
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Poseidon: A Consolidated Virtual Network Controller
that Manages Millions of Tenants via Config Tree

Biao Lyu, Zhejiang University and Alibaba Cloud; Enge Song, Tian Pan, Jianyuan Lu,
Shize Zhang, Xiaoqing Sun, Lei Gao, Chenxiao Wang, Han Xiao, Yong Pan,

Xiuheng Chen, Yandong Duan, Weisheng Wang, Jinpeng Long, Yanfeng Wang,
Kunpeng Zhou, and Zhigang Zong, Alibaba Cloud; Xing Li, Zhejiang University and
Alibaba Cloud; Guangwang Li and Pengyu Zhang, Alibaba Cloud; Peng Cheng and

Jiming Chen, Zhejiang University; Shunmin Zhu, Tsinghua University and Alibaba Cloud

https://www.usenix.org/conference/nsdi24/presentation/lyu

POSEIDON: A Consolidated Virtual Network Controller that Manages Millions of
Tenants via Config Tree

Biao Lyu∗†, Enge Song†, Tian Pan†, Jianyuan Lu†, Shize Zhang†, Xiaoqing Sun†, Lei Gao†,
Chenxiao Wang†, Han Xiao†, Yong Pan†, Xiuheng Chen†, Yandong Duan†, Weisheng Wang†,
Jinpeng Long†, Yanfeng Wang†, Kunpeng Zhou†, Zhigang Zong†, Xing Li∗†, Guangwang Li†,

Pengyu Zhang†, Peng Cheng∗□, Jiming Chen∗, Shunmin Zhu¶†□

∗Zhejiang University †Alibaba Cloud ¶Tsinghua University

Abstract
As the cloud rapidly expands in scale, the virtual network

controller must manage an increasing number of devices with
higher update frequencies. Furthermore, the emergence of
cloud-native services has substantially intensified program-
triggered updates, leading to more frequent API invocations.
To enhance performance and extensibility, we propose POSEI-
DON, a novel virtual network control framework. Specifically,
to reduce operational expenses (OpEx), we have consolidated
the common functions of multiple service controllers into
a single controller. To manage heterogeneous devices and
eliminate the multi-table lookup complexity due to config
dependencies, we introduce Trident, a tree-based service- and
device-independent abstraction, so that config dependency cal-
culation can be replaced by more efficient tree traversal. After
deploying POSEIDON on Alibaba Cloud, we observed a 21x
increase in the throughput of virtual network configuration
tasks, along with a 4.4x decrease in the P99 API processing
latency. POSEIDON completes the task of enabling hundreds
of Elastic IP addresses (EIPs) 1.8 to 55 times faster than Ven-
dors A and B, both of which are among the top 5 providers [6],
for identical network configuration jobs.

1 Introduction
Today’s cloud virtual networks are managed by multiple sep-
arate controllers [14], which are responsible for configuring,
monitoring, and recovering individual service [14, 30, 31]
in the cloud virtual networks, such as virtual private cloud
(VPC), VMs, etc. Managing and configuring large-scale cloud
virtual networks are extremely challenging due to the follow-
ing reasons:

• Rapid growth of northbound API calls and southbound
devices: The controller needs to process massive number
of network configuration API calls which are generated
by cloud users, network operators, etc. In 2022, our cloud
controller processed ∼17 trillion API calls per day. To make
it worse, the number of devices to be managed also increases

□ Co-corresponding author

dramatically. In our cloud, a single ACL rule change might
lead to config updates across ∼100,000 servers.

• Long search chains and large table size: A virtual network
service, such as VPC, usually depends on other services,
such as ACL and routing. When configuring virtual net-
works, the controller needs to query databases associated
with the targeted service and its dependent services. Since
the number of services increase dramatically over years,
the dependencies become so complex such that we need to
spend lots of engineering effort to process each API call.
In addition, the size of tables in each database increases
dramatically as well, which makes the table lookups for
API parsing more time-consuming. We observed that due
to these two factors, the 90% (P90) tail completion time for
handling an API call has nearly doubled over the past year.

• Cloud-native applications intensify the controller per-
formance requirements: Cloud-native applications [4] re-
quire extremely high throughput for concurrent resource
creation/deletion, which demands much higher controller
performance compared to traditional console-based network
configuration. For instance, to handle surges in user access
during peak events, social media applications require the
creation of tens of thousands of backends to be completed
within an exceptionally short time.

• High cost of managing separate controllers: To ensure
the agility and iterative development of various services, we
build and maintain separate controllers, one for each service
(same as Andromeda [14]). In the past few years, with the
growth of services, the number of controllers has boomed
to over 50, leading to a substantial increase in the costs of
managing numerous controllers by separate teams.
Some existing works focus on improving control effi-

ciency and minimizing direct human interaction with net-
work devices [13], with device-independent unified con-
fig abstraction/model [10, 16, 20–22], or even automating
control decision-making with user intent [17–19, 27]. An-
dromeda [14] introduces how to improve the performance and
scalability of pushing the configurations to Google’s virtual
network devices. However, they do not touch how to compute

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1083

the updates of configurations (abbreviated as configs) needed
on a physical server based on the tenant’s intent, which is the
actual performance bottleneck of a virtual network controller.

To address the above challenges, we propose POSEIDON,
a virtual network controller consisting of a unified virtual
network control abstraction over heterogeneous devices and
services. POSEIDON introduces innovations in three aspects.

1) At the architecture level, we find that among several
modules in a controller, only the module that parses user
intents changes frequently due to the addition of new APIs,
devices and dependencies. Other parts do not change much.
Therefore, we consolidate and unify the more stable modules
of different controllers into one, which greatly reduces the
development and operational costs of the controller when
introducing new services and new devices.

2) At the abstraction level, in order to unify the manage-
ment of heterogeneous devices and diverse services, we ab-
stract them into generic objects. Then, to eliminate the table
lookup complexity due to dependencies between configura-
tions, we propose Trident, a novel abstraction for describing
configuration dependencies. We find that the dependency be-
tween configs is transitive, so we can associate multiple ser-
vices to generate a config tree. Based on this tree, we can
easily find the configs that a particular config depends on, as
well as the devices they configure, by traversing the nodes,
thus eliminating traditional complex database table lookups.

3) At the implementation level, to address the issue of large
config tree traversal time in production, we deploy a traversal
cache to bypass the time-consuming reverse tree traversal
for top tenants and design a hierarchical storage structure for
achieving both high I/O performance and strong data stability.

We deploy POSEIDON on Alibaba Cloud and keep it run-
ning for more than 3 years. We obtain the following results.

• With POSEIDON, virtual network controller’s latency is sig-
nificantly reduced and throughput is increased. When en-
abling hundreds of EIPs (Elastic IP address) [8] in a same
VPC, POSEIDON’s latency is 1.8x~55x and 2.6x~4.8x lower
than cloud vendor A (Top 5 [6]) and cloud vendor B (Top
5). Compared with the previous controller, its throughput
has increased from 160 TPS to more than 3400 TPS (21x).

• The costs of developing and maintaining lots of controllers
has been significantly mitigated with the consolidated con-
troller in POSEIDON. The controllers’ lines of codes has
been significantly reduced by 22%~41%. Beneath the con-
solidated controller, the human efforts of developing a con-
troller for a new service is reduced by 50%.

• The consolidated controller has taken over lots of the work-
load from each service controller, reducing the CPU and
memory consumption by 50%.

2 Background and Challenges
In this section, we present the virtual network configuration
workflow and discuss the challenges encountered during years
of production deployment of our virtual network controller.

Controller

Config
changes

calculation

VM1

VM4

VM2

VPC1

vGateway

Server1

VM3VM4

Server2

VPC1: Tunnel ID,
Route, ACL;

VM4: PIP

EIP1: BW

Configure
cloud infra

VM4: server2; EIP1: BW

Tenant Intent Virtual Network Controller

Tenant intent

mapping

VM3
VPC2

VM1 VM2

vSwitch

Database

vSwitch

…
VPC-ACL

VPC-route
VPC-subnet

EIP-BW
EIP-PIP

EIP-VM

…

Cloud control APIs:

 i) Create VM4 in VPC1

 ii) Assign EIP1 to VM4

1

2

VPC-status VM-status

3

Physical Device

Figure 1: Virtual network configuration workflow.
2.1 Background
As Fig. 1 shows, the workflow consists of three steps:
1⃝ Tenant intents mapping to cloud control APIs. When

tenants attempt to configure their virtual networks (e.g., VM
create/deletion), they use the cloud control APIs [1–3, 7]
provided by cloud vendors to describe their intents. The cloud
control APIs are standard interfaces for tenants to create, read,
update and delete their virtual resources (e.g., VMs). Different
vendors offer different suites of cloud control APIs [1–3, 7].
Taking VPC configuration as an example, in Fig. 1, a tenant
intent of “create VM4 in VPC1 with a public address EIP1”
can be implemented with two cloud control APIs as “create
VM4 in VPC1” and “assign EIP1 to VM4”, which are fed to
the virtual network controller for further processing.
2⃝Device config changes calculation. After receiving ten-

ants’ API calls, the controller needs to compute the necessary
updates to be configured on the physical devices. This is done
with the following steps.
• Step 1: Identify all the dependent configs. Let us use the

VM4 creation in VPC1 as an example (see Fig. 1). Because
VM4 belongs to a specific VPC, to create VM4, we need
to identify the VPC VM4 belongs to, which is VPC1. In
addition, we also need to identify the dependencies of VPC1,
such as ACL rules and routing tables. This step is done by
doing SQL-based database queries. In this process, many
tables, such as VPC-ACL, VPC-VM, etc, are queried.

• Step 2: Identifying the physical devices onto which the con-
figs must be installed, as any network config is implemented
on the physical device. As shown in Fig. 1, Server2 and
vGateway need to be configured with the dependent configs.

• Step 3: Config changes calculation. After executing step
1, we know the configs needed for a API call. With step 2,
we know the targeted devices and their existing configs. If
the configs in step 1 already exist on the device, no config
change is applied on the physical server. In contrast, the
difference between the two is pushed to the physical server.
In our initial controller implementation, for each cloud con-

trol API, we write SQL code to manipulate databases and use
if-else control block to arrange the SQL query order based on
our service logic and the value acquired by table lookups. As
device number, table size and if-else logic grow, the config
changes calculation time is increasing rapidly.
3⃝Physical device configuration. In the last step, the calcu-
lated config changes are pushed to the physical device. For

1084 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2020 2021 2022

Year

0

5

10

15
D

a
ily

 A
P

I
C

a
lls

 (
T

)

Figure 2: Daily API calls grow
year by year in our cloud.

2017 2018 2019 2020 2021 2022

Year

0

10

20

N
e

w
 S

e
rv

ic
e

s
/D

e
v
ic

e
s

0

25

50

75

N
e

w
 T

a
b

le
s

Service

Device

Table

Figure 3: The number of yearly
added services, devices and tables.

2017 2018 2019 2020 2021 2022

Year

0

5

10

N
o
.
o
f
E

n
tr

ie
s
 (

M
)

VM-server

Figure 4: Number of entries in VM-
server table of a region.

example, in Fig. 1, the intent of “create VM4 in VPC1” is
eventually translated into the following device configs: the
private IP (PIP) and VPC ID are configured on vSwitch for
VM communication and VXLAN tunnel encapsulation, the
routes and ACLs of the VPC are also added to vSwitch to
regulate VM traffic, the VM-server mapping is installed to
vGateway to route traffic from remote VMs to the VMs on
the local host. Apart from that, in production, we need to
deal with devices with different hardware forms, e.g., x86- or
Tofino-based vGateway [25]. Therefore, the controller needs
to ensure that the translated configs in installed on these het-
erogeneous devices both timely and correctly.

2.2 Challenges
In this section, we describe two challenges of building a vir-
tual network controller that manages millions of tenants.

2.2.1 Insufficient Performance for Growing Workloads
The scale of networks and the number of services grow dra-
matically over the past decades. We find that previous con-
troller has degrading performance when handling the growing
workloads due to the following three reasons.
Rapid growth of northbound API calls and southbound
devices. Over the years, the usage of cloud resources by ten-
ants has significantly increased. For example, in the past two
years, the average number of PIPs within a VPC has increased
from hundreds of thousands to millions. This causes a rapid
growth in the number of VMs in VPCs. When a cloud user
creates, deletes or updates of a VM, the user has to call the
cloud controller API to take the corresponding actions. As the
number of VMs increases, the number of cloud control API
calls increases dramatically as well. Meanwhile, the grow-
ing number of tenants further exacerbates the frequencies of
API calls that the controller needs to handle. As shown in
Fig. 2, the API calling frequencies have doubled in two years,
reaching tens of trillions of calls within a single day.

Furthermore, as the scale of an individual VPC increases,
the physical devices the VPC covers also expand. This leads to
a sharp rise in the number of southbound devices that a single
API call needs to configure, imposing additional performance
overhead on the controller. For instance, in extreme cases, a
change of a single ACL rule in a large VPC may require a
batch configuration to more than 100,000 servers.
Long search chains and large table size. With expansion of
our cloud scale, the number of services and their dependencies
increase, leading to a growing number of tables that need to
be queried sequentially to finish the process of a single API
call (sometimes dozens of tables are queried). Fig. 3 shows

the recent growth of tables in our cloud. When a new table is
added to record the relationship between services, the number
of tables involved in the SQL query logic of some APIs may
increase. Since the cloud controller needs to handle trillions of
API calls each day, the additional table queries in a single API
causes a significant burden on our database. Simultaneously,
with the increase in the number and scale of virtual networks,
the number of entries in major tables also grows, resulting in
a longer database search/update latency. Using the VM-server
table as an example, Fig. 4 shows its recent growth.

Due to the significant growth in table size and the number of
tables being queried, over the span of one year, the P99 latency
of calculating config changes for one API in our cloud (config-
ure the vGateway) has increased from 860ms to 1615ms. The
growth in latency has far exceeded the performance improve-
ments of our controller that employs nested table searches,
resulting in a lack of scalability in performance.

We follow a distinct cyclical pattern to iterate our systems
in Alibaba, typically spanning several years. In the beginning
of a span, a significant number of new services/devices/tables
will be added to our cloud (e.g., 2017 and 2020 in Fig. 3).
After that, a considerable amount of time is required for de-
bugging and large-scale deployments. In this period, new de-
vices/services/tables (e.g., 2018, 2019, 2021 and 2022 in the
figure) are added only for reliability or security reasons, hence
the number will be very limited. After that, we will kick-off a
new cycle with a batch of new services/devices/tables.

Cloud-native applications intensify the controller perfor-
mance requirements. The emerging cloud-native applica-
tions [4] require that the controller allocates and releases
resources in a short time to adapt to the elastic changes in
workloads. Such program-triggered API calling approach re-
sults in a significantly higher frequency than tenants manually
configuring the network, posing challenges to the controller’s
performance on throughput and latency. For example, in e-
commerce business, the time of peak traffic is known, and to
save costs, resources will be massively scaled up (e.g., tens of
thousands of containers) just before the peak arrives, which
needs a high-throughput controller. Similarly, cloud-native
based social media applications need to handle surges in user
access during hot events. To cope with the sudden increase in
traffic, thousands of backends need to be elastically scaled in
a short interval (e.g., 500ms). This poses challenges to both
the controller’s throughput and latency. Insufficient controller
performance will lead to backlog of tasks and delayed con-
figurations. In the past, this will only impact the experience

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1085

of network operators as they need to wait a bit longer before
configurations take effect. However, for cloud-native appli-
cations, when the controller cannot support rapid network
configurations for a large number of new instances, the un-
expected surge in user traffic cannot be handled, resulting in
service interruptions and user experience degradation.

2.2.2 High Cost of Managing Separate Controllers
Service-dedicated controllers for rapid iteration. In the be-
ginning, we had only a small number of services, and different
service teams developed and maintained service-dedicated
controllers independently to ensure rapid iteration and iso-
lated deployment. If we develop a monolithic controller that
covers all services, huge continuous code integration efforts
will be needed for such a complicated system, hindering itera-
tion pace. Google’s Andromeda [14] also holds a similar view-
point. They believe that different services and their associated
devices need to be managed by separate controllers [14].

However, as our services expand, the number of controllers
has increased to dozens (e.g., LB controllers, VPC controllers,
cross-region controllers), and the development and mainte-
nance costs of these controllers gradually become unsustain-
able. Fig. 3 shows the annual additions of services, devices,
and tables between services in our cloud. When a new ser-
vice is added, we need to not only develop new APIs, but
also deal with possible dependencies with existing services.
When a new device is added, it requires extensive develop-
ment of device-specific tasks in the controller, such as life
cycle management, consistency checks, device-dependent rule
translations. Furthermore, during rapid iteration, each con-
troller requires dedicated personnel from the service team for
maintenance. The maintenance costs also increase linearly
with the number of controllers.
Code redundancy and logic dependencies between con-
trollers. In the service-dedicated controller architecture, we
discover that the code redundancy for the southbound inter-
faces of different controllers is relatively high, as these in-
terfaces are service-agnostic and primarily responsible for
device management and configuration. However, each ser-
vice team independently optimizes the performance of their
interfaces, leading to significant waste of human resources.

In addition, as the business grows, the dependencies be-
tween services have become increasingly complex. A cloud
control API processing may require multiple controllers to
collaborate. For example, the Internet gateway is managed by
both the VPC controller and the cross-region controller, so
any modifications to the VPC controller must also consider
the potential impact on the cross-region controller. The code
redundancy and logic dependencies diminish the benefits of
managing separate controllers.

3 Design
3.1 Design Overview
To address these challenges, we propose POSEIDON, a virtual
network controller that can manage a large-scale cloud with

Tree-based Config Changes Calculation

VPC

Unified Agent

D
at

a
pl

an
e

Unified Controller

Trident changes

Cross-
region

Load
Balance

Forwarding PlaneForwarding Plane

Cloud control APIs

Pushing Service

C
on

tr
ol

 p
la

ne

NAT…

Unified Agent

Trident operations Service related
Service independent

Server Gateway

…

Figure 5: Layered controller architecture of POSEIDON.

millions of tenants. It contains the following 5 key designs:
Partial consolidation architecture. To reduce the costs of
developing and maintaining multiple service-dedicated con-
trollers, POSEIDON introduces a layered design that incor-
porates the consolidation of common logic among various
services into a unified controller (§3.2), as shown in Fig. 5.
Trident: Service-independent abstraction. To unify the
management of heterogeneous devices and diverse services,
we design Trident, a service- and device-independent cloud
control abstraction for the unified controller. Trident exposes 5
operations over 3 objects, allowing for flexible programming
of existing cloud control APIs. Specifically, in order to achieve
equivalence with SQL-based config changes calculation, Tri-
dent offers Relate/Unrelate, a pair of unique operations to
represent the relations between objects (§3.3).
Config representaion through Trident tree. By continu-
ously recording Trident operations, we can build a tree-like
data structure named as Trident tree. Trident tree represents
configurations, devices and relations between them (§3.4).
Tree-based config changes calculation. With Trident tree,
the service-related table lookup logic (SQL+if-else) is re-
placed by equivalent tree traversal which decoupled config
changes calculation from specific service logic. To acceler-
ate the config calculation process, we take advantage of the
observation that the descendant relation is transitive in the
Trident tree and propose function-based descendant relation
calculation with O(1) computational complexity (§3.5).
Cloud-scale performance optimizations. For production
deployment, we design a hierarchical storage structure for
POSEIDON and deploy a traversal cache to bypass the time-
consuming reverse Trident tree traversal for top tenants who
have substantial number of virtual network elements (§3.6).

Fig. 6 shows the workflow of device configuration of PO-
SEIDON. In POSEIDON, after tenant intents are mapped to
cloud control APIs, instead of writing (SQL + if-else) query
logic, the service-related controllers maintained by individ-
ual service teams translate the APIs into Trident operations.

1086 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Create a VM in VPC1 with EIP1

b. Enable EIP1 on PIP4

(1) Create VM4, PIP4;
(2) Relate VM4 to PIP4,
PIP4 to VPC1, Server2 to
VM4;
(3) Update FlowTable1.

(1) Create
EIP1, Bandwidth;
(2) Relate PIP4 to EIP1,
EIP1 to Bandwidth,
Gateway group1 to EIP1

User intent

Trident
operations

Cloud
control API

a. Create a VM in VPC1

Trident
changes

Server2: Add ACL1,
Route1, VPC1, PIP4, VM4.
Gateway group1: Update
FlowTable1.

Server2: Add EIP1,
Bandwidth.

Gateway group1: Add
EIP1, Bandwidth.

1

2

3

Figure 6: Device configuration workflow of POSEIDON.

Then, the unified controller changes the config tree topology
according to the Trident operations and conducts tree-based
config changes calculation to generate the device-independent
Trident changes, which will finally be configured into devices.

3.2 Consolidation of Separate Controllers
In this section, we discuss the problems of consolidating all
the functions of multiple controllers into a big one. Then, we
introduce the partial consolidation adopted by POSEIDON.

3.2.1 Problems with full consolidation of controllers
To reduce the overhead of multiple controllers, it is natural to
consider consolidating their functions into one big controller.
However, full consolidation incurs significant costs. In our
clouds, each service-dedicated controller is rapidly iterated to
satisfy changing service requirements. Before each iteration
goes online, it is necessary to conduct comprehensive testing
of the controller on all relevant APIs and their parameters.
Given there are x controllers (in our cloud x is 50~60), and
each is iterated Iteri times a month and has Testi test cases
to cover before put online, the total test cost is O(Σx

i=1Iteri ∗
Testi). Comparatively, after full controller consolidation, the
iteration frequency will be the sum of the iteration frequencies
of each controller. Moreover, on each iteration, all the test
cases need to be examined and the total test cost grows to
O(Σx

i=1Iteri ∗Σx
i=1Testi), which is likely to impede the rapid

iteration of cloud services.

3.2.2 POSEIDON’s choice: partial consolidation
Despite the significant cost of full consolidation, we have
observed that some parts of the controller are service-
independent, which can be consolidated without high cost.
For example, at the northbound of the controller, the API pars-
ing logic is service-related and constantly undergoes rapid
iterations. In the middle, although config changes calculation
for different services may involve orchestration of different
table query sequences, the underlying table query mechanism
is quite similar. At the southbound, the controller needs to
interact with devices. The code for interacting with different
devices often shares a significant amount of common logic

such as life cycle management which transitions between de-
vice states. Additionally, the device update frequencies are
usually much lower compared to the service iteration frequen-
cies (Fig. 3), making southbound logic more stable.

Based on the above observations, to maintain the flexible
iterative capability of cloud service at the northbound and re-
duce the OpEx of maintaining multiple controllers, we carry
out partial consolidation of common parts of each controller.
Specifically, we build a service-independent abstraction layer
in the middle, offering a set of atomic operations, enabling
flexible orchestration of diverse northbound service require-
ments using these atomic operations. Past SQL + if-else ap-
proach poses a high demand for developers’ understanding of
mechanisms of cloud networks. With the new abstraction, de-
velopers only need to parse APIs into these atomic operations
that are independent of both services and devices. Beneath
this abstraction layer, we consolidate the implementations of
different controllers for config changes calculation and device
configuration to reduce redundant development and mainte-
nance costs, as shown in Fig. 5. As mentioned in §2.1, config
changes calculation is the most time-consuming step. Consol-
idation helps us concentrate on its optimization collectively,
rather than conducted by individual teams.

Furthermore, for installing configs on heterogeneous de-
vice, we deployed a unified agent on each device for receiving
Trident changes, as shown in Fig. 5. There is a device-specific
program for translating unified Trident changes into device-
specific primitives on the agent. The program is developed by
the device management team, who is more familiar with the
command-line interface of the device.

3.3 Service-independent Abstraction
We first introduce three goals of designing abstractions for
managing virtual network, then elaborate on how POSEIDON
abstracts the API parsing logic and various services/devices.

3.3.1 Goals of designing abstraction
• Service-independent: The processing logic is agnostic to

service, namely, all APIs share a unified codebase.

• Device-independent: The objects should hide device het-
erogeneity to ease the programming with the abstraction.

• Equivalence: The results obtained with the abstraction
should be the same as past SQL + if-else based approach.

3.3.2 POSEIDON’s abstraction
Based on the design rationale, we propose Trident, the cloud
control abstraction for the unified controller in POSEIDON.
Trident exposes 3 objects (Conf, Device, Group) and 5 op-
erations (Create, Update, Delete, Relate, Unrelate) upward,
facilitating the interpretation of existing cloud control APIs.
Conf: During virtual network configuration, the manipulation
of tenant resources through cloud control APIs will finally
translate into manipulation of configs (e.g., routes and ACLs)
on the physical device. We use Conf to denote the manipula-
ble configs (e.g., VM, ACL in Fig. 7) on the device.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1087

Device: In order to hide the differences of underlying devices
in the abstraction, we use Device to abstract different kinds
of devices (e.g., server, gateway in Fig. 7) that carry configs.
Group: To manage increasing workloads, horizontally scal-
ing devices into clusters is common in the cloud [15, 25, 26].
Within the same cluster, all device share same configs. To
avoid the repetitive config changes calculation for devices
within the same cluster, we introduce Group as the repre-
sentative of the devices to carry Confs for the cluster. For
consistency, we also create a Group with the same name for
an isolated device that does not form a cluster (e.g., Server1).
Create/Update/Delete: The CRUD (Create, Read, Update,
Delete) of tenant resources through cloud control APIs in-
ternally turns into CRUD of related Confs/Devices/Groups
by the unified controller. Since this paper focuses on virtual
network configuration due to Trident tree changes, we do
not include the read operation in this paper, which will only
involve retrieving values from the tree. The Create/Delete
Devices takes place when devices are allocated/deallocated
for the scale-out or scale-in of cloud workloads.
Relate/Unrelate: There may be relations between Confs, De-
vices and Groups. Specifically, for relations between two
Confs, we use Conf1→Conf2 to denote that the success-
ful configuration of Conf1 depends on Conf2. For example,
VPC→ACL meaning that each time configuring a VPC, we
need to configure its ACL simultaneously. For relations be-
tween Devices and Groups, we use Device1→Group1 to de-
note that Device1 belongs to Group1 as Device1 has the same
configurations with other devices (if any) in Group1. For re-
lations between Groups and Confs, we use Group1→Conf1
to denote that Conf1 is configured to all the devices attached
to Group1. As Group1 represents a cluster of devices, we no
longer associate Conf1 with each device attached to Group1
to reduce redundant configurations. In other words, the rela-
tion between Conf and Device will not exist. In Trident, we
introduce Relate to add → between two objects if they have a
relation and Unrelate to remove → if the relation disappears.

3.4 POSEIDON’s Trident tree
With Trident, the processing of cloud control API is abstracted
into creating/deleting objects and relating/unrelating objects
to other objects. After that, multiple “Device→Group→Conf”
chains are formed. To enhance visualization and compre-
hension, we represent these interconnected chains as a tree
structure, referred as “Trident tree”, e.g., the tree in Fig. 7.
3.4.1 Building Trident tree
Fig. 6 shows the equivalent Trident operations for the two
example APIs. These operations create, delete various objects,
and modify the relations between them. For example, the Tri-
dent operations of API a in Fig. 6 will create two Confs, VM4
and PIP4, as shown in Fig. 7. Then, it will build relations
between VM4, PIP4 and the dependent Confs. Additionally,
VM4 needs to be related with the corresponding Group, indi-
cating its creation on the Devices represented by that Group
(i.e., Server2). These two API calls form a path (marked with

Server1 Server2 GW1 GW2

Conf

Device

Group

Device

Relate

ACL1

Server1

VPC1

Route1

PIP1 PIP2 PIP3 PIP4

VM1 VM2

VPC2

Server2

VM3 VM4

 EIP1

Gateway

Group1

Bandwitdth1ACL2 Route2

Create

Conf

Update

Conf's

data

vGW

FlowTable1

Figure 7: Trident abstraction and an example of Trident tree.

the blue and red path in Fig. 7). With more API calls, finally, a
Trident tree that records the dependencies between objects is
created as shown in Fig. 7. Since the configs within the Group
are identical, we consider the Group as the root of the Trident
tree in the following config changes calculation procedure.

3.4.2 Handling API calls with Trident tree
Any API call can be represented as changes to the Trident
tree, and based on the Confs changes of the Group, we can
determine what updates should be made to the Devices within
it. We use the API “create VM4 in VPC1” to illustrate this
statement. To execute this API call, we have two steps:

1) We identify the Confs that VM4 depends on. This is
achieved by traversing from VM4 to its descendants, which
are PIP4, VPC1, ACL1, and Route1. Then, by traversing from
these dependent Confs to their roots with a reverse tree traver-
sal, we can locate the target Groups that carry these Confs
(i.e., Server1 and Server2).

2) We deduce the actual changes that need to be pushed to
the devices based on the relations between dependent Confs
and Groups. We can obtain the set of Confs carried by target
Groups (e.g., Server2) by traversing their descendants before
and after changing the tree topology with Trident operations.
By performing a diff operation on the two Conf sets, we can
obtain config changes for target Groups. In Fig. 7, the added
descendants of Server2 include VM4, PIP4, VPC1, ACL1, and
Route1. Hence, the config changes of Server2 are “add VM4,
PIP4, VPC1, ACL1, Route1”. These changes are represented
with Trident objects and device-independent.

3.5 Tree-based Config Changes Calculation
3.5.1 Basic procedure
Algo. 1 describes the solution adopted by POSEIDON. API
calls change the tree topology by either adding/deleting tree
nodes or modifying the relations between them (line 3). Af-
ter the tree is updated, we can find all the dependent Confs
of these Trident operations by traversing the tree (line 4).
Then, by reversely traversing from these dependent Confs to
their roots, we can obtain the target Devices. As Devices are
represented by their Groups, finding Groups is enough for

1088 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

subsequent calculation (line 5). For each Group, the Confs
that need to be added/deleted/updated are obtained by detect-
ing the changes of its descendants (line 6-13). For example,
when a Group’s descendants expand due to a new Conf being
added, we need to add a corresponding configuration rule to
the Devices represented by this Group (line 8-9).
Algorithm 1: Tree-based config changes calculation.

1 Function ChangesCalculate(Cloud control API):
2 Mapping API to Trident operations.
3 Change the Trident objects and their relations according to

Trident operations.
4 con f _set = all the dependent Confs of Trident operations.
5 group_set = FindRoots(con f _set).
6 for group in group_set do
7 for c in con f _set do
8 if c will be added into descendants of group then
9 Add c to group.

10 else if c will be removed from descendants of group
then

11 Delete c from group.

12 else if c changes & c is in descendants of group then
13 Update c in group.

3.5.2 Fast finding descendant changes for a Group
A critical step in this procedure is to verify whether a Conf
resides in a Group’s descendants (line 8, 10, 12).
Naive tree traversal is unscalable. The naive approach
employs a widely used traversal algorithm, e.g., depth-first
search, which has a time complexity of O(nodes), starting
from the Group and checking each visited tree node. However,
this solution is very time-consuming for large-scale cloud net-
works, as most devices accommodate a significant number of
configs (i.e., Confs in Trident tree), and the number of configs
keeps growing as the device performance improves. For exam-
ple, our gateway accommodates millions of VXLAN routing
table entries [25]. It is inefficient if each API call requires
a complete tree traversal, which will consumes hundreds of
seconds for traversing the Trident tree with millions of nodes.
Descendant relation is transitive. We adopt descendant rela-
tion between Conf and Group to indicate that a Conf is within
the descendants of a Group, that is, the Conf is configured
to the Devices represented by the Group. We observe that in
Trident tree, the descendant relation is transitive and can be
propagated from parent nodes to their children. Specifically, if
a Conf is configured on a Group, then all of its children must
also be configured on the same Group. Because parent nodes
need to be configured together with the dependent Confs (i.e.,
their children) on the Group. Therefore, for a Conf, deter-
mining whether it has a descendant relation with a Group
only requires examining its parents. If any parent of the Conf
has a descendant relation with a Group, the Conf inherits the
descendant relation with that Group. We employ reference
count to record the descendant relation between Conf and
Group, denoted as re f (Group,Con f). For example, we can
use re f = 1 to indicate there is a descendant relation while

Server1

ACL1

Server1

VPC1

Route1

PIP1 PIP2

VM1 VM21 1

1 1

1 1

1 OR 1 = 1

(a) OR-based

Server1

ACL1

Server1

VPC1

Route1

PIP1 PIP2

VM1 VM21 1

1 1

2 2

1 + 1 = 2

(b) SUM-based

Server1

ACL1

Server1

VPC1

Route1

PIP1 PIP2

VM1 VM21 1

1 1

F(1) + F(1) = 2

F(2) = 11

(c) Function-based
Figure 8: re f (Server1,Con fX) calculation. The changes and
unchanges are marked by red and black, respectively.

re f = 0 to indicate no relation.
There are multiple potential solutions to execute an API call

on the Trident tree with transitive descendant relation. Here,
we illustrate the pros and cons of two potential solutions.
Solution1: OR-based re f calculation. To figure out whether
a Conf is a descendant of a Group, we can check if ei-
ther of its parents is a descendant of the Group. This in-
dicates that we can apply the OR operation on the ref-
erence count of all parents to obtain the reference count
of the Conf itself. Thus, we have re f (Group,Con fA) =
∨ire f (Group,Pi), where Pi is the ith parent of Con fA. As
shown in Fig. 8, re f (Server1,V PC1) = re f (Server1,PIP1)
OR re f (Server1,PIP2) = 1. The computational complexity
is O(Pi) (for a detailed analysis, please refer to §B.3).

Based on our experience, a Conf’s parents can reach several
million in our cloud. For example, during shopping festivals, a
VPC can have millions of VMs. Therefore, the OR calculation
due to a single API call (like VM create or delete) could take
more than tens of seconds. In order to ensure accuracy of
re f calculation, when a Conf’s parent undergoes a change,
the calculation triggered by changes of other parents will be
blocked until the refresh of the re f for this round (e.g., tens
of seconds) is completed. This approach significantly limits
the system’s throughput and increases its latency, making it
unsuitable for production deployment.
Solution2: SUM-based re f calculation. Another solution
is asking a Conf to inherit all parents’ re f by using a
summation method, as defined by re f (Group,Con fA) =
Σire f (Group,Pi). Whenever the re f (Group,Con f) becomes
zero, we need to delete the Conf from the Group. Because the
summation method adheres to the reversibility property, the
computational complexity of this SUM-based calculation is
O(1) (for a detailed analysis, please refer to §B.4).

However, this solution also has a limitation, as any change
in a node’s re f propagates through all its descendants layer by
layer. For example, creating VM2 of VPC1 on Server1 will
cause re f (Server1,V PC1) to increase from 1 to 2, as shown
in Fig. 8. As ACL1 and Route1 are children of VPC1, this
will result in synchronized changes for re f (Server1,ACL1)

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1089

Table 1: Changes of re f (Group,Con f) when Trident tree changes. The blue and red text denote the changes due to the blue and
red operations in Fig. 7, respectively. “0 → 1” represents the value changes from 0 to 1.

Group
Conf VM1, PIP1

VM2, PIP2
VM3, PIP3, VPC2

ACL2, Route2
VM4
PIP4

VPC1 ACL1
Route1

EIP1
Bandwidth1

FlowTable1

Server1 1 0 0 2 1 0 0
Server2 0 1 0 → 1 0 → 1 0 → 1 0 → 1 0

Gateway Group1 0 0 0 0 0 0 → 1 1

and re f (Server1,Route1) as well. When the re f of a Conf
changes only within the positive range, it implies that a de-
scendant relation always exists and there is no need to trigger
a configuration to the corresponding Group. For cloud net-
works, service dependencies are intricate and the tree depth
can reach dozens of layers. While this propagation may trig-
ger re f changes in many layers, it won’t incur configuration
updates, leading to a waste of computation resources.
Our solution: Function-based re f calculation. As dis-
cussed, the OR-based solution has high computational com-
plexity, while the SUM-based solution has ineffective propa-
gation. With lessons of both, we propose function-based re f
calculation. Specifically, to reduce computational complexity,
we retain the reversibility property advantage of the SUM-
based solution, refreshing re f with O(1) complexity. In addi-
tion, to address the ineffective propagation, we filter out irrele-
vant changes from a Conf’s parents by counting the number of
its parents with a non-zero re f . The ref calculation is defined
by re f (Group,Con fA) = ΣiF(re f (Group,Pi)), where F(x)
is a piecewise function as F(x) = 1,x > 0;F(x) = 0,x = 0.
With this function, any changes of x within the positive range
will not alter its function value (remain 1), thereby preventing
ineffective re f calculation propagation (hide children from
irrelevant re f changes of parents).

Assuming we continuously create VMs of VPC1 on
Server1, re f (Server1,V PC1) will keep increasing. With our
solution, re f (Server1,ACL1) and re f (Server1,Route1) will
always remain 1, as shown in Fig. 8. This demonstrates
that children won’t inherit irrelevant re f changes from their
parent. However, if there are no more VMs of VPC1 on
Server1, re f (Server1,V PC1) will be 0. With our solution,
re f (Server1,ACL1) and re f (Server1,Route1) will become
0 in response because F(0) = 0. To sum up, our solution ad-
dresses the performance and overhead issues of previous two
solutions, making it suitable for large-scale cloud networks.

3.5.3 Fast finding updates for a Conf.
When we need to update a Conf, we perform a reverse traver-
sal on the tree from the Conf to locate the Groups that accom-
modate it. Then, we push the modification of the Conf to the
Devices under these Groups. In production environment, there
are always concurrent updates to the same Conf. To ensure
the correctness of the order in which updates are pushed to
devices, we introduce a version field to Conf. On each update,
the version is incremented by 1. When multiple updates of a
Conf are pushed to a device, the on-device unified agent main-
tains the update install order based on the version numbers
and performs reordering for out-of-order updates.

Redis

Conf's value

DB

Trident changes

Memory

Unified agent

Trident ops

Trident ops

Read Redis

Ref

Version

Relation

Conf1: value

……

Trident ops1

……

Figure 9: Hierarchical storage structure of POSEIDON.

3.5.4 A tree-based config changes calculation example
With the ability of re f and version to fast detect the changes
of Group’s descendants and updates of Conf, we can modify
lines 8, 10, and 12 in Algo. 1. For example, we can replace
the logic of line 8 by checking if ref transitions from 0 to a
positive value. By observing changes in version and ensuring
re f is not 0, we can determine whether an update needs to
be pushed to a certain Group, which can replace the logic
of line 12. With re f and version, unnecessary configurations
can be efficiently filtered out. Finally, we read the value of the
Confs that require deployment to generate the final Trident
changes and push them to the unified agent. Table 1 illustrates
the changes in re f resulting from Trident operations parsed
from API a and API b in Fig. 6. Using these changes, we
can efficiently compute config changes. For example, when
re f (Server2,ACL1) transitions from 0 to 1, it indicates that
ACL1 needs to be configured on Server2. Similarly, an update
to FlowTable1 will increase its version by 1, requiring this
update to be pushed to the Gateway Group1, which has a
descendant relation (with a non-zero re f) with FlowTable1.

3.6 Cloud-Scale Performance Optimizations
Hierarchical storage structure of POSEIDON. In order to
achieve higher I/O performance while ensuring data reliability,
we propose a hierarchical storage structure for POSEIDON,
consisting of memory, Redis and database, as shown in Fig. 9.
Among these, memory provides the highest performance but
is vulnerable to data loss in case of power failure. Redis offers
intermediate performance and a certain level of reliability, as
it periodically batches data onto hard disk. The database is
stored onto disk, offering the lowest performance but ensuring
data persistence even during power loss.

POSEIDON needs to store various data objects, including
Trident operations, re f s, versions, Conf relation and Conf’s
value. Based on the data read frequency and reliability re-
quirements, they are stored in three different storage mediums.
Among them, Trident operations are derived from the interpre-
tation of APIs. All other data structures are calculated based
on them. Hence, Trident operations serve as the source of

1090 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Server1

PIP1 PIP9……

VPC1Route1 Traversal cache

of VPC1

PIP8

Fastpath

VM1 VM2

…… PIP y

VM x

Server y

……

……

Figure 10: Traversal cache.

data for config changes calculation but will not be frequently
accessed during the calculation. Therefore, they are suitable
for storage in database as ground truth data. In the event of
memory power loss, they can be used to restore other data.
The re f , version, and relation involve high-frequency read
and write requirements, thus they reside in memory. The en-
tire computation process takes place in memory for ultimate
performance. In addition, we store the Conf’s value in Redis,
as the Conf’s value has a lower read frequency compared to
re f /version/relation but higher than Trident operations. This
is because the controller only needs to read the Conf’s value
in the final step of config changes calculation. To minimize
the storage pressure on memory, we store it in Redis. In addi-
tion, in order to prevent data lost of Redis due to failover, we
design a failover detection method in §B.6.
Traversal cache. Based on POSEIDON’s deployment experi-
ences, we have observed performance degradation when per-
forming config changes calculation for some top tenants (e.g.,
those with millions of VMs). In a real case, the reverse tree
traversal time reaches a surprising 150s when a visited Conf
has 105 parent nodes. To tackle this issue, we introduce traver-
sal cache. The basic idea is to maintain an additional cache
for nodes with an excessive number of parent nodes, which
directly records the Groups obtained from the reverse traver-
sal. As shown in Fig. 10, as the parents of VPC1 continue to
increase, when reaching a certain threshold, we will attach a
traversal cache to VPC1, which records the Groups holding
descendant relation with VPC1. When Route1 changes, VPC1
will be visited during the reverse traversal to find the Groups.
When VPC1 is visited, the Groups recorded in its traversal
cache will be directly retrieved, eliminating the need for time-
consuming traversal of the entire tree. This is shown in Fig. 10,
where the green line with traversal cache bypasses the entire
tree traversal. When Trident tree is updated by Trident opera-
tions, the traversal cache will be refreshed according to the
function-based re f calculation.

4 Evaluation
POSEIDON has been deployed in our production cloud for
over three years and is responsible for handling the major-
ity of API processing. The following data were collected
from a production region containing hundreds of thousands
of vSwitches, thousands of GWs, and tens of millions of VMs.

4.1 Performance improvement
End-to-end completion time under different TPS. Experi-
ment setting. For a controller, the key performance metric is
its concurrent processing capacity and the corresponding com-
pletion time. Since the concurrent capacity of unrelated API
calls can be enhanced through horizontal scaling, we focus on
the capacity for processing related API calls. Specifically, we
conducted experiments to measure the concurrent capacity of
Vendor A (Top 5 [6]), Vendor B (Top 5), and ours (Top 5) on
two of the most widely used APIs in our public cloud services,
that is, Enable and Disable Elastic IP (EIP) [5] for a VM in a
same VPC. We have selected these two APIs for two specific
reasons. Firstly, they enable us to precisely gauge the time it
takes for the controller to process an API call, excluding any
time spent on unrelated modules like the VM’s startup time,
which occurs when utilizing the VM creation API. Secondly,
these two APIs represent a 10% of the 1200 APIs available to
our customers. It should be noted that as POSEIDON utilizes
the same logic and codes to handle all APIs, there is no spe-
cific optimization to these two APIs. We leverage the Cloud
control API interfaces provided by the major cloud vendors to
initiate API calls with different transactions per second (TPS).
By recording the time taken for successful (for testing en-
abling EIP) or unsuccessful (for testing disabling EIP) pings
to these EIPs, we can obtain the P50, P90, and P99 completion
time. It is important to note that the timing starts from when
the controllers of Vendor A/B and ours receive the API calls
returning timestamp when the controller’s acknowledgment
of receiving the API calls), which effectively eliminates the
impact of transmission latency on the measurements. All the
experiments were conducted in the region of Jakarta†† from
August 20th to 29th, 2023.

Performance analysis. Fig. 11 depicts the P50, P90, and
P99 completion time for enabling EIP. As shown in the figure,
the completion time of Vendor A and Vendor B is 1.8x~55x
and 2.6x~4.8x higher than that of POSEIDON. Moreover, our
system demonstrates superior stability in high concurrent
scenarios. Even with 400TPS, the P50 of POSEIDON remains
consistently stable at 1.3s. The reason for testing Vendor B’s
performance only up to 200TPS is that when we attempted
300TPS, an unsupported error occurred. The specific error
details can be found in the appendix (Fig. A1). Furthermore, it
is worth noting that during the testing at 400 TPS, the majority
of completion time for Vendor A are below 30s. However,
there are 8 specific cases where the process of enabling EIP
took over 300s. Thus, the P99 of Vendor A is much higher
than that of ours (about 55x). This observation suggests that
the Vendor A control plane encounters instability under high
TPS scenarios. In the case of disabling EIP, the completion
time for Vendor A and Vendor B are 1.6x~12x and 1.3x~2.5x
compared to ours, respectively, which will be detailed in the
appendix (Fig. A2) due to the space limits.

††We repeated the experiments across multiple regions and observed con-
sistent results; for brevity, we illustrate only one set of results in this paper.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1091

0 100 200 300 400

Transactions per Second

1
2
3
4
5
6
7
8
9

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(a) P50

0 100 200 300 400

Transactions per Second

0

5

10

15

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(b) P90

0 100 200 300 400

Transactions per Second

10
1

10
2

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(c) P99
Figure 11: End-to-end completion time of API calling for enabling EIP.

2 4 6 8 10

Threshold

100

200

300

400

T
ra

v
e
rs

a
l
T

im
e
 (

m
s
)

400

500

600

700

S
to

ra
g
e
 (

M
B

)

Time

Storage

Figure 12: Threshold selection
of traversal cache.

10
1

10
2

10
3

10
4

10
5

No. of Nodes

10
1

10
3

10
5

T
ra

v
e
rs

a
l
T

im
e
 (

m
s
)

w/o traversal cache

w/ traversal cache

Figure 13: Traversal time opti-
mization with traversal cache.

10
1

10
2

10
3

10
4

10
5

No. of Nodes

0

150

300

450

600

750

900

S
to

ra
g
e
 (

M
B

) w/o traversal cache

w/ traversal cache

Figure 14: The storage usage
(w/ vs. w/o traversal cache).

P50 P95 P99
0

100

200

300

400

500

600

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
) Prior-gen

Poseidon

Figure 15: Completion time of
config changes calculation.

Traversal cache. Threshold selection. The most important
metric for the traversal cache is the threshold, which deter-
mines the number of parent nodes that trigger the attachment
of a traversal cache for a Conf. We conducted experiments
in a Trident tree containing hundreds of thousands of nodes.
Fig. 12 shows the effects of the threshold on the P99 com-
pletion time of reverse traversal from all nodes to find their
roots, as well as the storage consumed by the traversal cache.
As the threshold increases from 2 to 8, the P99 completion
time remains relatively stable, while the storage consumption
decreases significantly. Once the threshold exceeds 8, there is
a notable increase in the P99. Therefore, the threshold of 8 is
a sweet trade-off point and is adopted in our production.

Traversal time optimization. Fig. 13 shows the P99 com-
pletion time for traversing (traversal time) different scales of
Trident tree. As the number of nodes increases, the traver-
sal time increases in both scenarios. When the Trident tree
contains 100,000 nodes, the traversal time without traversal
cache reaches 157s, which has a significant impact on the user
experience due to a long configuring delay. When we attach a
traversal cache for the node whose parents number exceeds
the threshold, the traversal time is notably reduced. Even if
the number of nodes reaches 100,000, the traversal time with
traversal cache is less than 1s, that is, only 792ms.

Storage usage. Fig. 14 illustrates the storage usage
with/without traversal cache. As shown in the figure, traversal
cache only causes a small piece of extra storage costs.
Config changes calculation. Bottleneck of prior-gen. Af-
ter conducting a thorough analysis of the performance bot-
tleneck of the prior generation controllers, we have figured
that the main bottleneck resides in the table lookup I/O of
database for calculating config changes. Based on our histor-
ical records, for the prior-gen, the P99 completion time for
config changes calculation reached 9s at 160TPS. In order to
overcome the I/O bottleneck in config changes calculation,
POSEIDON caches the Trident tree in the memory and Redis,
which significantly improves the the completion time and

500 1000 1500 2000 2500 3000 3500

Transactions per Second

130

140

150

160

170

180

190

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
)

P90

P95

P99

Figure 16: Completion time
of config changes calculation.

10
3

10
4

10
5

10
6

10
7

No. of Entries

0

5

10

15

20

25

30

R
e
c
o
v
e
ry

 T
im

e
 (

m
in

)

Prior-gen

Poseidon

103 104 105

0.5

1.0

Figure 17: Recovery time af-
ter restarts.

concurrent capacity of calculating config changes.
Completion time improvement. Fig. 15 depicts the config

changes calculation completion time of the same API in the
prior-gen and POSEIDON controller. The experiment is con-
ducted by calling the API 100 times repeatedly. As illustrated
in the figure, the completion time is notably improved com-
pared to the prior-gen. The P50, P95 and P99 completion
time of prior-gen are 3x, 3.5x and 4.4x larger than that of
POSEIDON. In addition, compared to the prior-gen, a smaller
difference between P99 and P50 of POSEIDON indicates a
smaller variance and thus a more stable performance.

Concurrent capacity improvement. Fig. 16 shows the config
changes calculation completion time of POSEIDON under
different TPS. As illustrated in the figure, P99 experiences a
drastic increases after 1500TPS. There is a sharp increase in
P90 and P95 when the frequency of concurrent calls exceed
3000TPS. The P99 of POSEIDON is less than 200ms when the
frequency of concurrent calls is 3432TPS. Compared to the
prior-gen, where the performance sharply deteriorated to 9s
after reaching 160TPS, the concurrent processing capability
of the config changes calculation module in POSEIDON has
been greatly enhanced.
Completion time of key steps in POSEIDON. Fig. 18 depicts
the completion time distribution of three key steps in the PO-
SEIDON workflow. The concurrent calling frequency is about
1,000TPS. As shown in the figure, config changes calculation
is the most time-consuming work due to its high complexity
and a multitude of I/O between memory and Redis. The P99
of config changes calculation, pushing and enabling is about

1092 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

40 60 80 100 120 140

Latency (ms)

0.2
0.4
0.6
0.8
1.0

C
D

F

(a) Config changes calculation

10 20 30 40 50 60

Latency (ms)

0.2
0.4
0.6
0.8
1.0

C
D

F

(b) Config changes pushing

0 5 10 15 20

Latency (ms)

0.98

0.99

1.00

C
D

F

(c) Config changes enabling
Figure 18: Completion time of three key steps in the POSEIDON workflow.

100ms, 20ms and 3ms, respectively. It also can be seen from
the figure that the CDF curve of config changes calculation
(Fig. 18(a)) is the shallowest one since the completion time
is greatly affected by the number of Confs and their depen-
dencies in the Trident tree (as shown in Fig. 13), which varies
dramatically. Besides, the tail in Fig. 18(b) and Fig. 18(c) is
much longer than that of Fig. 18(a). The reason for the long
tail in Fig. 18(b) is the extreme case for a small piece of cus-
tomers. When pushing the updates of the routing table for a
large VPC, the changes need to be pushed to hundreds of thou-
sands of devices, resulting in a few outliers with extremely
long completion time. The long tail in Fig. 18(c) is caused
by resource constraints on the device when other applications
exhaust the available resources.

4.2 OpEx and development cost optimization
OpEx. Since the common logic of controllers has been taken
over by the POSEIDON unified controller, the service-related
controllers focus on translating the API into Trident opera-
tions, leading to a notable reduction in the number of Lines
of Codes (LOC) of controllers. As shown in Table 2, the re-
duction rate of LOC are 22%~41%, which demonstrates a
significant mitigation in OpEx.

Development cost. Additionally, as the controller’s develop-
ment no longer needs to care about lots of works (e.g., config
changes calculation and pushing, consistency checking, etc),
the development cost has also gained a substantial reduction.
By comparing the development cost of two LB controllers
with similar business logic, we found that the cost has been
reduced by half. When developing a controller without POSEI-
DON, the human effort is 6 person-months and 66K lines of
code are written. With POSEIDON, the human effort amounts
to 3 person-months and we write 30K lines of code.

It is important to note that the reduction in OpEx and devel-
opment cost has not been added to the POSEIDON platform,
as the LOC of the POSEIDON is only around 150K, which is
much lower than the total LOC reduction.

Table 2: Reduction in Lines of Code of controllers.
LOC (prior-gen) LOC (POSEIDON) Reduction

LB1 167K 98K 41.3%
LB2 76.9K 46.9K 36.4%
VPC 873K 559K 36%
NAT 107K 65K 39.3%
VPN 97K 70K 27.8%

Private Link 31.8K 22.8K 28.3%
Accelerator 135K 105K 22.2%

Table 3: Resource consumption of unified agent.
Physical device Virtual element
SNA Server VM LB GW

CPU-Avg 0.12% 0.21% 0.81% 0.47% 0.16%
CPU-Max 0.94% 1.04% 1.88% 1.41% 0.99%
Memory 0.16% 1.30% 0.47% 0.31% 0.73%

4.3 Benefit and cost of unified agent
Recovery time after restarts. Fig. 17 illustrates the recovery
time for devices carrying different numbers of entries. The
more entries, the more reduction. The persistent storage of
config changes by the unified on-device agent enables fast
data recovery. The substantial optimization of recovery time
mitigates the downtime of devices, which improves the overall
utilization of devices and facilitates device iterations.
Resource consumption. The POSEIDON agent is deployed
on the device, consuming computing and storage resources.
We evaluate resources consumption for different physical de-
vices (e.g., Smart Network Appliance (SNA) [25]) and virtual
elements, as shown in Table 3. For the CPU, the average usage
remains below 1%, and the maximum usage is below 2%. As
for memory usage, it does not exceed 1% for all cases except
the server. This indicates that the agent only needs to consume
a small piece of on-device resources.

5 Experiences of deploying POSEIDON
How to migrate to POSEIDON? For a large-scale public
cloud provider, how to migrate from its old controller to PO-
SEIDON without affecting the quality of ongoing services is
a very challenging task. Initially, we leveraged lots of test
cases to verify the consistency between the POSEIDON and
the old controller. Only upon passing all test cases would we
allow the replacement of the old controller with POSEIDON
in the production environment. However, infrequently used
services not covered by the test cases led to continuous online
configuration errors. The practice of debugging after errors
has seriously compromised the availability of our services,
resulting in a substantial number of complaints. We gradually
recognized that test cases could not guarantee comprehensive
coverage of all usage of numerous services. Consequently, we
opted for a dual-running test in production, leveraging mas-
sive real user API calls to eliminate uncovered corner cases.
Specifically, we apply a dual-running test where both the old
controller and POSEIDON are running to handle the same
API calls, but deliver configs to production devices and test
devices, respectively. For each physical device in production,
POSEIDON will fully take over the configuration management
only after it has accurately handled the API calls of over 90%
of the tenants using the device, over 95% of the services im-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1093

plemented by the device, and over 90% of the APIs related
to the device for a specified period—this period being one
week for smaller regions and one month for larger regions.
Employing this strategy, the faults attributed to POSEIDON
have been significantly mitigated throughout the year.
POSEIDON’s performance in extreme situations: Extensive
route fluctuations. For tenants with self-built Internet data
center (IDC), their IDC’s BGP routes must be learned by their
VPCs in the cloud. Some tenants operate large-sized IDCs
with thousands of BGP routes. When there are fluctuations in
the links between IDCs and the cloud, it triggers massive BGP
route convergence. In extreme cases, BGP route oscillation
may also occur. All changes in BGP routes must be processed
and configured by the controller. For prior-gen controller, it
takes over five minutes to converge two thousand routes. With
POSEIDON, the converge time is reduced to tens of seconds,
significantly mitigating the impact on tenant services.

Large-scale device restart. Normally, network devices un-
dergo scattered restarts due to upgrades or SW/HW issues.
Extremely, there may be a widespread batch restart of devices,
e.g., during a power outage. Over the past years, we expe-
rienced three data center-level power outage incidents. The
first two were handled by the prior-gen controllers. During
restarts, a sudden surge in config retrieval requests from a vast
number of devices directly saturated the database connections.
Consequently, the recovery took hours. For the third incident
with POSEIDON deployed, due to its trident tree algorithm
and hierarchical storage, the recovery was finished in minutes.
Where to record the descendant relation between Conf
and Group? How to record these relations in a Trident tree
will affect the performance of configuration delivery, includ-
ing the incremental configuration delivery (i.e.a tenant adding
a new Conf) which ensures the timeliness of user configura-
tion delivery, and the full configuration delivery (i.e.device
restart) which is crucial to device upgrades and maintenance.
Specifically, if each Conf records its targeted Device, it will
be easy to calculate the incremental config changes, but the
full configuration delivery will be very slow because all Confs
must be traversed. In contrast, if each Group records the Conf
it needs, the full configuration delivery will be fast because
all required configs are already recorded in the Group, while
the incremental configuration delivery will be slightly slower
because the Trident tree needs to be reversely traversed to
find the roots. Note that we cannot record the relation in both
Conf and Group as this implementation contains too many
locks, leading to terrible performance. Considering POSEI-
DON servers a large-scale public cloud, where device updates
are extremely frequent, and stability maintenance is a critical
task, we choose Group to record the descendant relation to
achieve the best performance of full configuration delivery.

6 Related work
The previous abstraction works [9, 12, 16, 22–24, 27] provide
a unified abstraction to shield the heterogeneity of devices,

making the network configuration easier for network opera-
tors. For example, based on NETCONF [16], YANG [9] has
been proposed to facilitate device-independent configuration.
However, these abstractions only provide device-independent
capabilities and do not support service-independent config
changes calculation. Our proposed abstraction, Trident, elim-
inates the need to maintain service-specific config changes
calculation logic for each controller, greatly reducing OpEx.

The architecture of network control systems has also been
widely researched. [17, 21] manage various services and het-
erogeneous devices of physical network in unified manner,
which could notably reduces the OpEx of managing networks
consists of diverse devices. [17–19] introduce intent-driven
network management, which takes network management a
step further. Andromeda [14] and Achelous [30] design the
mechanism of configuring the devices in their VPC with the
config changes. However, all the above works do not touch the
config changes calculation procedure in the virtual network,
whose optimization is first discussed in this paper.

Additionally, there are several notable efforts [11, 28, 29]
dedicated to achieving rapid, highly scalable, and automated
database-based incremental view maintenance. We acknowl-
edge that the adoption of these methods could indeed improve
the controller performance with SQL-based optimizations.
While further SQL-based optimization of the controller may
meet current performance requirements, it sets us on a path
where future performance improvements become heavily re-
liant on SQL-database enhancements—a challenge we have
struggled with for over a decade. To have a better assurance
of controller performance with predictable improvement, we
choose to optimize the whole architecture, especially in vir-
tual network abstraction and API processing logic. In this way,
the performance enhancement is guaranteed irrespective of
the SQL-database we employ. Nevertheless, combining SQL-
based optimizations [11, 28, 29] and architecture optimization
proposed in this paper might be an interesting exploration and
the community could be inspired by POSEIDON.
7 Conclusion
This paper presents POSEIDON, a pioneering effort to build
a unified virtual network controller capable of managing a
virtual network at the scale of millions of tenants. With PO-
SEIDON, we can save the OpEx of managing numerous con-
trollers without sacrificing flexibility of services iterations.
The innovative config dependency abstraction enables the
calculation of config changes independent of both service
logic and physical devices. We have been operating Alibaba
Cloud with POSEIDON over 3 years, and it has substantially
mitigated the workload of adding services/devices, lowered
the configuration latency, and reduced network incidents.
Acknowledgements: The work was partially supported by
National Science Foundation of China (NSFC) under Grants
(62293511, 62372053). We thank our shepherd Soudeh Ghor-
bani and the anonymous reviewers for their helpful comments
that greatly improved the paper.

1094 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Alibaba Cloud API. https://api.alibabacloud.c
om/home, 2023.

[2] AWS Cloud Control API, manage cloud infrastructure
with a consistent set of APIs. https://aws.amazon
.com/cloudcontrolapi/, 2023.

[3] Azure REST API reference . https://learn.micr
osoft.com/en-us/rest/api/azure/, 2023.

[4] Build cloud-native applications in Azure.
https://azure.microsoft.com/en-us/solu
tions/cloud-native-apps/, 2023.

[5] Elastic IP Address in Alibaba Cloud. https://www.
alibabacloud.com/en/product/eip, 2023.

[6] Gartner Says Worldwide IaaS Public Cloud Services
Revenue Grew 30% in 2022, Exceeding 100 Billion
for the First Time. https://www.gartner.com/en
/newsroom/press-releases/2023-07-18-gartn
er-says-worldwide-iaas-public-cloud-servi
ces-revenue-grew-30-percent-in-2022-excee
ding-100-billion-for-the-first-time, 2023.

[7] Google Cloud Platform APIs and references . https:
//cloud.google.com/compute/docs/apis, 2023.

[8] What is an EIP? https://www.alibabacloud.com
/help/en/eip/product-overview/what-is-eip,
2024.

[9] M Bjorklund. RFC 6020: YANG-A Data Modeling
Language for the Network Configuration Protocol. Tail-
f Systems, 2010.

[10] M Bjorklund. RFC 7950: The YANG 1.1 Data Modeling
Language, 2016.

[11] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid
Ryzhyk, and Val Tannen. DBSP: Automatic Incremental
View Maintenance for Rich Query Languages. Proceed-
ings of the VLDB Endowment, 16(7):1601–1614, 2023.

[12] Eric Hayden Campbell, William T Hallahan, Priya Sriku-
mar, Carmelo Cascone, Jed Liu, Vignesh Ramamurthy,
Hossein Hojjat, Ruzica Piskac, Robert Soulé, and Nate
Foster. Avenir: Managing Data Plane Diversity with
Control Plane Synthesis. In USENIX NSDI 21, pages
133–153, 2021.

[13] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun,
Hong Xu, Libin Liu, Gong Zhang, and Wei Wang.
Software-Defined Network Assimilation: Bridging the
Last Mile Towards Centralized Network Configuration
Management with NAssim. In Proceedings of the ACM
SIGCOMM 2022, pages 281–297, 2022.

[14] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization. In
USENIX NSDI 18, pages 373–387, 2018.

[15] Danielle E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In USENIX NSDI 16,
pages 523–535, 2016.

[16] R Enns, M Bjorklund, J Schoenwaelder, and A Bier-
man. RFC 6241: Network configuration protocol (NET-
CONF), 2011.

[17] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong,
Charles Killian, Waqar Mohsin, Henrik Muehe, Joon
Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,
et al. Orion: Google’s Software-Defined Networking
Control Plane. In USENIX NSDI 21, pages 83–98, 2021.

[18] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K
Reiter, and Vyas Sekar. Intent-Driven Composition of
Resource-Management SDN Applications. In Proceed-
ings of the ACM CoNEXT 2018, pages 86–97, 2018.

[19] Arthur S Jacobs, Ricardo J Pfitscher, Rafael H Ribeiro,
Ronaldo A Ferreira, Lisandro Z Granville, and Sanjay G
Rao. Deploying Natural Language Intents with Lumi.
In Proceedings of the ACM SIGCOMM 2019 Posters
and Demos, pages 82–84, 2019.

[20] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A Distributed Control Platform for Large-scale
Production Networks. In USENIX OSDI 10, 2010.

[21] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen,
Tao Wang, Hui Xu, Lei Zhou, Qing Ma, and Ming Zhang.
Automatic Life Cycle Management of Network Config-
urations. In Proceedings of the ACM SIGCOMM 2018
Workshop on SelfDN, pages 29–35, 2018.

[22] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[23] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray.
OpenDaylight: Towards a Model-Driven SDN Con-
troller Architecture. In Proceeding of the IEEE WoW-
MoM 2014, pages 1–6. IEEE, 2014.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1095

https://api.alibabacloud.com/home
https://api.alibabacloud.com/home
https://aws.amazon.com/cloudcontrolapi/
https://aws.amazon.com/cloudcontrolapi/
https://learn.microsoft.com/en-us/rest/api/azure/
https://learn.microsoft.com/en-us/rest/api/azure/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps/
https://azure.microsoft.com/en-us/solutions/cloud-native-apps/
https://www.alibabacloud.com/en/product/eip
https://www.alibabacloud.com/en/product/eip
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2023-07-18-gartner-says-worldwide-iaas-public-cloud-services-revenue-grew-30-percent-in-2022-exceeding-100-billion-for-the-first-time
https://cloud.google.com/compute/docs/apis
https://cloud.google.com/compute/docs/apis
https://www.alibabacloud.com/help/en/eip/product-overview/what-is-eip
https://www.alibabacloud.com/help/en/eip/product-overview/what-is-eip

[24] Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with Modeling Network Topologies at Mul-
tiple Levels of Abstraction. In USENIX NSDI 20, pages
403–418, 2020.

[25] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, et al. Sailfish: Accelerating Cloud-Scale Multi-
Tenant Multi-Service Gateways with Programmable
Switches. In Proceedings of the ACM SIGCOMM 2021,
pages 194–206, 2021.

[26] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
Ananta: Cloud Scale Load Balancing. ACM SIG-
COMM Computer Communication Review, 43(4):207–
218, 2013.

[27] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down Network Man-
agement at Facebook Scale. In Proceedings of the ACM
SIGCOMM 2016, pages 426–439, 2016.

[28] Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu.
Full-stack SDN. In Proceedings of the ACM HotNets
2022, pages 130–137, 2022.

[29] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu
Jyothi, Nina Narodytska, Leonid Ryzhyk, Sahan Gam-
age, Brian Oki, Pranshu Jain, and Michael Gasch. Build-
ing Scalable and Flexible Cluster Managers Using
Declarative Programming. In USENIX OSDI 20, pages
827–844, 2020.

[30] Chengkun Wei, Xing Li, Ye Yang, Xiaochong Jiang,
Tianyu Xu, Bowen Yang, Taotao Wu, Chao Xu, Yilong
Lv, Haifeng Gao, Zhentao Zhang, Zikang Chen, Zeke
Wang, Zihui Zhang, Shunmin Zhu, and Wenzhi Chen.
Achelous: Enabling Programmability, Elasticity, and Re-
liability in Hyperscale Cloud Networks. In Proceedings
of the ACM SIGCOMM 2023, pages 769–782, 2023.

[31] Shunmin Zhu, Jianyuan Lu, Biao Lyu, Tian Pan, Chen-
hao Jia, Xin Cheng, Daxiang Kang, Yilong Lv, Fukun
Yang, Xiaobo Xue, et al. Zoonet: A Proactive Telemetry
System for Large-Scale Cloud Networks. In Proceed-
ings of the ACM CoNEXT 2022, pages 321–336, 2022.

Appendices
A Additional Figures

End-to-end completion time for disabling EIP. Fig. A2 il-
lustrates the completion time of disabling EIP under different
TPS. Compared to Vendor A, our cloud is less affected by
TPS. The P50, P90 and P99 of Vendor A increase dramati-
cally (about 8x, 15x and 16x compared to their lowest value,
respectively). Meanwhile, the P50, P90 and P99 of ours only
experience a slight increase, that is, the increase rate is 1.02x,
1.9x and 3.1x. respectively. The P50, P90 and P99 of Vendor
B remain stable throughout all the tests, but it still cannot
measure data above 200TPS. Moreover, Vendor A performs
better than Vendor B at lower TPS.

For Vendor A, the completion time of enabling EIP (as
shown in Fig. 11) is higher than that of disabling EIP, whereas
for us and Vendor B, it is the other way around. When conduct-
ing enabling and disabling EIP in our cloud, both server and
gateway require configuration. For the case of enabling EIP,
both devices must be configured successfully for a successful
ping. While for the case of disabling EIP, a unsuccessful ping
is achieved when either device has been configured. There-
fore, the completion time of disabling EIP is less than that of
enabling EIP in our cloud.
Resource usage analysis. While theoretically we can use a
single POSEIDON controller to serve all service-related con-
trollers, it may lead to an explosion radius affecting all ser-
vices. To minimize the explosion radius, we deploy indepen-
dent POSEIDON controller for each service-related controller.
However, the development and maintenance of these POSEI-
DON controllers are managed by a single team to reduce the
OpEx. This low-sharing deployment may not effectively im-
prove the overall resource consumption and, in some cases,
may even increase it. We conducted a comprehensive analysis
of CPU and memory consumption of the VPC controller with
and without POSEIDON, as well as the resource usage of PO-
SEIDON for VPC controller. Fig. A3 shows the total resource
usage for processing all the API of VPC. The POSEIDON in
the figure represents the total resource usage of VPC con-
troller and POSEIDON controller. As shown in the figure, the
CPU and memory usage of POSEIDON is 2.5x and 1.75x than
that of prior-gen VPC controller. Based on our observations,
the resource usage of the VPC controller halved because lots
of works have been taken over by the POSEIDON controller.
However, the works taken over by POSEIDON involve are
the CPU- and memory-intensive tasks, e.g., config changes
calculation. In order to provide significantly improved config
changes calculation performance compared to the prior-gen,
the resource consumption of the POSEIDON’s config changes
calculation component is slightly higher than that of prior-gen
VPC controller. In summary, the total resource usage of PO-
SEIDON and VPC controller is higher than that of prior-gen

1096 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure A1: Error of testing Vendor B for 400TPS.

0 100 200 300 400

Transactions per Second

0

5

10

15

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

(a) P50

0 100 200 300 400

Transactions per Second

0

10

20

30

40

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

0 100 200

2

4

6

(b) P90

0 100 200 300 400

Transactions per Second

0

10

20

30

40

50

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Poseidon

Vendor A

Vendor B

0 100 200

2

4

(c) P99
Figure A2: End-to-end completion time of API calling for disabling EIP.

CPU Memory TPS
0.0

0.5

1.0

1.5

2.0

2.5

C
P

U
/M

e
m

o
ry

 U
s
a
g
e

0

500

1000

1500

2000

2500

3000

3500

M
a
x
im

iz
e
 T

P
S

Prior-gen

Poseidon

Figure A3: Resource usage increase and concurrent
processing capacity improvement.

VM-VPC

VM4: VPC1

VM1: VPC1

……

VPC-ACL

VPC1: ACL1

VPC2: ACL2

……

VPC-Route

VPC1: Route1

VPC2: Route2

……

Relation
VPC1->ACL1,
Route1
Server2->VM4

VM4->PIP1

PIP1->VPC1

……

VM-PIP

VM4: PIP4

VM1: PIP1

……

VPC-PIP

VPC1: PIP1,2,4

VPC2: PIP3

……

Dependent config of VM4 on Server2:
VM4, PIP4, VPC1, ACL1, Route1, ……

Existing configurations

Server2: VM3, PIP3, VPC2, ACL2, Route2

……

 Config changes
of Server2:

Add VM4, PIP4,
VPC1, ACL1,

Route1

SQL-based Poseidon

Figure A4: Config changes calculation (SQL-based vs. PO-
SEIDON).

VPC controller. However, we believe that this trade-off is well
worth it because the concurrent processing capacity of config
changes calculation has increase by about 21x, as shown in
Fig. A3.

B Supplementary Materials

B.1 Design goal achievement analysis of ab-
straction

Why Trident-based config changes calculation is service-
independent. According to the Algo. 1, it can be observed
that our code for config changes calculation is the same for

any API, meaning it is independent of the service.
Why Trident-based config changes calculation is device-
independent. Since we abstract all heterogeneous devices
into a standardized object type, namely “Device”, our im-
plementation of config changes calculation and pushing is
agnostic to the specific devices. The device-specific transla-
tion is done by the unified agent.
Why SQL-based and Trident-based config changes cal-
culation is equivalent. To guarantee the equivalence, we
analyze the essence of the cloud control APIs and their exe-
cution. The majority of cloud control APIs can be regarded
as the CRUD (create/read/update/delete) of tenant resources
(see §B.2). The execution of cloud control APIs is to translate
tenant intents for resource manipulation into configurations
on the physical device. As mentioned in §2.1, the controller
will make config changes calculation for each cloud control
API, which can further be divided into two steps: (1) find all
the dependent configs of the target tenant resource; (2) search
a table recording all the existing configs on each device to
calculate the necessary changes to install. The original API
execution approach is service-dependent since the key/value
of each table and the table query sequence need prior knowl-
edge of the related service. For example, in Fig. A4, for the
API “create VM4 in VPC1”, by sequentially querying five
tables, its dependent configs of “VM4, PIP4, VPC1, ACL1,
Route1” can be obtained. By querying the existing configs of
the device, the necessary changes can be calculated as “Add
VM4, PIP4, VPC1, ACL1, Route1 on Server2”. Parsing the
API with SQL needs a deep understanding of the service
logic. To guarantee the equivalence, the information of de-
pendent configs and existing configs can also be obtained
through the implementation of Trident. Specifically, we can
get the needed information by searching for the relation table,
as shown in Fig. A4. This procedure is service-independent
since the query table is same for all APIs (i.e., Relation table).

B.2 Trident operations of cloud control API

Based on our analysis of the cloud control APIs provided
by major cloud vendors (including ourselves), most of them

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1097

Table A1: API of configuring Public (Elastic) IP.
Create Delete Update Read

AWS 1 3 2 5
GCP 1 1 1 2
Azure 4 1 1 3

Ali Cloud 5 4 3 8

Algorithm 2: Abstraction of API: Create Resource1
1 Create Con fR1 of Resource1
2 for C in Con fR1 ’s dependant Conf do
3 Relate Con fR1 to C

4 for G in Con fR1’s target Group that needs to be configured do
5 Relate G to Con fR1

are Create/Delete/Update/Read, as shown in Table A1. In
addition, there are a few other APIs such as Associate and
Disassociate. Algo. 2,3,4,5 detail how to abstract the main
cloud control API into Trident operations.

B.3 Computational complexity analysis of OR-
based calculation

The OR-based re f calculation has excessively high computa-
tional complexity. When re f (Group,Pi) changes, recalcula-
tion is needed to refresh re f (Group,Con fA). The change of
re f (Group,Pi) can have two cases: i.e., re f (Group,Pi) turns
from 0 to 1 or 1 to 0. For the 0 to 1 case, according to the
OR calculation rule, as long as at least one re f (Group,Pi)
is 1, re f (Group,Con fA) is 1. Hence, we can directly in-
fer that re f (Group,Con fA) is 1 without complex computa-
tion. By contrast, for the 1 to 0 case, we cannot assert that
re f (Group,Con fA) becomes 0 unless we perform the OR
calculation to each re f (Group,Pi). In another case, if one
parent node is unrelated due to tree changes, because the OR
operation does not satisfy reversibility, once a bitwise OR
operation is performed, it cannot simply be reversed to ob-
tain the value before this parent node was included. In other
words, it’s not possible to determine the updated OR value
based on the change in a parent node’s re f and the current
OR value. Because it is necessary to perform a bitwise OR on
the re f values of all parent nodes to obtain the OR result, the
complexity is proportional to the number of parents as O(Pi).

B.4 Computational complexity analysis of
SUM-based calculation

To address the performance issue of OR-based ref calculation,
we can adopt SUM-based solution to inherit Conf’s re f from
its parents. The advantage of SUM is that during calculation,
we can refresh Conf’s current re f based on the change of its
parent’s re f and Conf’s past re f . In SUM-based solution, if
re f = 0, it indicates no descendant relation, while in other

Algorithm 3: Abstraction of API: Delete Resource1
1 for C1 in Con fR1 ’s children do
2 Unrelate Con fR1 to C2

3 for C2 in Con fR1 ’s parents Conf do
4 Unrelate C2 to Con fR1

5 Delete Con fR1

Algorithm 4: Abstraction of API: Update Resource1
1 Update Con fR1 of Resource1

cases, it indicates the presence of a descendant relation. At
the start, we initialize re f (Group,Group.children) to 1 and
continuously propagate this value to the remaining Confs ac-
cording to the SUM rule, as defined by re f (Group,Con fA) =
Σire f (Group,Pi).

Since SUM adheres to the reversibility property, for sce-
narios where a parent node is removed, the new result can
be obtained simply by subtracting that parent node’s re f .
Similarly, for scenarios where a new parent node is added,
the result can be updated by simply adding the re f of
that new parent node. Moreover, for scenarios where the
re f of a parent node changes, the re f (Group,Con fA) can
also be expressed as re f (Group,Px) + Σi ̸=xre f (Group,Pi).
When only re f (Group,Px) undergoes a change, we can de-
duce that ∆re f (Group,Con fA) = ∆re f (Group,Px). It im-
plies that when a re f (Group,Px) undergoes a change,
re f (Group,Con fA) will experience a similar change. For
instance, when a re f (Group,Px) transitions from 0 to 3,
re f (Group,Con fA) will also increase by 3 accordingly. Since
the refreshing mechanism focuses solely on the change of a
specific parent, the computational complexity is only O(1).

B.5 Case study of POSEIDON

To clearly illustrate the workflow of POSEIDON, we present a
step-by-step introduction using the API call of “create VM4
in VPC1” as an example.

Step 1: After the user issues this API call, service-related
controllers (e.g., VPC controller in Fig. 5 in this example)
will map the API into Trident operations. This step is service-
related and generates different Trident operations based on
the processing logic specific to each service API. The Trident
operations corresponding to this API are shown as the blue
color text in Fig. 6.

Step 2: Subsequently, upon receiving the Trident op-
erations, the service-independent unified controller will
add/delete/update Confs or modify their relations according to
the operations. The changes incurred by the above operations
are depicted in blue in Fig. 7.

Step 3: Then, based on the nodes/topology changes in the
Trident tree, we calculate the appropriate Trident changes for
Groups. §3.4.2 details the procedure for this example.

1098 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 5: Abstraction of API: Associate Re-
source1 to Resource2

1 Relate Con fR1 of Resource1 to Con fR2 of Resource2

Step 4: Finally, the unified controller will push the Trident
changes to the unified agent residing on the devices within
Groups. Specifically, this example involves pushing “Add
ACL1, Route1, VPC1, PIP4, VM4” to Server2 and “Update
FlowTable1” to GW1 and GW2, according to Fig. 6 and Fig. 7.
Upon receiving the Trident changes, a program on the agent
translates them into device-specific primitives to enable the
user’s intent.

B.6 Redis failover detection and data recovery

Unlike the real-time data storage in the database, Redis caches
the latest data in memory and performs batch storage. When
failover occurs, the cached data in memory will be lost. There-
fore, we need to detect the failover and conduct data recovery.
We inject lots of probes and accumulate them at the frequency
of batch storage. When probes’ data meet expectations, this
batch of data are stored in Redis. Otherwise, this batch of data
must be lost due to failover. We can locate the batch of data
affected by failover according to the timestamp of the probe.
Then, the data obtained from the database will be re-pushed.

C Additional Experiences

C.1 How to choose pushing and pulling when
configuring devices?

Most traditional controllers deliver configurations to the phys-
ical devices in a pushing mode, namely, the controller actively
pushes config changes to devices so that user’s intent can
take effect in a timely manner. However, in large-scale public
clouds, the pushing method will cause large pressure on sys-
tematical performance (e.g., TPS, southbound bandwidth), as
there are enormous underlying devices. What’s worse, users
may frequently modify their network, and each modification
may consist of thousands of underlying config changes (e.g.,
a newly added route entry may involve thousands of VM host
servers). Another way to deliver configurations is the pulling
method, where devices pull configs from the controller on-
demand or periodically [14, 30]. This method eliminates the
above performance bottlenecks at the cost of adding con-
figuration delay. POSEIDON employs the pushing method
for most configuration delivery, and utilizes the on-demand
pulling method for FlowTable. This is because communica-
tions between VMs usually occur within a small subset, so
most information in the FlowTable will not be queried by the
device. Besides, in our production enviroment, the additional
latency caused by FlowTable configuration delay is too short

to be perceived by users.

C.2 How to deploy POSEIDON to a small-scale
virtual network?

POSEIDON is an SDN architecture designed for high-
performance control of large-scale virtual networks. Its Tri-
dent abstraction is implemented through a Trient Tree struc-
ture maintained in memory, cache, and database. However,
for a small-scale virtual network with medium performance
requirements, POSEIDON may be over-engineered and cost-
prohibitive. For example, a standard deployment of POSEI-
DON requires at least 8 high-performance physical servers
to support virtual network control in a data center of 10,000
servers. However, the number of servers may be less than 100
in some edge regions or small private cloud environments.
(Even the number of servers in some cluster is less than 20
in some edge POP site.) In such a small-scale deployment,
POSEIDON’s architecture needs to be optimized to reduce
resource usage, especially memory usage. One possible idea
is to design a variant of Trident tree with high compression
and efficient data exchange. The Tridient tree currently im-
plemented by tree structure requires that all configuration
relationships should be maintained in memory, which is a
performance-first but cost-ignoring approach. Therefore, lim-
ited memory resources in small-scale scenarios can be solved
by compressing Trident data, or even maintaining only part
of the relationship in memory through data exchange.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1099

	Introduction
	Background and Challenges
	Background
	Challenges
	Insufficient Performance for Growing Workloads
	High Cost of Managing Separate Controllers

	Design
	Design Overview
	Consolidation of Separate Controllers
	Problems with full consolidation of controllers
	Poseidon's choice: partial consolidation

	Service-independent Abstraction
	Goals of designing abstraction
	Poseidon's abstraction

	Poseidon's Trident tree
	Building Trident tree
	Handling API calls with Trident tree

	Tree-based Config Changes Calculation
	Basic procedure
	Fast finding descendant changes for a Group
	Fast finding updates for a Conf.
	A tree-based config changes calculation example

	Cloud-Scale Performance Optimizations

	Evaluation
	Performance improvement
	OpEx and development cost optimization
	Benefit and cost of unified agent

	Experiences of deploying Poseidon
	Related work
	Conclusion
	Appendices
	Additional Figures
	Supplementary Materials
	Design goal achievement analysis of abstraction
	Trident operations of cloud control API
	Computational complexity analysis of OR-based calculation
	Computational complexity analysis of SUM-based calculation
	Case study of Poseidon
	Redis failover detection and data recovery

	Additional Experiences
	How to choose pushing and pulling when configuring devices?
	How to deploy Poseidon to a small-scale virtual network?

