: QuickUpdate workflow
Table 1: NE recovery for different selection criteria
. NEs. — NEg
NEgain(S;) = ————"° %100 ()

NEstale

The stale model is considered to be the latest published full
model Fj.

3- NE recovery: It demonstrates the percentage of maxi-
mum NE gain that has been attained by model S;. We assume
that the maximum NE gain is achieved if the fully trained
model, F;, could have been used for inference. Thus, the NE
recovery is defined as:

NEgain(S;)

NErecovery(S;) = NEgain(F))
1

* 100 3)

5.2 Selection Criteria

To prioritize updating rows that yield larger accuracy gains,
we need a reliable indicator that remains stable throughout
the training process. While the gradient vector could serve
as a criterion, its oscillation between positive and negative
values introduces numerical instability. Instead, we can utilize
the optimizer state vector, also known as momentum, which
provides a more stable measure. The optimizer state vector
represents the averaged squared sum of historical gradients
for a specific row. By denoting OS; ; as the optimizer state

vector for a row r in the model at interval i, and ﬁ:l as the
average of its elements, we can leverage this measure as an
indication of row importance.

Intuitively, the rows with larger values of ﬁ;i would be
more likely to improve accuracy. For example, these rows
can represent a specific user who frequently uses the platform
to click on ads, or it can represent a specific video with a
high access rate. Other than the magnitude of m;,. for a
given interval, it might be important to track how it changes
over time. This can be potentially informative for situations
when we prefer to prioritize parameters that have changed

Selection criteria NE recovery
Absolute optimizer state 70%
Delta optimizer state 100%

with respect to older versions. Based on these intuitions, we
evaluate the following selection criteria:
1- Absolute optimizer state:

abs(0S,;) for i>1)
2- Delta optimizer state:

abs(0S,.;— 0S,;) for i>1)

The choice between using absolute optimizer state or delta
optimizer state as selection criteria depends on their respec-
tive advantages and trade-offs. While absolute optimizer state
provides a stable and aggregate measure of how a row impacts
accuracy, delta optimizer state captures the change in impact
compared to the previous interval. However, using delta opti-
mizer state requires additional memory to store the optimizer
state from the previous interval. To evaluate the impact of
these criteria, we conducted experiments with a 30-minute
interval length and a 10% update size. After publishing a full
snapshot and training for another hour, we published a partial
snapshot with a 10% update size based on the two criteria. We
then evaluated the serving accuracy compared to a fully fresh
model. The results in Table 1 (which were consistent across
multiple such experiments) indicate that delta optimizer state
achieves 100% NE recovery, while absolute optimizer state
achieves 70% NE recovery. This implies that selecting rows
based on delta optimizer state reduces the discrepancy be-
tween the serving model and the corresponding full snapshot.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 737

Table 2: NE recovery and NE gain for different baselines

Baseline NE recovery
Previous full update 95.94%
Previous update 99.05%

5.3 Baseline for Delta Selection

Delta optimizer state is computed with respect to a baseline.
We considered two options for choosing a baseline when
computing the delta optimizer state:

1- Model state at the previous update: This option considers
the model state at the time of the previous update as the
baseline. It is the same as the delta optimizer definition in the
previous section.

2- Model state at the previous full update: As elaborated
in section 5.6, QuickUpdate also leverages intermittent full
updates. In this baseline option, the model state at the time
of the last intermittent full update is used as delta. The delta
optimizer is defined in this case as the following:

abs(0S,.;—0S,.,) for i>1 (6)

For the first option, the baseline needs to be saved at the end
of every training interval, while for the second option, only
one baseline is saved in the first interval of the cycle. Thus, the
first option provides a more recent and fresh baseline at the
cost of extra compute resources for saving it in the memory.

We examine the impact of the different baselines on the
serving accuracy by conducting an experiment where each in-
termittent full update is followed by four partial updates. We
evaluate the serving accuracy (NE recovery) compared to a
fully fresh model. The results in Table 2 show that previous in-
terval baseline would deliver 3.11% (95.94% versus 99.05%)
more NE recovery. This suggests that using the model state
of the previous update as a baseline can better reflect recent
user interests, as it is refreshed in every update interval. In
addition, the use of full updates as baseline may prioritize
parameters that were important in previous intervals but are
no longer contributing to accuracy. Over time, the optimizer
states of these parameters may reach a plateau, yet the full
update baseline may still consider them due to their large
delta optimizer state values. Refreshing the baseline more fre-
quently helps eliminate the prioritization of such parameters
and instead prioritize recently changed parameters that are
more likely to contribute to accuracy improvements.

5.4 Real-time Inference Pruning

Inference pruning, described in subsection 2.4, helps reduce
the size of the serving model and the number of required
GPUs. It practically prunes rows (or IDs) that are not active
anymore or have a negligible impact on accuracy to reduce the
size of embedding tables. Then, the pruned tables are stored

compactly in a GPU access-friendly manner to further reduce
their size in the serving cluster.

The pruning is only implemented when a full model is pub-
lished to the serving cluster. For the subsequent intervals, we
like partial updates to be compatible with pruned tables in full
model updates. Ideally, the row IDs in partial updates should
be present in the pruned table. This helps us to simply update
the values of existing rows without re-structuring the tables in
GPUs. However, this is not always the case. Since the training
data for partial updates is different from the full model update,
it is possible that some row IDs become important in partial
updates while those IDs are not present in the serving-side
pruned table. When such cases occur, a naive implementa-
tion would involve the insertion of the missing rows into the
serving-side pruned table, which can be resource-intensive
and may require reshuffling of all the embedding tables across
all GPUs to ensure accessibility and efficiency (e.g., avoid
memory fragmentation).

To avoid intensive reshuffling of embedding tables, we
explored two alternative inference pruning strategies that are
compatible with the partial updates:

1. Fixed indices pruning (see figure 7a): In this strategy,
QuickUpdate performs prioritized parameter selection to
choose candidate row indices for updating. However, only
the rows that are already present in the embedding table
are updated, while the pruned rows remain unchanged.

2. Fixed pruning ratio (see figure 7b): In this strategy, a fixed

ratio of rows is pruned from the embedding table at each
full update. When QuickUpdate performs prioritized pa-
rameter selection, it selects a maximum of X indices to
update, where X is the total number of rows in the given
table on the serving platform. This ensures that the number
of rows in a table is consistent.

The first strategy avoids reshuffling, as there would be only
row update operations and no row insert operations into the
embedding tables. The second strategy avoids reshuffling by
using both row update and remapping index operations. As
the sizes of the embedding tables don’t change in the second
strategy, it would also avoid the need to reshard the embedding
tables across the GPUs.

To evaluate the two pruning strategies, we consider three
training scenarios: 1-No pruning, 2-fixed pruned indexes and
3-fixed pruned ratio per table.

Our experiments showed that NE loss due to pruning is
practically negligible (<0.001%), with no accuracy difference
between the pruning strategies. Considering implementation
requirements, we opted for the fixed pruned indexes strategy
due to its simpler implementation. Unlike the fixed pruned
ratio strategy, it does not necessitate updating the index map
with each new update.

738 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Index | Vector Update table with | Index | Vector
1 fixed indexes 1
2 2|Updated
3 3

(a) Fixed indexes pruning

Index | Vector . Index | Vector Index | Vector
1 Update tables with 1 1

fixed row ratios
2 $| 3|Updated)| 2|Updated

Remap indexes
)

(b) Fixed ratio pruning

Figure 7: Inference pruning strategies

5.5 Granularity

The granularity in QuickUpdate refers to the percentage of
rows to include in a partial update. This parameter determines
the amount of bandwidth required to transfer the update to the
serving nodes. While a smaller granularity allows for faster
and more efficient transfer, it may also limit the inclusion of
important rows, potentially leading to a reduction in accuracy.

The granularity setting is configurable and can be adjusted
based on various factors such as available infrastructure re-
sources, desired accuracy, and the overall size of the model. In
section 6 we evaluate the trade-off between update granularity
and accuracy on our production workload.

5.6 Intermittent Full Model Update

After each partial update, the serving model deviates from
the most recent trained model. It is because only a small
percentage of parameters in the serving model are based on
the most recent trained model, and the rest of the parameters
are based on the older versions. As we perform more partial
updates, the deviation becomes larger, leading to accuracy
degradation. Thus, intermittent full model update is required
to maintain the accuracy of the serving model and keep its
long term accuracy at a desired level.

The main design parameter for the intermittent full model
update is its frequency. Determining the desired frequency
of full model updates depends on different factors such as
granularity and the required accuracy. As we show in section
6, there exists a trade-off between the granularity of partial
updates and the required frequency of full model updates. A
system that applies larger granularity in partial updates can
delay the need for a full model update, at the cost of higher
average write bandwidth.

5.7 Relaxed Model Update Consistency

Traditionally, in order to ensure consistency during a full
model update, the updated model is first loaded into buffer

nodes. Only when loading is completed, the user request
traffic is re-routed to the buffer nodes, which then serve as the
new inference nodes. In QuickUpdate, we relaxed this design
because it uses considerable infrastructure resources. Instead,
whenever updates are available, they are directly patched to
the serving model, which continues to serve real-time traffic
concurrently without the need for a separate buffer node. This
relaxation of the design allows for more efficient utilization
of infrastructure resources.

The relaxed consistency in QuickUpdate is specifically re-
lated to the loading duration of parameters in the serving node.
During this loading process, incoming inference requests may
encounter inconsistent views of the embedding tables, leading
to three possible cases for a particular query:

1. None of the parameters have been updated yet, and the
inference is performed using the stale parameters.

2. Some parameters have been updated, and inference is per-
formed using a mixture of stale and fresh parameters.

3. All parameters have been updated and inference is based
on the fully fresh model.

Our experiments have shown that this relaxed consistency
approach does not result in a negative impact on the serving
accuracy when compared to a fully consistent policy, while
also eliminating the need for additional buffer nodes. In sec-
tion 6, we further evaluate the effect of these inconsistent
embedding tables on the serving accuracy and demonstrate
that they actually lead to positive accuracy gains, providing
an additional benefit of the relaxed consistency approach.

6 Evaluation

We evaluate QuickUpdate on one of the largest recommen-
dation models deployed in Meta, using real-world data, and
trained on our production training cluster in a setup similar
to [15]. The model is an extension of the DLRM model pro-
posed in [16], but it is substantially larger, in the order of
Terabytes. We used the same pre-recorded data stream for all
the experiments, making the experiments reproducible and
comparable, and eliminating potential result skew due to tem-
poral data variations. The model was initially trained using
several weeks of real-world data as the warm-up period, in
order to reach a steady state. For accuracy evaluations, we
evaluate the serving predictions on data stream that comes
after the training data in time (i.e., the data evaluated during
inference was not used in previous training).

6.1 Accuracy

In this section, we compare the accuracy implications of differ-
ent update granularities, and derive the minimal full snapshot
frequency such that the NE loss does not fall below 0.01%. In
these experiments, we publish a full snapshot in the beginning
and continue to publish partial updates with different granu-
larities. These partial updates are applied on top of the full

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 739

0.60%
@ © 0.50%
X
2 2 0.40%
T o —»— 10%_update
c’f_j 0.30% 5%_update
WD 0.20% —— 1% _update
0.10%

1 2 3 4 6 8 10
Training interval (hr)

Figure 8: NE gain for partial updates with varying training
periods

served snapshot and evaluated for accuracy using the same
recorded dataset.

6.1.1 NE gain compared to a stale model

We begin by comparing the accuracy of QuickUpdate with
the accuracy of a stale model, to quantify the accuracy gains
and to validate that applying partial updates on top of a full
snapshot does not negatively affect accuracy. Here, the stale
model refers to the initially published full snapshot. Figure
8 shows the NE gain with respect to the stale model, for
different update granularities (and without intermittent full
model updates). All the update sizes result in higher NE gain
than the stale model, and the NE gain increases over time. The
5% and 10% updates provide very similar NE gains, but the
1% update returns less NE gain, indicating some important
rows are not included in the 1% updates. Overall, these trends
indicate that even after applying partial updates for over 10
hours, there is no adverse impact and accuracy improves by
0.7% compared with the stale model.

6.1.2 NE loss compared to a fully fresh model

In this section, we investigate the NE loss of a model pub-
lished by QuickUpdate using partial updates, compared to
an ideal fully fresh serving mode. The results presented in
figure 9 show that with 10% update, the NE loss is below
0.005% during the entire 10 hours. With 5% update, the NE
loss is consistently higher than 10% update, but is still less
than 0.01% during over six hours. The NE loss increases as
training period increases, since the discrepancy between the
serving model and the corresponding trained model increases.

The results also demonstrate the impact of employing dif-
ferent update granularities on the delay of full model publica-
tion, while ensuring the NE loss remains below the acceptable
threshold of 0.01%. By adopting a 10% granularity, we can
effectively delay the need for full model publication by over
10 hours. Similarly, when utilizing a 5% granularity, we can
postpone the full model publication by 6 hours while still
keeping the NE loss within the acceptable range. This high-

$ 0.050% /
o —
8 9 —x— 10%_update
- -8 0.080% 5%_update
£ E 0.030% e 19 update
=35
§ E 0.020% Max acceptable NE loss
- 0,
w 0.010%
W
= 0.000%
1 2 3 4 6 8 10

Training interval (hr)

Figure 9: NE loss for partial updates with varying training
periods

_ 0.030%y g e Max acceptable NE los:
(] Il 1%_update
5 A
S 0.025% 2%_update
< S 0.020% N 5%_update
=3
% o 0.015% I I
oz
o 8 0.010%
Zq
0 0.005%
2 I |
=
0.000% - -
1 2 3 4 avg

Interval number

Figure 10: NE loss of partial updates with different granulari-
ties, in 4 consecutive 10 minute intervals

lights the efficacy of partial updates at the 5% granularity
in capturing important updates and maintaining the model’s
accuracy and freshness over a considerable period.

6.1.3 NE loss over short time periods

In order to analyze the NE loss over short time periods, we
conducted an evaluation involving four consecutive 10-minute
updates. The update granularities examined were 5%, 3% and
1%. The NE loss was measured after each update in compari-
son to a fully fresh model using unseen data. Figure 10 shows
the variance across different 10 minute intervals, emphasizing
the fluctuating nature of the streaming data. However, the NE
loss stabilizes when averaged over multiple short time inter-
vals. As expected, the results show that the NE loss reduces as
we increase the granularity. The average NE loss presented at
the last column confirms that the 5% granularity would return
an acceptable NE loss (on average) in our workload.

6.1.4 Conclusion

The accuracy results demonstrate the effectiveness of Quick-
Update in employing a 5% update granularity for up to 6
hours, while maintaining accuracy levels comparable to a
fully fresh model and ensuring NE loss below the threshold
of 0.01%.

740 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Additionally, the use of QuickUpdate with 5% update gran-
ularity allows for a delay of 6 hours before the necessity of
publishing a full model arises. This delay is possible due to
the successful incorporation of partial updates, which capture
and integrate important changes, resulting in accurate and
up-to-date models.

Based on these findings, QuickUpdate triggers intermittent
full model publishing every 6 hours by default, optimizing
the balance between accuracy and update frequency.

6.2 Analyzing Long Term Row Convergence

In the previous analysis, our focus was on minimizing partial
update granularity and determining the appropriate frequency
for intermittent full updates, based on the accuracy metrics.
The results indicated that utilizing partial updates with granu-
larity of 5% for 6 hours achieved satisfactory accuracy.

In this experiment, our objective is to explore what percent-
age of the important rows in the model is updated by partial
updates.

In order to determine a proxy of the important rows, we
train the model for a duration of 6 hours (i.e., the same du-
ration with satisfactory accuracy). We determine important
rows to be the top percentage of rows in the trained model
such that publishing them once at the end of the 6 hours du-
ration, instead of the entire model, would have returned the
satisfactory accuracy (i.e., below 0.01% difference compared
to a fully fresh model).

Figure 11 shows the NE loss (compared with a fully fresh
model) with different sizes of a single update after 6 hours
of training. As can be seen, a single 5% partial update is
not sufficient to achieve an NE loss below the acceptable
threshold of 0.01%. However, a 10% partial update proves to
be adequate in reducing the NE loss to an acceptable level.
This indicates that the top 10% of the ranked embedding rows
are a good proxy of the important rows in this time window.

To understand the percentage of those important rows that
is covered by multiple smaller 5% updates, we ran QuickUp-
date for 6 hours with multiple partial updates of 5% granu-
larity. Upon combining all these updates into a union set, we
observe that this set encompasses 70% of the important rows
mentioned above, and overall covers 7.3% of all the rows in
the model. Thus, a large portion of the important rows are
covered by consecutive, smaller partial updates.

6.3 Bandwidth Usage

In QuickUpdate, the update size is a proxy for the bandwidth
usage. The amount of bandwidth usage depends on the granu-
larity, update interval, and frequency of the intermittent full
model update. In general, these parameters are configurable
and may change according to the type of DLRM and the de-
sired accuracy. In this section, we evaluate bandwidth usage
for different policies based on the percentage of the model

0.015%
@ 0.010%
L
L
z

0.005%

0.000%

5% 10% 15% 20% 25% 30% 35%
Update size

Figure 11: NE loss versus update size for a 6-hour training
period

that is published. The details of them are elaborated below
and in Figure 12:

1. Baseline 1: Full model is published every hour

2. Baseline 2: Full model is published every 10 minutes (not
shown in the figure)

3. 5% update (default policy): A partial update is published
every 10 minutes with a granularity of 5%, with intermittent
full update every 6 hours (as discussed in 6.1).

4. 10% update: Similar to the previous policy, a partial update
is published every 10 minutes, but with a granularity of
10%. An intermittent full update is published every 6 hours.

In order to compare these policies, we average the con-
sumed bandwidth. The results show that the default policy
of 5% update granularity with 6-hour intermittent full update
interval writes on average 43.6% of the model size per hour,
compared with 68.2% in policy 3 (10% update), and 100% in
the baseline 1 case. Baseline 2, which provides a comparable
accuracy to policies 2 and 3, would require publishing 600%
of the model size per hour.

Overall, with default policy, QuickUpdate is able to reduce
the consumed bandwidth by 2.3x compared to baseline 1,
while providing a better accuracy that is comparable to a fully
fresh model. Compared to baseline 2 (which is not feasible at
scale due to the network and storage bandwidth limitation),
QuickUpdate is able to reduce the required bandwidth by over
13x, while still providing comparable accuracy.

6.4 Relaxed Consistency

Traditionally, serving models are updated atomically to main-
tain consistent inference. This involves loading all model
weights into buffer nodes, which later become the serving
nodes for computing inferences. However, this approach is
resource intensive due to the use of buffer nodes. To address
this, QuickUpdate relaxes the consistency requirement and
parameters are directly updated in the serving nodes while
simultaneously performing inference queries.

We evaluate the NE recovery (compared to a fully fresh
model) during an intermittent full model update in QuickUp-

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation 741

I Baseline
150% I 5% update per 10min
o 125% 10% update per 10min
N
g 0 100%
e —
w— O
© T 75%
© o
S £
50%
25%

0 1 2 3 4 5 6 7 8 9 10 11
Hour

Figure 12: Bandwidth measure: update size per hour for dif-
ferent update scenarios

100

%NE recovery
N B [e2] [os}
o o o o

o

stale 10% 30% 50% 70%
mdoel

90%100%

Percent weight update

Figure 13: NE recovery during model update (relaxed consis-
tency)

date, as a function of the percentage of the weights that have
been updated. As shown in figure 13, relaxing the consistency
can improve the accuracy in production during loading. The
NE recovery increases as more parameters are loaded. Our
data shows that we can capture about 54% of the NE recovery
by patching 30% of the parameters. The NE recovery reaches
around 94% after patching just 70% of the parameters.

Relaxed consistency allows for the early serving of fresh
rows (rather than waiting for the entire model to update),
leading to overall higher accuracy. Although there is an incon-
sistent view of tables during loading (implying that different
rows may belong to different states), serving a subset of fresh
rows already leads to in increase in accuracy. The NE recov-
ery continues to grow over time until the entire model have
been updated.

7 Related Work

Asynchronous or partial update strategy has been imple-
mented for few real-time DLRMs [13,18,21]. In Kraken [21],
dense parameters are updated every few seconds in a batch,
while the sparse parameters are updated whenever their values
change in the trainer. This is a lossless parameter update that
can produce a significant amount of traffic for large models
with 100-1000 billion parameters [15] and geo-distributed

servers. Monolith [13] mainly focused on developing a sys-
tem with collision-less embedding tables for sparse features.
A sparse parameter can be updated in minute-level granularity
when it is trained and its value changes from the last synchro-
nization. Similar to Kraken, this is a lossless update which
can create huge traffic. Overall, the lossless model update
can be very resource intensive, as discussed in section 3. To
overcome this issue, QuickUpdate can perform prioritized
parameter selection that results in about 78% — 92% band-
width reduction and a negligible accuracy loss (< 0.01%). In
another study, Ekko [18] is designed as an efficient system to
broadcast the updates from the trainer model to all the serv-
ing inference nodes. To quickly update the larger embedding
tables in the serving models, they used the sparsity and tempo-
ral locality in the embedding table updates. The Ekko system
is orthogonal to QuickUpdate, and both can be implemented
together. In the QuickUpdate, we optimized the design el-
ements such as publishing interval, update granularity and
parameter selection criteria to achieve the desired accuracy
and minimize publishing the full model. Prioritized parameter
selection is one of the techniques we used in this paper. In
past studies (e.g., [1,2,12] Gradient based parameter selection
has been explored for distributed training systems. Ekko [18]
further expanded this criterion and additionally considered
request frequency for each parameter and parameter freshness
to the selection criteria. In QuickUpdate we decided to choose
delta of gradient momentum which is a more stable measure
than gradient itself, and additionally it publishes parameters
such that it returns the highest accuracy compared with the
baseline snapshot.

8 Conclusion

QuickUpdate is a system that enables online training to per-
form low-latency partial updates while providing a serving
accuracy that is comparable to a fully fresh model. It offers
a scalable solution for serving production-scale DLRM in
real-time. This is particularly valuable because serving such
models in real-time is challenging at scale due to limitations
in network and storage bandwidth.

QuickUpdate achieves its scalability and accuracy goals by
utilizing innovative techniques. One of these techniques in-
volves selectively publishing the most important parts of each
update, reducing the overall update size while maintaining ac-
curacy. Additionally, QuickUpdate incorporates intermittent
full model updates at a low frequency to ensure long-term
accuracy. This combination of selective partial updates and
intermittent full updates enables QuickUpdate to balance be-
tween low-latency serving and preserving accuracy over time.

We evaluated QuickUpdate using real world data for a large
personalized ads model and showed that QuickUpdate is able
to provide a serving accuracy that is comparable to a fully
fresh model, while minimizing the required write bandwidth
by over 13x.

742 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola
Konstantinov, Sarit Khirirat, and Cédric Renggli. The
convergence of sparsified gradient methods. Advances
in Neural Information Processing Systems, 31, 2018.

Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradient
compression supercharged high-performance data par-
allel dnn training. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
359-375, 2021.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, pages 7-10, 2016.

Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM conference on recommender
systems, pages 191-198, 2016.

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-n-run: a checkpointing system for train-
ing deep learning recommendation models. In /9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 929-943, 2022.

Jodo Gama, Indré Zliobaité, Albert Bifet, Mykola Pech-
enizkiy, and Abdelhamid Bouchachia. A survey on con-
cept drift adaptation. ACM computing surveys (CSUR),
46(4):1-37,2014.

Carlos A Gomez-Uribe and Neil Hunt. The netflix rec-
ommender system: Algorithms, business value, and inno-
vation. ACM Transactions on Management Information
Systems (TMIS), 6(4):1-19, 2015.

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 488-501. IEEE, 2020.

Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, and
Chen Ma. Dynamically expandable graph convolu-
tion for streaming recommendation. arXiv preprint
arXiv:2303.11700, 2023.

[10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: An
open, hybrid system scaling deep learning-based recom-
menders up to 100 trillion parameters. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3288-3298, 2022.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International conference on machine learning, pages

2849-2858. PMLR, 2016.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J. Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
In International Conference on Learning Representa-
tions, 2018.

Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang,
Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu, Peng Wu,
Ke Wang, and Youlong Cheng. Monolith: Real time
recommendation system with collisionless embedding
table. In Proceedings of 5th Workshop on Online Recom-
mender Systems and User Modeling, in conjunction with
the 16th ACM Conference on Recommender Systems,
Seattle, WA, 2022.

Ian MacKenzie, Chris Meyer, and Steve Noble. How
retailers can keep up with consumers. McKinsey &
Company, 18(1), 2013.

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep
learning recommendation models. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 993-1011, 2022.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

Pytorch. Crossentropy loss. In
https://pytorch.org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html.

Chijun Sima, Yao Fu, Man-Kit Sit Liyi Guo, Xuri Gong,
Feng Lin, Junyu Wu, Yongsheng Li, Haidong Rong,
Pierre-Louis Aublin, and Luo Mai. Ekko: A large-scale
deep learning recommender system with low-latency
model update. In /6th USENIX Symposium on Oper-
ating Systems Design and Implementation., pages 821—
839, Carlsbad, CA, 2022.

USENIX Association

21st USENIX Symposium on Networked Systems Design and Implementation

743

[19] Brent Smith and Greg Linden. Two decades of recom-
mender systems at amazon. com. leee internet comput-
ing, 21(3):12-18, 2017.

[20] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang,
Bingiang Zhao, and Dik Lun Lee. Billion-scale com-
modity embedding for e-commerce recommendation in
alibaba. In Proceedings of the 24th ACM SIGKDD in-
ternational conference on knowledge discovery & data
mining, pages 839-848, 2018.

[21] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: Memory-efficient
continual learning for large-scale real-time recommen-
dations. 2020.

[22] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo,
Ruiming Tang, and Mark Coates. Graphsail: Graph
structure aware incremental learning for recommender
systems. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
pages 2861-2868, 2020.

[23] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 974-983, 2018.

[24] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. Lg-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 365-382, 2018.

[25] Peiyan Zhang and Sunghun Kim. A survey on incre-
mental update for neural recommender systems. arXiv
preprint arXiv:2303.02851, 2023.

[26] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. Aibox: Ctr prediction model
training on a single node. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 319-328, 2019.

[27] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

744 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background
	Deep Learning Recommendation Models (DLRM)
	Training DLRM
	Serving DLRM

	Online versus Offline Training
	Optimizer State as Feature Importance Measure
	Inference Pruning

	Motivation
	System Overview
	What to Update
	UpdateSelector
	UpdatePatcher
	Workflow

	Design
	Accuracy Metrics
	Selection Criteria
	Baseline for Delta Selection
	Real-time Inference Pruning
	Granularity
	Intermittent Full Model Update
	Relaxed Model Update Consistency

	Evaluation
	Accuracy
	NE gain compared to a stale model
	NE loss compared to a fully fresh model
	NE loss over short time periods
	Conclusion

	Analyzing Long Term Row Convergence
	Bandwidth Usage
	Relaxed Consistency

	Related Work
	Conclusion

