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Abstract
Currently, one of the simplest and most effective ways for
people to gain an in-depth understanding of computer net-
works is through hands-on practice and experimentation on
software platforms. While education is important for the field
of computer networks, existing platforms are inadequate in
usability and scalability, failing to fully meet all the teaching
needs of computer networking education.

This paper describes our experiences in designing and us-
ing Klonet, an emulation platform for computer networking
education. Klonet is easy-to-use for both students and tu-
tors, which has been carefully designed to lower the barrier
to use, thus making the practice more efficient. Klonet also
demonstrates good scalability. It adopts a container-based
distributed architecture and a virtual network embedding al-
gorithm customized for this platform. Evaluation experiments
show that Klonet exhibits better scalability, such as supporting
more students with fewer hardware resources (i.e., servers)
and deploying virtual network topologies more quickly. Fur-
thermore, to ensure stability during teaching, Klonet enhances
the robustness of its upper orchestrator and underlying virtual
networks. So far, Klonet has been adopted in 3 universities
and 4 courses, serving more than 800 students. We showcase
Klonet’s usefulness in networking education with real use
cases, including a scenario with ∼10,000 emulated routers.
We also share our lessons learned from the 4 years of Klonet
development and 2 years of operations.

1 Introduction

Practice and experimentation are central to the education of
computer networks. Through practice, students are able to
obtain hands-on experience with the complicated concepts
in their computer network textbooks, thus gaining a deeper
understanding of computer networks.

The educational practice of computer networks relies heav-
ily on the field of network experiments which has been the
focus of many existing works. Prior work has made great
progress in three aspects: testbed [1–5], simulator [6–11], and
emulator [12–37]. Testbed offers real hardware for students to
manipulate, providing realistic interaction but at a higher cost.

Co-primary authors: Tie Ma and Long Luo. Hongfang Yu is the corre-
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Simulator, on the other hand, uses numerical calculations to
mimic hardware behavior, offering a cheaper alternative but
lacking realistic interaction. Emulator is a compromise be-
tween the previous two. It uses software to simulate hardware
behavior and is the most promising in education. However,
as college educators ourselves, based on years of teaching
experience, we found that existing emulators cannot meet our
actual needs. We argue that the ideal emulator for computer
network education should meet the following goals.

R1. Easy-to-use. A user-friendly educational platform
should be easy to use, including getting started, mastering
basic operations, etc., especially for students. We know that
the first step is always the hardest. If a lot of additional learn-
ing or manual configuration is required to perform relevant
experiments, students may feel confused and intimidated, es-
pecially those with weak background knowledge. For tutors,
an ideal platform should also be easy to use in aspects in-
cluding designing, directing, correcting, and managing ex-
periments, which can increase teaching efficiency instead of
being a burden.

R2. Scalable. It also must be scalable, supporting: (1) A
large number of concurrent experiments. Since students in a
course usually do experiments during the same period, the
platform must be able to provide services to all the students
in at least one course. The more users use it, the higher the
scalability requirements. Scalability requirements increase
along with growing student enrollment on the platform. (2)
Large-scale emulated network. To cover experiments in as
many scenarios as possible, the scale of the emulated/virtual
network of each experiment could be small or large. For ex-
ample, a MAC address learning experiment may require less
than 4 nodes, whereas routing learning in a modern datacenter
network may require thousands of nodes.

To the best of our knowledge, existing network emulators
are insufficient to meet the above two goals. Regarding R1,
most emulators [12,14–35,37] require students to perform in-
stallation and complex software configurations. Considering
that most undergraduate students even have not been exposed
to the Linux system, this can be challenging for them and dis-
suade them from the computer network community. Moreover,
most emulators [12,13,15,16,20–34] are initially provided for
scientific research and lack consideration for graphical user
interface (GUI), auxiliary experimental tools, auxiliary teach-
ing tools, etc., making students and tutors spend a lot of effort
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to use them. For R2, some emulators [12,14,16,17,20,37] can
only run on a single server, which limits the scale of the virtual
network it can emulate and limits the experimental scenarios
it can support. Besides, some emulators [15, 35] that can be
deployed on multiple servers cannot properly map the virtual
networks to underlying servers, causing server overloads.

To address this gap, we built Klonet, a network emulation
platform to meet these educational goals. Klonet employs sev-
eral technologies to make it easy-to-use. To minimize the diffi-
culty of getting started, Klonet adopts a Browser/Server (B/S)
architecture, allowing students and tutors to access and use it
without installing any software. Klonet also provides several
useful experimental tools such as traffic generator and traffic
monitor for students to facilitate their experiments. In order
to stimulate students’ interest in learning, Klonet carefully
provides a GUI that is very important for teaching. Klonet ac-
celerates virtual network creation time, improving user experi-
ence and efficiency. For tutors, Klonet implements a container
image repository that can easily add various types of nodes,
making it possible to build diverse educational scenarios flex-
ibly. Klonet includes a scene repository where students can
share experiments and learn from each other, and tutors can
quickly automate the creation of experiment environments.
Klonet also provides experiment APIs to advanced users such
as tutors to improve usability and efficiency.

To achieve scalability, Klonet uses light-weight containers
as virtual nodes and a novel virtual network embedding algo-
rithm to respectively reduce node overhead and link commu-
nication overhead to support more and larger virtual networks.
By using container technology, Klonet increases the number
of nodes that can be created on a single machine. To support
large-scale virtual networks, Klonet employs a distributed
orchestration architecture to create overlay virtual networks
on a cluster, which enables the size of the virtual networks to
scale with the cluster size. The goal of Klonet’s virtual net-
work embedding algorithm is to use as few servers as possible
without overloading the servers. Klonet also implements a
user management model to support multi-users.

As an open educational network emulation platform for stu-
dents and tutors, robustness is critical. Klonet adopts methods
such as periodic checks, redundant backups, and monitoring
alarms to ensure the stability of its distributed orchestrator,
user management model, virtual networks, and cluster.

In our evaluation, we show that Klonet can better utilize
fewer physical servers to support more students’ experiments
faithfully. Klonet has been in development for 4 years, and we
have been using it steadily in courses for 2 years. To this day,
Klonet has served more than 800 students. To demonstrate
Klonet’s usage and benefits, we introduce the two selected
use cases. The first is a course project about the Software-
Defined Network (SDN) [38] and P4 [39], we use this case to
showcase Klonet’s usability. In the second use case, students
collaborate on a routing experiment that contains up to about
10,000 nodes, demonstrating the scalability of Klonet. The

lessons we have learned from developing, operating, and using
Klonet in education are also presented, as a reference for
building a future education platform.

In summary, our main contributions are:

• We design and implement (§4) Klonet, an easy-to-use
and scalable network emulation platform for education.

• We evaluate the system performance (§5) and present use
cases (§6) to demonstrate its educational applications.

• We summarize lessons (§7) learned from years of expe-
rience developing, operating, and using Klonet.

2 Related Work

Here, we discuss existing network emulation platforms used
in education, categorizing them as general-purpose and
education-purpose. General-purpose emulators may offer less
tailored features for education, whereas education-purpose
emulators prioritize educational needs. We focus on platform-
level related works rather than individual components such as
the Kubernetes [40] scheduler.
General-purpose network emulators. Most general em-
ulators are not specifically designed for education but are
nonetheless widely adopted in education [41].

Mininet [12] is well-known for its convenience in run-
ning small networks on laptops. However, when used in ed-
ucation, several challenges arise: (1) Students often strug-
gle with the installation process. This places performance
requirements on student laptops. Since the operating sys-
tem of most student laptops is Windows, students need to go
through the installation and use of virtual machines (VMs).
This poses a significant challenge for undergraduate students
who lack experience, potentially diminishing their enthusi-
asm for computer networks. (2) We also consider installing
and configuring Mininet on servers provided by the teaching
team and let students remote access. However, the original
Mininet has a file isolation and scalability issue, making it
unable to support multi-student. Though several follow-up
variants [14–16, 20–22, 42] have been proposed to enhance
Mininet with different capabilities such as scalability [15,42],
ease of use [16], fidelity [20] and additional network sce-
nario [22], none of the variants combining all the advantages,
making it not feasible to offer an ideal network emulation
service on cluster. (3) Mininet and its variants are primarily
developed for research purposes and lack a student-friendly
GUI, which is crucial for education.

Emulab [13] is another famous emulator that operates a
dedicated cluster and provides users with network emulation
service via its website, allowing users to use it without local
installation. Emulab has been operated for decades and is
robust. Emulab has three issues when used for education: (1)
Emulab primarily focus on providing users with bare-mental
servers and VMs, while has poor support for light-weight
virtualization technologies like container. This makes it costly
and inflexible to support courses. (2) Emulab’s scalability is
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Table 1: Comparison of related network emulators.
Easy-to-use

Platform Name No Installation
Required

GUI and
Experiment API

Teaching
Tools1

Experiment
Tools2

Rich Node
Types Scalability

Mininet [12] ✗ Humble GUI ✗ Limited ✗ ✗
Mininet-Hifi [20] ✗ Humble GUI ✗ Limited ✗ ✗

Distrinet [15] ✗ No GUI ✗ ✗ Limited ✓
Containernet [16] ✗ No GUI ✓ ✗ Limited ✗

Vt-Mininet [21] ✗ No GUI ✗ ✗ ✗ ✓
Mininet-Wifi [22] ✗ Humble GUI ✓ ✓ ✓ ✗

Emulab [13] ✓ ✓ Limited ✗ Limited Limited
Netkit [37] ✗ No GUI ✓ ✗ ✓ ✗

Kathará [17] ✗ Humble GUI ✓ ✓ ✓ ✗
Megalos [18] ✗ Humble GUI ✓ ✓ ✓ ✓

GNS3 [19] ✗ ✓ ✓ ✓ ✓ ✓
SEED [35] ✗ ✓ ✓ ✗ ✓ ✓

Mini-Internet [36] ✓ No GUI ✓ Limited ✗ ✗
IPMininet [14] ✗ No GUI ✓ ✓ ✗ ✗

Klonet (this work) ✓ ✓ ✓ ✓ ✓ ✓
1 Teaching tools are those designed to facilitate education, e.g., Klonet’s scene repository and Mini-Internet’s connectivity matrix.
2 Experiment tools are those designed to make experiments easier, e.g., Klonet’s traffic generator and IPMininet’s IP configuration tools.

limited by its cluster size, and it’s hard to deploy on private
clusters [37]. (3) Due to the operating mode of Emulab, the
physical server needs to start before creating a virtual network,
resulting in a long establishment time (as shown in §5.1),
which reduces the efficiency of experiments.

There are various emulators [23–27] that focus on eval-
uating network end-to-end properties by simplifying or ab-
stracting network elements. However, these emulators cannot
emulate all types of devices (e.g., switches, routers, firewalls),
limiting their ability to provide realistic interactions and serve
as ideal emulators for education. Some emulators [21, 28–32]
prioritize scalability at the expense of real-world performance,
making it unsuitable for education. Some emulators [33, 34]
are designed for specific scenarios such as enterprise networks
and integrated space and terrestrial networks (ISTNs), lacking
support for other network scenarios and are not easy to use
for students.

Education-purpose Network emulators. Klonet is not the
only network emulator proposed specifically for education.
Netkit [37] exploits User-Mode Linux (UML) VM to sup-
port networking courses, the container technology chosen by
Klonet is light-weight compared to the virtualization technol-
ogy of Netkit. Kathará [17] is a variation of NetKit which
uses Docker container instead of UML VM, but its single
host network emulation architecture may cause scalability
issues. Megalos [18] improves the scalability of Kathará by
leveraging Kubernetes [40]. Kathará and Megalos have been
used in many courses [43]. GNS3 [19] is also widely used in
education and requires local software installation. Owing to
reliance on VMs, GNS3 is a more resource-intensive solution
compared to Klonet which employs light-weight container
technology. Mini-Internet [36] is an open network emula-
tion platform that emulates a mini version of the internet
infrastructure, but it focuses on routing experiments and lacks

support for other experiments. Besides, Mini-Internet does
not support multi-server deployment, which may make it fail
to support a large number of students. SEED emulator [35]
was initially developed to support teaching network security
education and can scale up the emulation across multi-server
deployment. Unfortunately, it needs to embed the network
manually, which may overload servers and prevent the courses
from proceeding properly. IPMininet [14] enhances the IP
configuration and management of the well-known emulator
Mininet [12], however, it needs to be installed on the personal
computers of students.

In summary, as shown in Table 1, no existing work can
achieve the two educational goals of easy-to-use and scalable
simultaneously except Klonet.

3 Klonet in a Nutshell

This section gives a macro view of Klonet covering its operat-
ing mode, applicable scenarios, and experiment workflow.

Operating mode. Klonet is an open platform that main-
tains a dedicated private or cloud cluster to offer network
emulation services for courses. Its cluster is resilient, allow-
ing operators to adjust its scale as needed. Leveraging light-
weight virtualization technologies, Klonet can create (overlay)
virtual networks on top of the cluster, enabling the creation
of several large-scale or lots of small-scale virtual networks.
Students and tutors can conveniently access Klonet via its
website. Klonet stays constantly available within the campus
network, serving courses during the semester and also serv-
ing self-learners. Thanks to Klonet’s extensive experiment
capabilities, students and tutors can efficiently conduct the
majority of their experiments on a single platform.

Applicable scenarios. Klonet supports network experi-
ments with layer 2 and above, allowing network properties
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Figure 1: The overall framework of Klonet.

like latency and bandwidth on links to be configured. This
versatility makes Klonet suitable for a wide range of network
scenarios required in education. It can emulate data center net-
works, wide-area networks, large-scale enterprise networks,
campus networks, etc. The topology of these networks can
be customized, and end-to-end network experiments can also
be conducted. Klonet’s virtual network includes virtual Eth-
ernet interfaces that can seamlessly connect with hardware
Ethernet interfaces, supporting networks with a mixture of
real and virtual devices. Klonet supports rich node types, such
as (programmable) switches, routers, controllers, and hosts,
enabling experiments in both data plane and control plane.
Klonet supports both IPv4 and IPv6.

Experiment workflow. Conducting an experiment on
Klonet involves the following steps: (1) Experiment creation.
Students create experiments by dragging and dropping node
icons onto the canvas, connecting nodes, and configuring basic
network properties such as IP addresses. Optionally, students
can choose to load pre-configured experiment templates pro-
vided by tutors. (2) Development, execution, and observation.
Students develop their programs using the terminal on the
Klonet web page or via Secure Shell (SSH) connections. They
then run their programs and observe the resulting effects. Ex-
periment tools such as traffic generators and monitors are
available to assist students during the process. (3) Experiment
completion. Once the experiment is finished, students upload
their experiments to the Klonet scene repository. Tutors can
use these uploaded experiments for grading purposes or allow
other students to review and learn from them.

4 Design and Implementation

We first overview the framework and then describe the design
adopted by Klonet to meet the educational goals.

Tutors

topo.addlink topo.addnode ...Experiment API

Web GUI

Management Interface
User ManagementCluster MonitorImage & Scene Repository

Management Interface
User ManagementCluster MonitorImage & Scene Repository

Experiment Interface

Topo Design Topo Instantiation Topo Configuration
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Experiment Interface
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External Service InterfaceKlonet Controller External Service InterfaceKlonet Controller

StudentsStudentsStudents

Figure 2: Klonet interface.

4.1 System Overview
As Figure 1 shows, Klonet adopts a four-layer architecture.
(1) Experiment layer: The direct-to-user front end provides
students and tutors with many easy-to-use tools via Klonet’s
GUI and experiment API, which include virtual network de-
sign and emulation, image repository, scene repository, traffic
generator, traffic monitor, cluster monitor, etc. It receives user
requests and communicates with the underlying layers to
complete related services. (2) Control layer: The back end
controls and manages user data, virtual networks, and clusters.
This layer consists of an orchestrator distributed on each phys-
ical server and a user management model for storing user data,
which together support multi-user network experiments on
multi-server. (3) Virtual network layer: It uses light-weight
virtualization technology and cross-server link technology
to ensure that the virtual network can be distributed across
servers. (4) Infrastructure layer: A cluster can provide the
storage, computing, and network resources required by Klonet.
It can easily remove or add new physical servers for purposes
such as cost savings and launching more experiments.

4.2 Achieving Easy-to-use
Unlike research-oriented platforms, easy-to-use is particularly
important for education-oriented platforms. We describe how
Klonet improves ease of use with designs in terms of software
architecture, user interface, reproducibility, experiment tools,
and accelerating creation of virtual networks.

Browser/Server (B/S) architecture. To minimize the bur-
den on students and reduce the difficulty in getting started,
Klonet adopts a Browser/Server (B/S) architecture that allows
students to use it via their browsers. To this end, Klonet is de-
signed with two parts: front-end and back-end. The front-end
is implemented in JavaScript, HTML, and CSS containing
16k lines of code. Flask [44], a web development framework
is used to implement the back-end containing 45k lines of
code. The front-end and back-end interact via HTTP.

Rich Interfaces. As shown in Figure 2, Klonet provides
two kinds of interfaces. (1) The GUI is intuitive and is suitable
for beginners such as bachelor students to perform simple
operations. (2) The experiment API focuses on efficiency and
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is more suitable for users with some basic network knowledge,
such as master students and tutors, to conveniently and rapidly
complete some repetitive and cumbersome operations.

GUI. One web page is designed for experimentation and
several for management. The experiment page provides five
primary features: (1) Topology design by drag-and-drop of
device icons and mouse-based link connection. (2) Virtual
network instantiation. (3) Configuration of network proper-
ties such as IP addresses and link bandwidths. (4) Interactive
access to virtual nodes through SSH or web terminal, offer-
ing students an experience similar to real devices. Klonet
helps install and configure the SSH service in the nodes. With
powerful SSH-based tools (e.g., VScode remote SSH exten-
sion [45]), students can efficiently complete more complex
tasks. Students can also use the web terminal to conveniently
perform simple tasks like running a ping command. Based
on the Docker daemon [46], Klonet ensures real-time com-
munication of the web terminal through websockets [47]. (5)
Traffic generator and monitor tools to assist in experimen-
tal implementation. A screenshot of the experiment page is
provided in Appendix A.

The management pages add much more support for experi-
mentation. An experiment management page is designed for
viewing and accessing experiments. An image/scene repos-
itory page is offered for sharing images/scenes, with tutors
authorized to manage it. A user management page is designed
for tutors to audit and delete student accounts conveniently.
To help operators (usually tutors or TAs) quickly locate faulty
servers, Klonet provides a cluster monitoring page based on
Grafana [48] to view the cluster status (e.g., CPU utilization).

Experiment API. This is designed to enhance the pro-
grammability. For simplicity of use, the API is implemented
by encapsulating HTTP requests via Python. Listing 1 shows
a simple example of using this API. Detailed API documenta-
tion is also provided to help users get started quickly.

Image repository and scene repository. Image reposi-
tory and scene repository are the keys to realizing the repro-
ducibility, including node-level and scene-level, of network
experiments.

Node-level reproducibility relies on an image repository
containing node images (i.e., snapshots). Users can upload
images to this repository and later instantiate them as nodes.
Since the software dependencies have been packaged into the
image, the applications in a node can be reproduced easily.
For better usability, Klonet offers three upload methods: com-
mit for saving nodes as images, build images via scripts, and
compressed file for external image inclusion. Images are pub-
licly/privately shared and indexed separately via a MySQL
database [49], with entities stored in a Docker registry [50]
for access across servers.

Scene-level reproducibility relies on a scene repository. We
argue that a reproducible scene is a collection of code, soft-
ware environment, network topology, and code execution flow.
This scene repository converts all nodes of an experiment to

1 from klonet_api import *
2 # Get the available images of current student.
3 images = get_images()
4 # Select the host(ubuntu) and switch(ovs) image.
5 ubuntu_image = images["ubuntu"]
6 ovs_image = images["ovs"]
7 # Design our topology: h1---s1---h2.
8 topo = Topo()
9 h1 = topo.add_node(ubuntu_image , node_name="h1")

10 h2 = topo.add_node(ubuntu_image , node_name="h2")
11 s1 = topo.add_node(ovs_image , node_name="s1")
12 topo.add_link(h1, s1, src_IP="192.168.1.1/24")
13 topo.add_link(s1, h2, dst_IP="192.168.1.2/24")
14 # Let Klonet emulate the topology.
15 deploy(topo)
16 # Create file in h1 and h2.
17 exec_cmds_in_nodes(
18 {"h1":["touch /log1"], "h2":["touch /log2"]})

Listing 1: Simple Experiment API Example.

a set of images via commit provided by the image reposi-
tory, assigning each image a unique ID to help reestablish the
corresponding node. The topology description is also saved
for rebuilding virtual networks. To facilitate the scene-level
reproducibility, Klonet asks users to upload a replay script
(i.e., written via experiment API) describing code execution
flow. This script is optional as manual recreation is possible.
MySQL is used to store image indexes, topology descriptions,
and replay scripts to provide users with a reproducible scene.

Auxiliary useful tools. To help students focus on the net-
work experiments themselves, Klonet provides useful tools
such as traffic generator, traffic monitor, and typical topology
generator. Tutors and TAs can also use these tools to complete
tasks such as experimental demonstrations easily.

Traffic generator. Traffic enables the validation of diverse
network scenarios. The traffic generator sources three traffic
types: (1) Client-server pattern [51] traffic. (2) ON-OFF [52]
characteristic traffic. (3) Customizable interval-distributed
traffic, e.g., Gaussian. We encapsulate an open source code
from GitHub [53] to implement the first traffic type, and im-
plement the latter two based on the Scapy library [54].

Traffic monitor. Feedback helps with experimental debug-
ging, tuning, etc. Klonet develops this monitor upon libp-
cap [55] and reports key performance metrics, throughput,
latency, and loss rate, to capture and help analyze traffic be-
tween source and destination nodes. It also provides an intu-
itive GUI for visualizing experimental outcomes.

Typical topology generator. Repeatedly designing some
common topologies is tedious. Thus, Klonet features a gen-
erator for structures like Star, Fattree, Linear, and Tree, pa-
rameterized by variable fields. Custom topologies can also be
saved as reusable templates. The typical topology generator
is implemented based on the FNSS library [56].

Accelerating virtual network creation. Shortening the
virtual network creation time can reduce the waiting time
for users to retry experiments, improving experience and effi-
ciency. Klonet applies two parallelization techniques: using
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Figure 3: Klonet Controller.

a light-weight concurrency technique called Coroutines [57]
to spawn virtual nodes and links concurrently within a server
and permitting the orchestrator to distribute virtual network
creation across physical machines for additional parallelism.

4.3 Achieving Scalability

Klonet first designs a distributed orchestrator which enables
it to scale on a cluster. This poses a challenge in mapping
virtual networks, which is addressed by an efficient algorithm
design. For effective multi-user support, Klonet implements
a user management model for data organization. To support
large-scale experiments with fewer physical resources, Klonet
leverages light-weight emulation technology to host as many
virtual networks as possible on per physical machine.

Klonet orchestrator. Developed based on the Flask [44]
framework, the orchestrator consists of a controller and sev-
eral agents. The controller is installed on one server, while
agents are installed on each server. Notably, the orchestrator
supports single-server deployment. The controller and agents
communicate with each other via HTTP. Most back-end func-
tions of Klonet are implemented in this orchestrator.

Klonet controller. As the orchestrator’s core (Figure 3), the
controller receives user requests via external service inter-
faces and interacts with the user management model through
data interfaces. It contains a local task executor for authenti-
cation and database queries, and a cluster task dispatcher for
assigning cluster tasks, such as virtual network embedding
and link configuration, to appropriate agents for execution.

Klonet agent. As shown in Figure 4, the agent receives in-
structions from the controller via the internal service interface.
It handles on-server tasks including creating virtual networks,
collecting server status, monitoring traffic, etc.

Virtual Network Embedding Algorithm. The Klonet con-
troller uses a virtual network embedding (VNE) algorithm to
map the virtual networks (VNs) to the substrate network (SN).
For fidelity performance and efficient resource utilization, the
algorithm carefully provides sufficient resources for each VN
without overwhelming server capacity in the SN.

Network models and problem formulation. Each VN is

Internal Service InterfaceKlonet Agent

Control Flow Data FlowControl Flow Data Flow

Configuration

Link/Node Emulation

Virtual Network Emulation

Terminal

Server Monitor 

...

Image/Scene Manager
Image/Scene Uploading

Image/Scene Loading

Experiment Tools
Traffic Generator

Traffic Monitor

Status Collector

Figure 4: Klonet Agent.

modeled as an undirected graph G = (V,E), with each virtual
node v ∈ V having a CPU demand nw(v) and each virtual
link e ∈ E having a bandwidth demand lw(e). To support
cross-server deployment of large-scale VNs and efficiently
use resources, Klonet partitions a VN into a set of small
sub-virtual networks (sub-VNs) subs = {s1,s2, ...,sk}, where
1≤ k ≤ |Sserver|. Cut-links represent inter-sub-VN links, and
cut(s) = {cs

1,c
s
2, ...,c

s
| j|},∀c

s
i ∈ E, 0≤ | j| ≤ |E| denotes that

connecting sub-VN s.
Let binary variable xs,n denote whether sub-VN s is embed-

ded on server pn. When embedding G to a cluster with a set
Sserver of servers, with scalability in mind, we expect to mini-
mize the impact of the mapping of every current VN on the
capabilities (potential) of the SN to deploy future large-scale
VNs under resource constraints, which can be formulated as

Minimize ∑
p∈Sserver

Ip(x) (1)

s.t. ∑
s∈subs

∑
u∈V s

nw(u)xs,n ≤C(pn),∀pn ∈ Sserver (2)

∑
s∈subs

∑
c∈cut(s)

lw(c)xs,n ≤ B(pn),∀pn ∈ Sserver (3)

xs,n ∈ {0,1},∀s ∈ subs, pn ∈ Sserver (4)

Eq. (1) expresses that the cluster potential is equal to the sum
of all server potentials. I(�) is an Inefficiency Index (IDX)
whose value starts from 0 and grows as the use of CPU re-
sources increases and then slowly decreases to 0 when the
resources are exhausted. Besides, it increases as the use of
NIC bandwidth grows. To prevent CPU overload, Ineq. (2)
constrains the CPU demands of the sub-VNs deployed on
server pn to be less than its remaining CPU quota1 C(pn).
As the SN of Klonet is a local cluster where all the servers
are connected by a powerful switch and each server commu-
nicates with the others through the same network interface
(NIC), all substrate links connected to a server share its NIC
bandwidth capacity for communication. To meet bandwidth
constraints, the total bandwidth demands of the cut-links of
all subnets deployed on server pn should be less than its avail-
able NIC bandwidth B(p), as expressed in (3). This differs
significantly from most existing VNE efforts, which assume
exclusive bandwidth capacity per substrate link.

1CPU quota is a feature of Linux Control Groups (cgroup), which controls
how much CPU time a process in a container can use.
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Efficient network embedding algorithm. This VNE prob-
lem is NP-Hard even with a known value of I(�) and the VN
partition solution. A heuristic is thus employed. Through
extensive experimentation, we observed that sparsely used
servers often outperformed heavily used ones in hosting large
VNs, given equal CPU quotas. Therefore, our algorithm is
designed to minimize fragmentation by preferentially exhaust-
ing resources on previously used servers. See pseudocode in
Appendix C for details.

User management model. To appropriately organize ex-
perimental information for multi-students, we build a user
management model with an easily extensible architecture. We
leverage the Redis database [58] to implement the manage-
ment model. For advanced user and VN information, we use
several tables to record them. For the low-level virtual net-
work devices, we model them as several classes with device
attributes and relationships, and instantiate devices as objects
in the user management model when creating virtual networks.
The detailed design can be found in Appendix B.

Virtual network emulation. Another key to scalability is
the VN emulation solution. Klonet adopts Docker [59] con-
tainer technology for node emulation. The reasons are (1)
Container light-weight nature versus VM and better file isola-
tion feature than the namespace technology used by emulators
like Mininet [12], in line with our goal to design Klonet as a
scalable and shared platform; (2) Docker container provides
feature-rich node images to facilitate flexible experiment de-
sign. Default images in Klonet include: OVS [60] switch, P4
software switch [61], FRR [62] router, quagga [63] router,
Ubuntu host [64], Ryu [65] controller, etc.

Emulated links are classified as intra-server or inter-server
based on their location. Intra-server links adopt virtual Ether-
net pair technology, creating virtual NICs in containers and
connecting them. The virtual NICs can also be connected to
real NICs for mixed virtual/realistic emulation. Inter-server
links use VXLAN [66] protocol for Layer 2 connectivity
across servers. Users are presented with a transparent view,
unaware of distinctions between intra- and inter-server links.

To support more scenarios, Klonet uses Linux traffic
control [67] to apply queuing disciplines on links, emulating
properties, e.g., bandwidth, latency, and packet loss.

4.4 Achieving Robustness
For a shared platform like Klonet, robustness plays a signif-
icant role in guaranteeing a smooth education process. We
use a variety of technologies to ensure the robustness of each
component of Klonet from top to bottom: Klonet orchestrator,
user management model, virtual networks, and the cluster.

Robustness of the Klonet orchestrator. Klonet imple-
ments two mechanisms to ensure the availability of the or-
chestrator: regular requests and redundant backups.

Regular requests. Given that the Klonet controller and the
Klonet agents are implemented by the web server technology,

Table 2: Major Anomalies of Klonet.
Anomalies Times

Cluster power outage for regular maintenance. 4
Inter-server link fails due to the firewall. 1
CPU overloaded due to broadcast storm. 1
Node boot failed due to the wrong image. 2
Node boot failed due to no startup command. 2
Lost user management model connection. 1
Image upload failed due to configuration error. 2
Inconsistent MTU among cluster servers leads
to communication failures. 1

Klonet confirms that they are alive by periodically sending
requests to them and getting corresponding responses. To pre-
vent misjudgments, Klonet sends an odd number of requests
at a time and uses the result of the majority of them. Once a
controller or agent failure is detected, Klonet restarts it.

Redundant backups. During the process of Klonet restart-
ing the controller or agent, the services they provide may
temporarily fail. Therefore, Klonet designs redundant back-
ups for them to provide services during the restart process to
ensure uninterrupted services.

Robustness of the user management model. The meth-
ods of ensuring the robustness of the user management model
are similar to those of the Klonet orchestrator. First, Klonet
leverages an odd number of processes to monitor the status
of the model. Second, if a failure is detected, Klonet switches
to a backup. The difference is that since the user manage-
ment model is a storage module, it broadcasts the received
instructions to each backup to achieve data synchronization.

Robustness of the virtual networks. The virtual networks
can be divided into two parts: nodes and links, and Klonet
ensures their robustness respectively.

Nodes. Klonet periodically obtains the running status of
each node through the docker-py [68] library. If a node is
found to have stopped unexpectedly, Klonet alerts the user
and tries to restart the node.

Links. For the intra-server links, they fail when one of their
end nodes fails, so Klonet re-establishes the corresponding
intra-server links after the nodes are restored. For the inter-
server links, Klonet verifies their health through connectivity
checks. As inter-server links provide layer 2 communication
without requiring IP addresses for end nodes, the traditional
ping tool does not work. Thus, we design a simple Layer 2
ping: Each node periodically sends data frames to the opposite
end and gets a response. If the peer does not respond several
times, an alert is sent to the corresponding user and operator,
indicating an invalid inter-server link.

Robustness of the cluster. The large number of virtual
nodes and physical servers that Klonet manages need to be
monitored in a unified manner for the convenience of the
operator. We use the open-source software Prometheus [69]
to monitor and alert the state (CPU, memory, etc.) of physical
servers and virtual nodes, and visualize the data centrally on
the cluster monitoring page (as in §4.2) of GUI.
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Figure 5: Evaluation of multi-student concurrent experiments.

Effectiveness. Thanks to efforts in robustness, Klonet en-
sured the smooth running of the course for two years. During
the operation, The major anomalies are shown in Table 2, and
most of them were solved quickly due to Klonet’s alarm and
recovery mechanism.

5 System Performance

5.1 Testbed Evaluation

In this part, we first evaluate Klonet’s ability to support simul-
taneous experiments with varying numbers of students. We
also evaluate the speed of Klonet to create a virtual network,
which is essential for ease of use and efficiency.

Klonet can support more students to conduct exper-
iments simultaneously. To evaluate how many students
Klonet can support to conduct experiments at the same time,
we assume that at the same moment, each student is assigned
a dumbbell [70] virtual network with 4 hosts and 2 switches,
and runs 2 TCP flows (f1 and f2) with bottleneck link band-
widths of 5Gbps and 6Gbps respectively using iperf3 [71]
for 15 seconds. Then we vary the number of students and
record the throughput of all flows. Ideally, in a high-fidelity
platform, individual flow throughput should remain constant
irrespective of student count, while the total throughput scales
linearly with student numbers. We believe that a platform
cannot support a certain number of students if the experimen-
tal results are not faithful. The evaluation is conducted on a
Ubuntu 22.04 server with 2 Intel Xeon Gold 5220R CPUs and
32G RAM. To obtain comparable results, we exclude plat-
forms that rely on heavy-weight virtualization technologies
such as VM, focusing instead on comparisons with emulators
that, like Klonet, use light-weight container-like virtualiza-
tion techniques. With this aim, we choose the well-known
emulator Mininet [12] as the benchmark.

Figure 5(a) shows the total throughput of all f1 and f2 flows,
where Mininet has a significant performance drop once the
number of students reaches 50, and the total throughput of
all students falls short of expectations. In contrast, Klonet
demonstrates nearly ideal performance. Figure 5(b) shows
the throughput distribution of all flows, where each flow in
Klonet maintains the expected throughput while Mininet does
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Figure 7: Performance of Klonet’s VNE algortihm(SwapNo-
desPartition). Compared with Mininet(RoundRobin, Ran-
dom), and Distrinet(KBalance, DivideSwap, GreedyPartition)

not. Klonet can support more students’ experiments simul-
taneously because the node emulation technology used by
Klonet has better performance isolation than that of Mininet.

Klonet has a faster speed to deploy VNs. We contrast
Klonet’s virtual networks creation time with Emulab [13] and
Distrinet [15], which are representatives of the two platform
operating modes: website access and local installation. To en-
sure consistency of the experimental environment, We request
10 Emulab d430 bare-metal servers from Emulab and conduct
the evaluation on them. We create container virtual networks
of different sizes and collect the virtual networks creation
time. The virtual network topology is Star, i.e., multiple hosts
connected to a central switch.

Figure 6 shows that the creation time for Distrinet experi-
ences the most rapid increase as the network size escalates,
mainly attributed to the utilization of LXC containers [72].
Conversely, Emulab necessitates the initiation of bare-metal
servers before creating the virtual network, making it the
slowest option when the network scale is below 150. In com-
parison, Klonet consistently exhibits the shortest deployment
time up to 300 nodes. Note that the virtual node number in
one student’s experiment is rarely larger than 300.

5.2 Large-scale Simulation
Our VNE algorithm is one of the keys to Klonet’s scalability,
we use large-scale simulation to see how large and how many
virtual networks it can support. We compare the proposed
VNE algorithm with a range of standard algorithms employed
by Mininet (cluster edition) [42] and Distrinet [73], which are
two leading platforms capable of deploying large-scale virtual
networks. We simulate a cluster of 10 servers, each server has
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80 CPU cores with 100 CPU quota per core, and 1000Mb
bandwidth capacity. To simulate network load, we randomly
generate two types of topologies, FatTree and Random. The
node and link resource requirements are 10 CPU quota and
10Mb, respectively. If the node or link resource requirements
of a virtual network cannot be met, the its deployment is
considered a failure. Note that the results of all compared
VNE algorithms depend on numerical calculations, so the
results are consistent in both simulation and practice.

Figure 7(a) reports the average success rate of VN deploy-
ment with varying sizes over 20 runs, decreasing as nodes
increase. Mininet and Distrinet fail above 4400 nodes, while
Klonet succeeds up to 8800 nodes. Figure 7(b) shows the
average number of VNs accommodated over 100 runs. Klonet
supports the largest number of VNs with less fluctuation in
results. Distrinet ranks second, while Mininet performs worst,
only one-third of Klonet. Klonet’s better scalability perfor-
mance benefits from its strategies of reducing cut-link weights
and maximizing the potential deployment capacity of the clus-
ter, while Distrinet only considers the former.

6 Use Cases

We have been using Klonet in our teaching practices for 2
years, and Table 3 shows the successful usages facilitated by
the technical designs of Klonet.

In the following, we describe how Klonet is used in
our university courses. We use two examples, one from an
undergraduate-level course (Network Algorithms), and the
other graduate-level (Enterprise Networks).

• Project 1: Playing with algorithms in programmable
networks: In this project, students will learn how to
implement classic shortest-path computation algorithms
and compare their performance in networks with the pro-
grammable control plane or programmable data plane.

• Project 2: Intra-domain routing: In this graduate-level
project, students will learn how to build and operate their
slice of the intra-domain network. They will interconnect
networks together and investigate the performance of the
OSPF protocol in networks of different sizes.

6.1 Project 1: Playing with algorithms
Project Overview. Students are required to understand the
basic principles of path computation algorithms in our lec-
tures. This project helps them to gain hands-on experience
with the actual performances of these algorithms in a real pro-
grammable network. We ask students to use OpenFlow [38]
or P4 [39], which is widely recognized as the control plane
programming protocol and data plane programming language,
respectively, for implementing path computation algorithms.
We request students to evaluate and compare the performance
of these algorithms. Moreover, with the increasingly wide

h1

h2s1 s2

s3

host-2-switch link
switch-2-switch link

host node 
switch node

1000
Mbps

1000Mbps28Mbps

32Mbps
3ms

6ms

h3R

Ryu node

8ms

Ryu-2-switch link

1000Mbps18Mbps

Figure 8: Topology of “Play with Alg.” project.

application of programmable networks in academia and in-
dustry, exposure to programmable networks itself can help
students learn advanced topics in the network and engage in
related research efforts. Therefore, another goal of this project
is to teach basic concepts of programmable networks.

To help students focus on algorithm-related matters rather
than network configuration and operation, we use Klonet to
pre-create a programmable network, then ask students just to
write algorithms and feed the algorithm result into pre-written
OpenFlow or P4 program templates. Specifically, since P4 is
difficult for undergraduates to get started with, we only let
interested students leverage the source routing [74] based on
P4 to implement the result of the algorithms.

By the end, we expect the learning outcomes to be:

• Understand how OpenFlow works and master the basic
operations of the OpenFlow flow table;

• Write classic path computation algorithms in OpenFlow
controllers;

• Identify the effectiveness or limitations of different path
computation algorithms;

• (Optional) Appreciate the difference between control
plane programming and data plane programming.

To this end, we design three sub-projects in this project.
Each sub-project asks students to implement one of the fol-
lowing classic shortest-path algorithms.
Sub-project #1: Use the Depth-First Search (DFS) algorithm
to find a path with the minimum latency between two hosts.
Sub-project #2: Use the Dijkstra algorithm to find the short-
est path between two hosts.
Sub-project #3: Use the Ford–Fulkerson algorithm to find the
maximum network flow and the relative augmenting paths.

Figure 8 depicts the topology used, sub-project #1-2 sets
links with different latencies, and sub-project #3 has different
link bandwidth. Note that the switch can be an OpenFlow-
enabled OpenvSwitch [60] or a P4-enabled BMv2 [61], and
the controller is implemented by Ryu [65].

Using Klonet. Klonet helps students, tutors, and teaching
assistants (TA) in the entire process of this 5-week project.
• Tutors use Klonet’s image repository to pull new types of
nodes to design new experiments quickly. Klonet gives tutors
the simplicity and flexibility to update their experiments as
network technology changes rapidly.
• Students use Klonet’s scene repository to obtain the correct
and tested version of network scenes. Compared to previous
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Table 3: Klonet usages.

Grade Use Cases Scale Servers1

2nd year undergraduate Implement algorithm in programmable networks. ∼150stu/yr. S1*3

3rd year undergraduate Networking virtual devices with Raspberry Pi. ∼40stu/yr. S1*1

1st year graduate Implement network configuration such as NAT. ∼80stu/yr. S2*19

1st year graduate Collaborate to achieve routing. ∼30stu/yr. ①S1*3, S4*14, S5*1, ②S3*1402

Self learners Verify basic knowledge from textbooks, etc. ∼100stu/yr. S5*2
1 Server types: S1 (40-core 2.10GHz CPU, 256GB RAM), S2 (2-core 2.40GHz CPU, 4GB RAM), S3 (8-core 2.49GHz CPU, 32GB RAM), S4 (8-core

1.70GHz CPU, 32GB RAM), S5 (32-core 2.30GHz CPU, 128GB RAM)
2 For this course project, we use different servers and virtual network size in each year. §6.2 describes the second-year course project.

courses without using Klonet, this dramatically reduces con-
figuration problems for students, thus the workload of TAs.
• Klonet helps students focus on learning outcomes. TAs
pre-build the VN and share it with students via the scene
repository of Klonet before the start of each sub-project.
• Klonet allows students to interact with the elements in the
networking scenario easily. It is recommended that students
establish an SSH connection with the controller node to im-
prove programming efficiency, at the same time use the web
terminal for simple tasks, such as running the ping command
in the host or getting the flow table of a switch. Students are
also asked to write a replay script (which is just a few lines of
code) and upload their sub-project into the scene repository.
• Klonet makes it easy for tutors and TAs to help with specific
problems from students. In previous years without Klonet,
tutors and TAs must deal with students’ individual environ-
ments on their personal computers. Klonet standardizes the
experimentation environment, thus significantly lessening the
workload for teaching staff. They can directly recreate the stu-
dent’s networking scene and help the student solve problems.
• Klonet facilitates testing and grading of the project. After
students complete a sub-project, the tutor or TA can replay
the sub-project uploaded by them in the scene repository and
grade them. Outstanding sub-projects are selected and shared
in scene repository for students to replay and self-correct.

6.2 Project 2: Intra-domain Routing
Project overview. This graduate-level project is a hands-on
experiment that involves realistic network operations. We in-
tend to let students understand how the real network works
and how network professionals operate their networks. Stu-
dents are asked to build and operate an intra-domain network
themselves cooperatively. To make this project realistic, we
collaborated with an Internet service company to design the
project. We chose the OSPF routing protocol as it is widely
deployed in production networks. The students are expected
to achieve the following learning outcomes:

• Build and operate their own enterprise network to have
a deeper understanding of OSPF.

• Understand the importance of splitting areas.

AS2

Backbone Area

The Operation Scope of Group 1
BR ABR TNSSAR ASBR ER

Totally NSSA

…
…

… …
The Operation Scope of Group N

AS1
Totally NSSA

Figure 9: Topology of “Intra-domain Routing” project.

• Observe and learn the benefits of route aggregation.

Our industry collaboration partner provides the setting and
configuration skeletons. Figure 9 shows the topology used in
this project, with a backbone area and several Totally Not-So-
Stubby-Areas (NSSA) [75]. The backbone area is the core, a
mesh structure formed by routers randomly connected to each
other. Some routers are called Area Border Routers (ABRs),
and others are called Backbone Routers (BRs). Every two
ABRs are connected to a Totally NSSA, whose topology is
similar to the backbone area. Each Totally NSSA consists
of Autonomous System Border Routers and Totally NSSA
Routers (TNSSARs), in which every two Autonomous Sys-
tem Border Routers (ASBRs) connect to a number of Edge
Routers (ERs) of another AS.

Using Klonet. Klonet helps students, tutors, and teaching
assistants (TA) throughout this course project. We divide
students into groups and let each group operate a set of routers
(See Figure 9). The tutor configures BRs. Given the difficulty
of this project, it is divided into three stages and each lasts
for 6 weeks to configure a single area, multiple areas, and
multiple areas with route aggregation, respectively.
• Klonet provides standardized and reproducible experimen-
tal settings for students and the teaching staff. The routers are
implemented by the FRRouting [62] in the image repository
of Klonet. At the outset of each stage, TAs pre-build a small
VN with a total of about 500 nodes for students. Students
are required to configure the routers to satisfy the stage goal
and achieve network-wide connectivity. Then, students are
required to modify the FRRouting configuration files by using
Klonet’s experiment APIs. The students are told to have scal-
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Figure 10: Convergence time of OSPF.

ability in mind, that is, when the number of routers increases
or decreases, their codes should still work well.

• Klonet enables easy access to the emulated network devices.
Students are mainly required to configure Router ID, Unnum-
bered interface, Areas and ASes, and Route aggregation to
meet the goal of each stage. We have students configure the
IP address of the loopback interface as the OSPF router id.
The unnumbered interface can directly use the IP address
of the loopback interface, thus simplifying the configuration.
Students configure the NSSAs and ASes (different OSPF in-
stances) for each router and configure route redistribution
on ASBRs. Also, students configure route aggregation on
the ABRs and ASBRs to aggregate routes and eliminate the
communication overhead.

• Klonet makes it easy for tutors to create failure scenes
in a live emulated network. At the end of each stage, the
tutor creates a series of topologies of increasing size (up to
∼10,000 routers) and asks students to rerun and debug their
code to build network-wide connectivity again. The tutor
then takes down one link in the backbone area randomly
and measures the convergence time. Finally, the tutor plots
the data from the students’ joint effort to show them how
different network configurations affect network performance,
especially convergence time.

• Klonet enables the teaching staff to develop and deploy
project-specific tools. We provide a measurement tool for
students to obtain the convergence time of OSPF. This tool
collects logs from all routers located on each server, and by
analyzing the logs, gets the start time (i.e., the time that the
breakdown is detected among routers) and the end time (i.e.,
the latest time that the routing table update is completed
among all routers) of the OSPF convergence process. The
time synchronization scheme between servers is chrony [76].
Besides, we developed a script called PingAll to test the
connectivity between routers. The TAs can directly update the
image in the repository to distribute these tools to all students.

• The scalability of Klonet makes it possible for students to
experience networks running at a realistic and modern scale.
Figure 10 shows the convergence performance of different
operational strategies at different network scales. Klonet is
able to emulate an intra-domain network of 10,000 nodes on
our cluster. The result also teaches students the importance of
splitting areas and route aggregation for OSPF networks.

6.3 Feedback

To understand the reception of Klonet by students and the
teaching staff, we conduct a user survey collected from more
than 300 participants (67% bachelor students, 25% master
students, 8% tutors and TAs). According to this survey, we
have received positive feedback from most students and tutors.
Most students give positive comments such as: “It helps me
know the algorithms better” and “I definitely can not imagine
how these algorithms work in a real network without con-
ducting this project”. The comments from teaching staff are
also positive, such as: “this platform really helps quickly get
started and build the experimental topology”; “it also helps
save time on tedious operations and gain real experience”;
“using this platform, it is easier for us to realize the experimen-
tal design of various scenarios.” As mentioned in §7, there
is also some negative feedback from students, and the full
survey can be found in Appendix D.

The feedback confirms the need for a scalable and easy-to-
use network education platform like Klonet.

7 Lessons Learnt

In this section, we introduce several lessons we have learned
from developing (L1), operating (L2, L3), and using (L4, L5)
Klonet in education. We believe these lessons are valuable to
those seeking to establish and operate an educational network
emulation platform like Klonet or use Klonet in education.

L1. Connecting to the Internet is important but has
side effects. Initially, Klonet nodes had essential tools like
iperf pre-installed, and none were connected to the Internet.
However, during the teaching process, students said that they
occasionally need to access the Internet for purposes like
downloading Python packages. Therefore, we have all nodes
connected to the Internet, which introduces a new issue: While
conducting the experiment, network traffic between the two
nodes did not follow the expected path specified and was
routed to the bridge for the Internet connection.

To address this challenge, Klonet implemented a unique
design featuring an on-off button for on-demand Internet con-
nectivity. During the programming phase, students can toggle
the button on to enable Internet connection for software in-
stallation. In contrast, they should toggle it off during exper-
imentation to preemptively disable the Internet connection,
thereby circumventing potential routing interference. It’s
worth noting that students can still control the node using
the web terminal connected to the Docker daemon, not the
Internet bridge, even when the Internet connection is offline.

L2. Resources between students need careful isolation.
In our first year using Klonet for Project 1, we unexpect-
edly observed the broadcast storm problem, which exhausts
CPU and memory resources, crashing the platform. This was
caused by some students inadvertently flooding ARP requests
to the switch with the Ryu controller. Rather than simply in-
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forming students not to use ARP in ring topologies, we saw
an opportunity for them to appreciate the importance of path
computation algorithms. From the perspective of design, this
failure highlights poor resource isolation between students.
The root cause is that the container technology is not perfect
in resource isolation, with all containers sharing server re-
sources. To observe the effects of broadcast storms without
crashing Klonet, we bound each container to a CPU core,
limiting the impact of excessive resource usage by a single
student and preventing the disruption of other experiments.

L3. Be careful when deploying Klonet or similar plat-
forms in the public cloud. During the COVID-19 pandemic,
to facilitate remote education, we deployed Klonet on the
public cloud since the campus network is not accessible from
the outside. However, we encountered an issue in that initially
Klonet was available for a few minutes, but subsequently,
broken links between its components were reported.

Upon inspection, the load balancer of the public cloud was
found to terminate links between components they do not
communicate within a specified period. To remedy this, we
adjusted heartbeat intervals between Klonet’s components
to keep the link alive. Notably, unlike private clusters, these
implicit mechanisms in public clouds may bring unexpected
challenges.

L4. Knowledge not closely related to computer network-
ing requires effort. Many students expressed their love for
designs such as graphic design topology and web terminals,
rating them as necessary, interesting and intuitive because they
simplify operations and improve efficiency. However, accord-
ing to student feedback, in addition to networking knowledge
itself, any knowledge that is new to them (especially Linux)
makes them struggle. This is overlooked in the first year.
Therefore, we have supplemented and improved the introduc-
tion of relevant background knowledge in lecture notes.

L5. API access should be differentiated for students
with different backgrounds. Klonet’s rich APIs facilitate
customizable experiments, but unrestricted access could po-
tentially overwhelm students. For example, in our algorithm
project (§6.1), all APIs are available to students initially in the
first year of teaching. Due to the lack of background knowl-
edge, students have no clear boundaries about the task they
need to complete (i.e., network algorithm implementation),
wasting a lot of time on the preliminary work (i.e., building
topology and configuring link properties). We then restricted
the APIs available to students in this course and let them
use the built and configured topologies we provided in the
scene library. With this restriction, we found that students
spend significantly more time on algorithm implementation
and verification, aligning better with our teaching purposes.

8 Discussion

Applications in research and even industry. The use of
Klonet in research or even industry is also very encouraging.

Indeed, several researchers have already adopted Klonet to
carry out research works, like optimizing clock synchroniza-
tion in large-scale clusters [77]. However, the research and
industry field demands greater fidelity than education. For
example, with our evaluation, inter-server links inevitably in-
troduce a ms-level tail latency. While acceptable in education,
such latency proves unacceptable where deterministic latency
is required. Driven by the requirement from our cooperation
projects with large networking companies, we are exploring
techniques such as hardware offloading and latency compen-
sation to alleviate this issue. In the future, we will make more
optimizations to improve Klonet’s fidelity.

Promoting Klonet’s use to more courses and universi-
ties. Supported by college policy, several other courses are
scheduled to use Klonet next semester. We may face more
problems with large-scale use, and we will continue to main-
tain and optimize Klonet. Additionally, several other universi-
ties are also planning to introduce Klonet into some courses
next year. However, due to many non-technical reasons, they
require Klonet to be deployed on their own private cluster.
This requires Klonet to be easily installed. Klonet simplifies
deployment with a one-click installation script, improving
ease of setup compared to Emulab [37]. In the future, we plan
to offer a more convenient way for installation, using a VM
image that contains Klonet and its dependencies. Technically
it is easy, and popularization is more of a non-technical issue.

Limitations of applicable scenarios. While supporting
a variety of scenarios, it must be acknowledged that Klonet
still has limitations. For example, Klonet can only support
terrestrial networks and cannot support emulating the ISTN
now. In addition, Klonet uses Docker technology, which does
not facilitate the modification of some Linux kernel options.
For example, it cannot support experimental scenarios of ad-
justing the congestion control scheme in the kernel. We plan
to introduce support for VMs next year to meet the different
levels of configuration requirements in more scenarios.

Continuous optimizing ease of use. To ease the burden
on students, we are constantly working hard to improve the
ease of use of Klonet. For instance, within the laboratory, we
have integrated generative AI to enhance its capabilities (e.g.
automating topology deployment through natural language),
which is currently being refined.

9 Conclusion

This paper presents Klonet, an easy-to-use and scalable net-
work emulation platform for education. We introduce the de-
sign and implementation of Klonet. Besides, we give real use
cases by using Klonet in our teaching courses which shows it
has a great benefit in education. We also introduce our lessons
learned from the 4 years of developing and 2 years of using
Klonet in education. We plan to make Klonet available as an
educational infrastructure, and we hope that Klonet can help
the development of computer network education.
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Appendices

A Experiment Page

Figure 11 shows the screenshot of the experiment page of
Klonet’s GUI. Here is a description of the various elements
visible in the screenshot:
• Klonet Dashboard. The header at the top left indicates that
this is the “Klonet Dashboard”, suggesting that the platform
is named “Klonet”.
• User and Experiment Information. In the top right corner,
there are details like “demo_user” and “demo_experiment”,
suggesting the current user’s username and the name of the
experiment or project they are working on, along with a “Log
out” option.
• Navigation and Action Buttons. On the top left, there are
buttons labeled “Return” and “Save”, which are likely used
to navigate back to a previous page and to save the current
configuration, respectively.
• Typical Topologies. On the left sidebar, there are icons rep-
resenting different network topologies such as “Tree”, “Star”,
“Fattree”, and “Linear”. These could be templates for quickly
setting up network structures.
• Image Repository. Below the Typical Topologies, there is
an “Images” section with icons representing different node
images. Users can upload images to this repository and later
instantiate them as nodes.
•Main Workspace. The central area of the experiment page
shows a visual representation of a network topology. Users
can instantiate nodes by dragging and dropping icons from the
image repository and are able to create links between nodes by
connecting wires between icons. In addition, Klonet provides
a control menu for each node, which can be expanded by
right-clicking on the icon.
• Control Menu of a Node. After right-clicking the node, a
contextual menu is open with options such as “Configure”,
“Terminal”, “Delete”, “File Upload”, and “File Download”.
Users can interact with each node in the workspace to config-
ure settings, access the web terminal, remove the element, or
upload and download files.
• Experiment Management Panel. On the right, there is
an “Experiment Management” panel where users can control
the creation and destruction of the experiment, as well as
“Traffic Generation” and “Traffic Measurement” sub-options
to generate network traffic and monitor performance metrics
such as throughput and latency of network traffic.
• Entities Section. Below the management panel, there’s an
“Entities” section with options to select “Node” or “Link”,
followed by a “Search” bar, which is used to filter or find
specific nodes or links within the network topology. Here,
users can interact with nodes (as in the “Control Menu”),
delete links, and configure link properties like bandwidth.

B The Design of User Management Model

As shown in Figure 12, We assign each student a student
space to record the experiment information. In the student
space, there are several important components:

• The agent_list records the IP address of every agent.
• The VN_list records the name and corresponding descrip-

tion (i.e., the information of nodes and links) of VNs of
students.

• The VN2subVN, subVN2agent and subVN_service de-
scribe the information of the sub-VNs derived from
virtual network embedding algorithm for all VNs. The
VN2subVN records the list of sub-VN names, and users
can query additional information about a sub-VN using
its name. The subVN2agent records the IP of the server
where each sub-VN is deployed. The subVN_service
records nodes that need to start some necessary initial-
ization programs when a VN is created.

• <VN>_<node>, <VN>_<link> and <VN>_<vxlan>
are the objects of virtual devices. We use the names of
VN, link, and node to index an object.

C Details of VNE Algorithm

Algorithm 1: Virtual network embedding algorithm
Input: Virtual network G, Cluster Sserver

Output: An embedding strategy: G
mapping−→ Sserver

1 Compute wG← the sum of the node weights of G
2 Compute the IDX of each server in Sserver
3 if ∃pn ∈ Sserver : C(pn)≥ wG then
4 Embed G on the server p with the largest IDX and

has a CPU capacity close to but larger than wG;
5 else
6 Invoke strict_partition (Sserver, G)
7 end
8 Procedure strict_partition(Sserver, G)
9 Sort Sserver by CPU capacity in descending order

10 Select the first k′ servers whose sum of CPU
capacity is just greater than wG;

/* k′ is also the number of sub-VNs */
11 Compute the target weights www taken by the

partitioning operation for sub-VNs:
www = [w1, ...,wk′−1,wk′ ]←

[C(p1)
wG

, ...,
C(pk′−1)

wG
,

wG−∑
k′−1
n=1 C(pn)
wG

];
12 Obtain sub-VNs: sss← Partition(G,k′,www);
13 Embed sss to the selected k′ servers;
14 Adjust the mapping of virtual nodes to satisfy

resource constraints and reduce the IDX of
servers if necessary.

15 return Embedding strategy of sub-VNs
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Figure 11: The Experiment Page.
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Figure 12: The User Management Model.

As shown in Algorithm 1, If a small VN can be deployed
on a single server, we map it to the server with the largest
IDX that satisfies the CPU capacity requirement. Otherwise,
we will call the strict_partition function (described later) to
partition this VN into a series of sub-VNs and then map these
sub-VNs. To improve resource utilization, strict_partition
first determines the number k′ of sub-VNs and finds a suitable
subset of candidate servers for mapping. Then, it calculates
the weights www = [w1, · · · ,wk′−1,wk′ ] of sub-VNs proportional
to the capacity of candidate servers. Taking k′ and www as inputs,
strict_partition adapts a near-optimal graph partition method,
METIS [78] to partition the VN into satisfied sub-VNs and
then embed these sub-VNs. Finally, we adjust the mapping
to meet resource constraints if it does not satisfy resource

constraints and to reduce the IDX of servers if possible.

D The User Survey

We conducted an open-ended survey with the question, “What
are your thoughts on the course and/or Klonet?” The survey
involves 305 participants with three roles (204 bachelor stu-
dents, 76 master students, 25 tutors and teaching assistants).
We analyzed the questionnaire results of the three roles sepa-
rately. Specifically, we conduct a coarse-grained classification
of participants’ answers and count the number of people with
each type of answer, and then calculate the proportion of this
number to the total number of people in that type of role.
The results of the survey are shown in Table 4, Table 5, and
Table 6.

Ethical Considerations.

• All participants in our survey gave informed and volun-
tary consent to the use of these data.

• Our institution’s ethics review commission also consent
to the conduct of this survey and its use. This work
complies with all applicable ethical standards of our
institution.

• We blur personal information(e.g. name) and group it
into statistics to ensure maximizing the benefits to an
individual.

• All individuals are anonymously hidden in our survey,
so individual risk is minimized.

• Our survey has only one open question, so the privacy is
respected.

• Also since our question is open, users cannot be induced.
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