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Abstract
Named Data Networking (NDN) shifts the network from

host-centric to data-centric with a clean-slate design, in which

packet forwarding is based on names, and the data plane main-

tains per-packet state. Different forwarders have been imple-

mented to provide NDN capabilities for various scenarios,

however, there is a lack of a network stack that is integrated

with operating systems (OS) for general purpose. Designing a

stateful and entirely name-based protocol stack in OS kernel

remains a challenge due to three factors: (i) an in-kernel name

resolution architecture for packet demultiplexing is necessary,

(ii) an entirely name-based stack requires to be compatible

with the current address (MAC/IP/port)-based architecture in

OS kernel, and (iii) maintaining per-packet state introduces a

trade-off between performance and resource consumption.

In this paper, for the first time, we take NDN into OS ker-

nel by proposing iStack, an Information-Centric Networking

(ICN) protocol stack. The main innovations of iStack are

threefold. First, we propose a name resolution architecture

to support both network-layer forwarding and local packet

demultiplexing. Second, a two-layer face system is proposed

to provide abstraction of address-based network interfaces.

Third, we design socket-compatible interfaces to keep the

uniformity of current network stack in OS. Besides, we de-

sign compact forwarding data structures for fast packet pro-

cessing with low memory footprint. We have implemented

prototypes on multiple platforms. The evaluation results show

that iStack achieves 6.50 Gbps throughput, outperforming the

NDN-testbed forwarder by a factor of 16.25x, and reduces

46.08% forwarding latency for cached packets with its in-

kernel packet caching. iStack is not just another forwarder for

NDN, but a step forward for practical development of ICN.

1 Introduction

Named Data Networking (NDN) [1] has been regarded as a

leading Information-Centric Networking (ICN) design, which

∗Corresponding author: Tian Song (songtian@bit.edu.cn)

addresses data directly with hierarchical names rather than

hosts. Its novel architecture enables a number of valuable

features, including in-network caching [2, 3], securing data

directly [4, 5], mobility support [6, 7], and native multicast

support [8, 9]. Furthermore, a gateway for integrating NDN

into the Internet has been designed [10]. Many studies have

explored NDN’s advantages in diverse scenarios [11–14].

NDN Forwarding Daemon (NFD) has been implemented

and intended to be used as a general-purpose forwarder since

2014 [15, 16]. It is effective in supporting architectural re-

search and being used on the public NDN project testbed [17].

However, it is a user-space forwarder rather than an operating-

system resident. In comparison, in the following three ways,

an in-kernel network stack like TCP/IP gains additional bene-

fits for practical deployment with operating systems support.

First, a stack integrated into the operating system is de-

signed to work with the socket mechanism. It can provide

system-level network functionality and be shared by multiple

applications with varying purposes and requirements. Second,

an in-kernel stack runs as kernel threads, which gain system-

level security from the OS kernel protection. Typically, the

x86 architecture has 4 rings of protection, with the kernel run-

ning in ring 0 with the greatest privileges and user programs

running in ring 3. Because user-space programs cannot access

kernel-space memory, the in-kernel networking architecture

is naturally isolated and protected from applications. Third,

an integrated stack can evolve with operating systems for the

long term, providing a stable foundation for network commu-

nication. As operating systems are updated or new hardware

is introduced, an in-kernel network stack can adapt to these

changes seamlessly. Hence, it is worthwhile to take NDN, a

clean-slate networking architecture, into operating systems.

However, there are three challenges for designing an in-

kernel stack for NDN. First, name-based packet demultiplex-

ing requires a well-thought-out design. A general stack needs

to distinguish and deliver packets among local applications,

which is done by transport-layer ports in TCP/IP stack. Specif-

ically, an application creates a socket and binds it to a port.

The port number is carried in packets and identifies the appli-
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cation to the receiving end, whereas NDN is entirely based

on names. An in-kernel stack for NDN requires a name reso-

lution architecture for packet demultiplexing.

Second, an in-kernel NDN stack should be compatible with

the existing TCP/IP stack in OS for dual-stack usage. The

traditional network stack relies on address (MAC/IP/port)

based communication. In contrast, NDN has no endpoints or

host addresses. Therefore, an abstraction of network interfaces

to support network processing is necessary. NFD incorporates

a face mechanism intending to achieve this [16]. However, an

in-kernel stack needs to interact with both application sockets

and link-layer physical/virtual devices, presenting significant

differences from a user-level forwarder.

Third, a general-purpose network stack for NDN should bal-

ance its performance and resource consumption. Unlike IP’s

stateless data plane, NDN adopts a stateful forwarding model.

For the first time, a network stack requires large memory

for in-network caching and involves multiple table lookups,

which remains a challenge for an efficient stack design.

In order to address these challenges, we propose iStack, a

general and stateful name-based protocol stack in OS kernel

for NDN. The stack itself is native to OS kernel and compati-

ble with other in-kernel network protocol suites. Meanwhile,

iStack is an information-centric stack that is entirely based

on names and enables kernel-level NDN functionality. Our

major contributions are listed as follows:

First, we propose iStack, which for the first time, takes

NDN into OS kernel to support application hosts. iStack has

a fully name-based architecture. It adopts NDN forwarding

model and introduces a name resolution architecture for de-

multiplexing. Its architecture can support applications with

the native socket mechanism in OS.

Second, we design a two-layer face system as the network

interface abstraction, which maps both of high-layer socket

interfaces and low-layer network devices into logical FaceIDs.

Hence, iStack uses logical FaceIDs for network processing.

Third, we design high-speed forwarding data structures,

which efficiently maintain per-packet state and cache packets

directly in the kernel. Furthermore, we also implement a fast

two-level lock mechanism to ensure multi-threading safety

while leveraging parallel processing for higher performance.

Besides, we implemented iStack prototypes in two differ-

ent Linux kernel versions, four different Linux distributions

(Ubuntu, CentOS, Raspberry Pi OS Lite, and OpenWrt), and

four different platforms (x86 server, personal computer, Rasp-

berry Pi and edge router (MT7621AT)). Our evaluation results

show that iStack achieves 6.50 Gbps throughput, measured

with the standard size (1500 bytes) of Ethernet frames. Its

throughput outperforms the general NDN forwarder, NFD,

by a factor of 16.25x. Moreover, iStack takes in-network

caching into kernel space, reducing 46.08% forwarding la-

tency for cached packets. Unlike the previous forwarders,

iStack focuses on providing NDN functionality on end hosts

for applications rather than mainly supporting high-speed

routing/forwarding. Our prototypes demonstrate that iStack

is promising to advance ICN deployment.

The rest of this paper is organized as follows. Sec. 2 in-

troduces the background as well as the related work. Sec. 3

details the design and architecture of iStack. Sec. 4 describes

a suite of efficient extensions and miscellaneous considera-

tions for iStack. Sec. 5 presents the evaluation results of our

implemented prototypes and includes lessons learned. Sec.

6 finally concludes this paper and discusses our future work.

This work does not raise any ethical issues.

2 Background

2.1 Named Data Networking
NDN is one of the most important instances of ICN [1]. It

uses hierarchically structured names to address the content.

NDN uses ‘/’ to indicate the boundaries of name components.

For example, segment 2 of version 1 of a video provided

by Alice may have the name: /Alice/videos/DemoA.flv/1/2,

which contains three parts: where to forward it (/Alice), which

application to deliver it (/videos), and application-specific

information (/DemoA.flv/1/2). As NDN matters the content

rather than where it is from and caches Data in the network,

security is built into content itself [4]. It adopts a stateful

forwarding model that primarily consists of three structures:

Pending Interest Table (PIT), Forwarding Information Base

(FIB) and Content Store (CS).

In NDN, a consumer (client) requests content by sending a

packet with the content name, namely Interest, to the network.

Any node receiving it tries to find the corresponding Data
identified by that name in its CS. If it is found, the Data will

be returned. Otherwise, the node inserts this Interest into PIT

and then forwards it based on both the matching result from

FIB and the forwarding strategy. When the Interest finally

meets the corresponding Data at the producer (server) or a CS

on the Interest forwarding path(s), the Data is sent back in the

reversed path of the Interest and meanwhile removes those

records in PITs. In particular, different Interests with the same

name can be merged into a single PIT entry without redundant

forwarding. In this case, the merged PIT entry records all

Interests incoming interfaces. When the Data is back, it is

forwarded via multicast based on that PIT record. With this

design, NDN gains a number of benefits such as network-layer

request aggregating and native multicast support.

2.2 Related Work
In the last decade, NFD, the most important NDN forwarder,

has been designed and implemented for architectural research

[15]. Besides, several dedicated forwarders are proposed to

meet the requirements of different scenarios.

NFD is designed modularly and extensively to support

diverse NDN technology experimentation [15]. It is written
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Figure 1: Comparison among TCP/IP stack, NDN user-space forwarders, and iStack from a high-level perspective

in C++ language and has a well-modular design. Although

it intends to be used for general purposes, NFD is a user-

space forwarder rather than an in-kernel stack. A user-space

forwarder must use an inter-process communication (IPC)

mechanism (specifically in NFD, Unix domain socket [16])

to communicate with local applications. It does not provide

system-level support for applications.

NDN-RIOT is proposed as a lightweight implementation

for RIOT-OS [18]. RIOT is a micro-kernel operating system

for resource-limited IoT devices. It does not support virtual

memory and separate of user and kernel space, which is com-

mon in modern general OS. Hence, although NDN-RIOT

integrates the core NDN forwarding logic into the RIOT-OS

kernel and demonstrates the feasibility of bringing NDN’s

data-centric communication and security model to constrained

IoT platforms, it is a dedicated solution for particular scenar-

ios rather than a general forwarder.

For further supporting embedded/constrained environ-

ments, a low-overhead forwarder, NDN-Lite is carried out

[19]. Unlike NFD, NDN-Lite simplifies the forwarder design

and is written in C language. However, NDN-Lite has to in-

tegrate with the thread of a NDN application and can only

support a single application simultaneously. This is suitable

for low-end platforms but meanwhile limits its generality.

In order to achieve high-speed NDN forwarding, NDN-

DPDK is proposed [20] and reaches a peak forwarding rate of

1.84 MPPS1 by leveraging the fast user-space packet process-

ing framework Data Plane Development Kit (DPDK) [21]. For

paralleling, NDN-DPDK dispatches the incoming Interests to

the private sharded data structures of threads by hashing their

name prefixes. For dispatching retrieved Data to the correct

1In form of throughput, it achieves 22 Gbps with 1500 Bytes standard

Ethernet frame and 108 Gbps with 8000 Bytes jumbo frames.

thread, this work proposes PIT token, a small hop-by-hop

header field added to each packet. Due to its high perfor-

mance, NDN-DPDK may be suitable for throughput-sensitive

cases such as backbone routers and data centers. However,

the DPDK-based solution limits the generality of it.

MW-NFD is proposed to provide a high-performance for-

warder without DPDK support [22]. It splits the forwarding

pipeline into multiple threads and follows the packet dispatch-

ing method of NDN-DPDK. Its polling-based design has a

100% CPU use rate, which is not suitable for general purposes.

The forwarders discussed above either achieve high perfor-

mance but are unsuitable for general purpose or vice versa.

Given the opportunity that it lacks a more efficient NDN for-

warder for edge, YaNFD is proposed [23]. YaNFD is a multi-

threaded alternative to existing software packet forwarders for

the NDN architecture. The performance of it is higher than

that of NFD and lower than that of MW-NFD, while it keeps

a reasonable resource usage for generality. Nevertheless, it

is written in Go language as a user-space forwarder, which

suffers from the garbage collection overhead.

From the practical usage perspective, the genuine requests

and content are finally from and to applications running in OS.

Hence, a forwarder enabling NDN packet forwarding may

be suitable for supporting architectural research purposes,

whereas a network stack integrated with OS kernel is still

required to provide system-level supporting for real applica-

tions. This is also our motivation for proposing iStack. Fig. 1

illustrates the comparison among TCP/IP stack, NDN user-

space forwarders, and iStack from a high-level perspective.

2.3 Network Stack in OS Kernel
Modern operating systems implement network protocols from

the link layer to the transport layer. They also implement
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a version of Berkeley socket as application programming

interfaces (API). Different layers in a network stack have their

own abstractions. Taking the Linux kernel network stack for

example, in its link layer, NICs and their drivers are abstracted

as net_device(s), bound with their hardware MAC addresses.

In the network layer, address_family is used to specify the

network stack suites, such as AF_INET and AF_INET6 for

IPv4 and IPv6, respectively. As the transport layer provides

end-to-end services for endpoints of network communication,

it is integrated with the network socket. A socket created by

an application has two parts: socket as an abstraction in user

space for the application and sock as the in-kernel network

representation. The transport-layer functionalities are inte-

grated with the sock and specified by sock_type. For example

in IP stack, SOCK_STREAM and SOCK_DGRAM represent

for TCP and UDP, respectively. Hence, the network layer is

shared in a host, whereas the transport layer is isolated by

different applications with their created sockets separately.

Notably, a non-port-based raw type socket allows applica-

tions to directly access network/link-layer packets. It catches

all packets and shifts the responsibility of (de)multiplexing

from the kernel-space network stack to the user-space for-

warders/applications. Yet a general-purpose in-kernel network

stack requires suitable (de)multiplexing models.

As presented in Fig. 1, the current network stack is address-

based: packets go through a process of filtering by network-

layer addresses, which are then distinguished by transport-

layer ports before finally being delivered to their intended

sockets of applications. In contrast, NDN takes all function-

alities into name prefixes and there is no port. Therefore, an

in-kernel network stack for NDN requires a name resolution

architecture for network-layer forwarding and local packet

demultiplexing. The current NDN forwarder-based solutions

use IPC mechanisms for applications, leaving system-level

support for applications as an open issue. iStack is designed

to address this and takes NDN into OS kernel.

3 iStack Design and Architecture

3.1 Design Overview
As an in-kernel network stack, iStack operates between the

applications sockets and the link-layer devices. As illustrated

in Fig. 2(a), iStack primarily consists of three parts: a name

resolution architecture, a two-layer face system, and socket-

compatible interfaces for applications and configuration.

The name resolution architecture enables packet demulti-

plexing for local applications with two packet paths as shown

in Fig 2(b). For supporting name-based Interests demultiplex-

ing, it introduces a Binding Prefix Table (BPT) which records

the relationship between application sockets and their prefixes.

iStack separates application binding prefixes from registering

routable prefixes to the network.

In order to integrate the name resolution architecture with

(a) iStack architecture

(b) Two paths of name resolution

Figure 2: iStack architecture and name resolution

OS kernel compatibly, iStack involves a two-layer face sys-

tem, which abstracts upper layer handles and lower layer com-

munication channels as general interfaces. It separates the

upper and lower layer due to the fact that different layers treat

semantics of names differently.

iStack provides interfaces based on socket mechanism. Ap-

plications can use network sockets to communicate with iS-

tack, following a practice similar to TCP/IP. The only differ-

ence is that in TCP/IP, a socket needs to bind an <address,
port> pair, whereas in entirely name-based iStack, there are

no addresses or ports. Instead, an iStack socket binds a local

faceID to represent where packets are from. A provider-side

application socket also needs to bind a prefix to notify iStack
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where Interests should be delivered to. iStack configuration

is isolated from the common network socket communication

for system security consideration. Specifically in the Linux

kernel, it is through Netlink socket with superuser privilege.

3.2 Name Resolution Architecture
In iStack, name resolution utilizes NDN-semantic names,

which carry the information of forwarding and demultiplexing.

In this paper, we use the term routable prefix to represent a

prefix that can be forwarded to, and the term application-
specific prefix to represent an extension of the routable prefix

used for distinguishing applications. For example with the

name: /Alice/videos/DemoA.flv/1/2, its routable prefix and

application-specific prefix could be /Alice and /Alice/videos,

respectively. According to the two types of prefixes, the packet

processing path is divided into network-layer forwarding path
and local delivering path as shown in Fig. 2(b).

For the network-layer packet forwarding, iStack follows

the basic design of NDN. Interests are pending in PIT and for-

warded based on FIB and forwarding strategies. Data packets

are forwarded along the reverse path of the pending Interests.

The main difference is the serving scope of FIB. In previ-

ous design of NDN forwarders like NFD, a local application

registers the content prefixes with its identification into FIB,

hence the forwarder can deliver the corresponding Interests to

it. In contrast, FIB in iStack serves for the network layer only,

which means it only records routable prefixes rather than a

vast number of application-specific prefixes.

FIB in iStack can only be updated by (i) routing protocols

running in kernel threads and (ii) user-space configuration

tools. The former one updates FIB with routing information

learned from the network and the later one is used by supe-

rusers to register routable prefixes of providers on this host.

The network layer only determines whether Interests should

be delivered to this host based on routable prefixes in FIB

and hands over these Interests to BPT. FIB is agnostic to

application-specific prefixes and local packet distinguishing.

The local part of name resolution is situated above the

network layer and provides local packet distinguishing func-

tionality. It maintains BPT, which records the mapping be-

tween application sockets and application-specific prefixes.

Indicated by its name, an application registers its application-

specific prefix through socket API bind.

There are two rules for applications to bind their prefixes.

First, in BPT, any prefix must not be identical to or be a proper

prefix2 of another prefix. Otherwise one application may hi-

jack the Interests intended for other applications. Second, an

application-specific prefix should be an extending string of a

routable prefix that has been pre-registered in FIB. Otherwise,

the application may never receive any Interests as the network

layer does not pass Interests with that prefix to local host.

2In this paper, we use proper prefix to indicate a component-level prefix

of a name, such as /A/B or /A for /A/B/file

The local name resolution provides flexibility for applications

by using finer-grained and more complex prefixes without

messing up FIB. As needed, an application can create mul-

tiple sockets and bind them to different application-specific

prefixes which share a common routable prefix.

3.3 Two-Layer Face System

The face system is designed to (i) hide details of various

interfaces and (ii) ensure thread safety against the system

events such as interface adding/removing. It provides Faces,

the generalization of different network interfaces.

From the layered networking perspective, different layers

have different targets and communicating scopes. In iStack,

for packets travelling down to the lower layer, i.e. the link

layer, the semantics of name/prefix is not concerned. Whereas

for packets travelling up to the upper layer like applications,

the name/prefix semantics may still be concerned. Due to this

difference, iStack contains a two-layer face system to provide

the generalization of interfaces from different layers.

3.3.1 Face Upper Layer

The face upper layer targets to abstract the local handles upon

the network layer, which commonly are application sockets.

An upper face consists of a unique FaceID, a handler, and a

prefix. The handler is composed of an entity pointer, which

points to the upper entity represented by the face, and a func-

tion entry pointer which points to the handler function of

that upper layer entity. If an entity wants to receive Interests,

then the prefix field of its face has to be specified. Otherwise

this field is null. In the network layer, PIT and FIB only use

FaceIDs to represent network interfaces. Face upper layer

maintains a face upper table to map local handles to faces.

In the network part of iStack name resolution, incoming

Interests are filtered by FIB, and those intended for local ap-

plications are passed to BPT. In iStack network layer, there

are only FaceIDs for interfaces and entrances of BPT is also

encapsulated as faces. Face upper layer provides a perma-

nent face, Facelocal , as the local entrance. Routable prefixes

that can be served by the host are registered to FIB with

FaceIDlocal . When provider-side applications bind their sock-

ets with application-specific prefixes, the prefixes are mapped

to their faces and then the faces are put into BPT. When an

Interest comes, it is firstly passed to Facelocal based on FIB.

Then the handler of Facelocal queries BPT and returns the

corresponding face. Finally the handler of the returned face

delivers the Interest to the application socket.

3.3.2 Face Lower Layer

The face lower layer targets to abstract the link layer commu-

nication channels. It uses a face lower table to map link-layer

interfaces to faces. A lower face consists of a unique FaceID,
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a device, and a field for transmitting information. The device

can indicate either physical hardware devices like ethernet

adapters or virtual devices such as loopback device. Specif-

ically in implementation, all link-layer devices for network

accessing in the Linux kernel are abstracted as net_device and

hence, the device of a lower face is a pointer of that.

A single device is not enough to transmit link-layer frames.

A link-layer device may be connected with different remote

devices at different time or even with multiple remote devices

at the same time, like the wireless NIC of a WLAN access

point. Besides, the link-layer transmission includes unicast,

multicast and broadcast. Only broadcast needs no remote

information for transmitting while the other two needs the

destination address(es) of the remote host(s) or group(s). Thus,

the field for transmitting information is used for recoding

remote host information which typically is a destination MAC

address. Obviously, a lower face represents for the channel

between a local device and a remote host/group.

3.3.3 Thread-Safe Face Operations

The principle of face system is that the control path should not

expose details to the data path and the data path processing

should not block the control path operations. To achieve these,

the face structure has a field of user count and thread-safe

function pairs are provided: face_register and face_release
for the control path; face_hold and face_put for the data path.

In the control path, face_register is used to create a new

face and bind a network interface to it. Meanwhile, the user

count of it is set to 1. For interface removing operations, such

as closing a socket or taking a network adapter offline, the

control path uses non-blocking function face_release. The

function decreases the user count value of the face and its

further behaviour depends on the result. If the decreased user

count is 0, which means the face is not in use, then face_free is

called to free the face and recycle its FaceID. In the other case,

a positive user count means that the face is still referenced by

at least one thread, then face_orphan is called. The function

face_orphan releases everything in the face except the shell

of it and meanwhile, it set the FaceID to 0 and the handler to

face_output_blackhole, which drops any packets passed to it.

The release of the face shell is delayed to the last data path

calling face_put. Hence, the data path threads do not block

the control path operations such as closing a socket.

In the data path, when a FaceID is transformed to the face,

face_hold is called to increase the user count of it. When

the packet processing is finished, face_put is called to de-

crease its user count. Specially, if the decreased user count is

0, which means the real interface of the face has been dead,

then face_free is called to free the shell of this face. The

function pair face_hold and face_put only involves an integer

increasing/decreasing operation in common cases and a mem-

ory free operation in the case of interfaces removing. Thus the

performance influence from control path events is minimized.

3.4 Socket-Compatible Interfaces
3.4.1 Forwarding Configuration

As shown in Fig. 2(a), configuration of iStack is isolated from

common network socket communication. iStack utilizes a

specific communication mechanism between kernel and user

space supported by operating systems to provide control func-

tionalities such as configuring FIB and exporting information.

Specifically in the Linux kernel, iStack exploits two mech-

anisms: the procfs and the Netlink socket. Procfs is a virtual

filesystem which allows the Linux kernel to export internal

information to user space. Netlink socket is more powerful

than procfs. Procfs is able to read/write kernel exported data

as operating files, while the Netlink socket communicates

with kernel using socket programming model and moreover,

the later one can initiate a transmission rather than only wait-

ing for responses to user-space requests. Hence, iStack uses

procfs to export its running status and statistical information in

form of files as convenient interfaces. Meanwhile, we develop

some utility tools with the Netlink socket for configuration

requirements such as FIB configuration and CS management.

3.4.2 Application View

The common communication between applications and iS-

tack is entirely based on the network socket mechanism. An

application uses iStack via creating a socket with the address

family AF_NNET. Then, the application can send/receive

NDN packets with the socket. We provide three socket types

to support different application requirements (detailed in Sec.

4.3.3). Note that a socket of iStack can support both consumer-

side and provider-side applications at the same time. Just for

ease of understanding, we introduce them separately.

For a consumer-side application, it can send out Interest
and receive the corresponding Data once the socket is cre-

ated. When send is called for the first time, the face system

allocates a FaceID and automatically bind the socket to it.

Then the Interest goes to the network layer through that face

and is inserted into PIT and then forwarded based on FIB and

forwarding strategies. When the corresponding Data is re-

trieved, it matches the record in PIT and then is passed to the

socket via the FaceID. The Data is put in the socket receiving

queue and waits until the application fetches it with recv, or

in other cases, the application is blocked with recv until the

Data queues in the socket and triggers a software interrupt

request to retrieve it. Note that an application can send out a

batch of Interests and receive the Data packets one by one.

The order can be implied by the segment numbers contained

in names. The socket owns the face until it is closed.

For a provider-side application, it needs one more step to

receive Interests. That is, using bind to bind a prefix. The face

system allocates a FaceID and maps the binding prefix to it in

BPT. When an intended Interest arrives, it is inserted into PIT

and then finds out that the outgoing interface recorded in FIB
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is FaceIDlocal . After matching the application-specific prefix

in BPT, the FaceID of that application’s socket is returned and

the Interest is delivered to that socket. Finally the application

receives the Interest and sends out the corresponding Data
which will go along the reverse path of that Interest.

iStack adopts the sockets API rather than the established

NDN API. Consequently, it is presently incompatible with

existing NDN applications. However, rectifying this disparity

through API code modification is a straightforward process.

Our forthcoming endeavor involves streamlining the transi-

tion of existing NDN applications to iStack. To achieve this,

we will provide a user-space library that seamlessly translates

the current NDN API into iStack socket API. Furthermore, we

are proactively engaged in the development of an information-

centric programming model, complemented by a dedicated

set of primitives and a socket-based API tailored for the ad-

vancement of future NDN applications.

4 Efficient Design and Extension for iStack

4.1 Compact Forwarding Data Structures
4.1.1 Design Rationale

In NDN design, each Interest/Data carries a variable-length

hierarchical name. As PIT maintains per-packet state and

CS caches content in the network, it takes much more mem-

ory than traditional stateless network stacks. An in-kernel

general-purpose network stack should take the trade-off be-

tween performance and resource consumption. In order to

reduce the kernel-space memory consumption while keeping

fast packet processing, we design compact forwarding data

structures for PIT and CS in iStack.

The compact design ingeniously utilizes the fact that the

life time of a PIT/CS entry is the same as that of an Inter-
est/Data packet. In iStack, each PIT entry keeps at least one

Interest packet pending for the potential retransmission in

its lifetime and obviously, the entry name is carried by that

Interest. For CS, it caches Data packets in kernel directly and

each of its entry name is carried by the corresponding Data.

4.1.2 Compact Hash-Based Data Structures

PIT needs to support both exact name matching (ENM) and

longest prefix matching (LPM). Hash table is naturally fit

for ENM. LPM in PIT is for the situation where an Interest
is marked with CanBePrefix flag. Such an Interest can be

satisfied by the Data with the same name prefix. As PIT only

records Interest, LPM needs no modification of the hash table,

but requires a particular lookup procedure for incoming Data.

The compact PIT structure is shown in Fig. 3(a), which

is a separated chaining hash table and takes Interest names

as keys. For an incoming Interest whose name has not been

recorded before, PIT creates an entry and pends the packet

directly. The entry uses a pointer to reference the name string

(a) Compact hash-based data structure for PIT

(b) Compact hash-based data structure for CS

Figure 3: Compact forwarding data structures

in the payload of that Interest and an unsigned integer to

record the name length. Note that an iStack PIT entry keeps

one and only one Interest. In case that more Interests with the

same name arrive before the corresponding Data is retrieved,

PIT records the incoming FaceIDs of them in the existing

PIT entry and updates the entry life time. Then the duplicate

Interests are dropped.

When a Data packet arrives, PIT performs LPM in two

steps. First, it queries the full Data name to find the matched

entry and forwards it to the incoming faces. Then, each proper

prefix of the Data name are queried for thoseCanBePrefix-flag

marked entries. Note that forwarding Data to multiple faces
is done by the kernel network function skb_clone which in-

creases the packet reference count and only copies the sk_buff
structure for management. Hence, iStack multicast has no

additional overhead for duplicate Data packets.

CS needs to support both of ENM and all sub-name match-

ing (ASNM) [24], which means all the proper prefixes of a

Data name need to be indexable. CS caches Data packets in

kernel directly and the compact structure of CS is shown in

Fig. 3(b). In order to extend supporting from ENM to ASNM,

CS creates a series of entries for a cached Data packet. Each

of the entries uses a pointer to reference the name string in
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Figure 4: Fast two-level locks structure

the payload of that Data and an unsigned integer to record

the length of the whole name or one of its proper prefixes.

With this design, CS in iStack supports NDN name dis-

covery: an Interest with CanBePrefix flag can be satisfied by

cached Data with an extended name. Moreover, entries in CS

may be evicted based on the replacement policies. In order to

evict the series of entries of a cached Data packet efficiently,

the entry of CS is designed with another dual pointer field

which forms a doubly linked list associating the series of

entries for a Data packet. With this, evicting a cached Data
packet from CS is simple: find the entries with the specific

name and then remove all the entries in its doubly linked list

and finally release the referenced packet.

The compact hash-based data structures in iStack take zero

memory copy for names and prefixes and have no packet du-

plication, which reduce the memory consumption. Moreover,

as both of the data structures and packets are in kernel space,

there is also no memory copy and context switch overhead

between kernel and user space.

4.2 Fast Locks for Multi-Threading Safety
There are forwarders which choose sharded data structures to

improve multi-thread performance, whereas keeping private

instance of PIT/CS per thread may break down NDN name

discovery. The proposed solution is introducing PIT token
which is the hash value of the entire name or a fixed-length pre-

fix of Interest name and is carried hop-by-hop (NDN-DPDK,

YaNFD [20, 23]). As a general-purpose network stack, iS-

tack avoids involving dependency on under-layer protocols.

Hence, the three key NDN data structures in iStack are shared

by parallel kernel threads. In order to ensure multi-threading

safety while achieving high performance, we carry out fast

two-level locks structure which reduces locking overhead.

As illustrated in Fig. 4, there are two-level locks for iS-

tack compact hash-based data structures, the table locks and

the entry locks. Instead of competing for a single lock, each

bucket of the separate chaining hash table is equipped with an

individual table lock. Since parallel operations are naturally

distributed to different chains by hashing, the blocking over-

head is limited to the concurrent operations on entries with a

same name and with hash collisions.

As name lookup without table modification takes a signifi-

cant proportion of name-based forwarding processing, iStack

adopts readers-writers locks as the table locks [25]. The criti-

cal area of reader locks is a traversal of a hash table chain and

writer locks protects for entry insertion and removal. To mini-

mize the impact on performance, the critical area only covers

direct operations on the corresponding hash table chain while

other processing including entry initialization and memory

free are done before and after the critical area, respectively.

The entry lock is used for safely updating the state of an

entry such as adding incoming faces to an existing PIT entry.

Due to most of the entry related operations are mutually ex-

clusive and likely to be finished in very short period, iStack

takes spinlocks as the entry locks.

The fast two-level locks structure reduces performance

degradation of parallel processing while ensures multi-

threading safety with little cost of memory consumption. iS-

tack only equips per-bucket table locks for three tables: PIT,

CS, and FIB. Given the assumption that setting those table

heads length to 65536, the extra memory for table locks is 1.5

MB in total. The entry locks are equipped on all table entries.

Nevertheless, PIT entries are temporarily pending in the table.

For CS and FIB, the size of entry lock is negligible compared

with that of cached Data and stored routable prefix strings.

4.3 Miscellaneous Design
4.3.1 In-Network Caching

As iStack is an in-kernel stack, it naturally takes CS into

the kernel. For generality, two issues should be considered,

namely the kernel-space memory consumption for storage

and the capacity of CS. For the former one, iStack provides

two parameters for management. They are maximum number

of entries and maximum size. The two limitations take effect

simultaneously. The maximum size is to limit the kernel-

space memory consumption. As CS in iStack creates entries

for each proper prefix of a Data packet, the maximum number

of entries is used to prevent from a large amount of entries

for Data with an extremely long name overwhelming CS and

decreasing its performance. For the latter, we design hierar-

chical structure for CS. The in-kernel part is used for Data
with the most popular prefixes. The out-kernel part utilizes

hard disk space to provide vast size of storage. We implement

in-kernel CS with configurable parameters in our prototypes

and leave the hierarchical CS implementation as future work.

4.3.2 Loadable Kernel Module

There are two ways to implement iStack in the Linux kernel:

i) add iStack codes to the kernel source tree and recompile

the kernel or ii) add iStack as kernel loadable module to the

running kernel. As an in-developing novel network stack,

the main part of iStack is implemented as a loadable kernel

module (LKM). But some socket-like APIs remain to be
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completed. With the current socket APIs, the parameter of

bind is limited to 128 bytes long, which limits the maximum

binding prefix length. Besides, with Berkeley socket API, the

programming model of iStack includes merely send and recv.

We also design information-centric programming model and

implement new socket-like APIs for iStack to be published.

Practically, there is a static size array for the system call table

and adding new system calls needs to modify the architecture-

specific table and recompile the kernel.

In principle, NICs provide receive side scaling (RSS) on

hardware for dispatching incoming packets to different CPU

cores. Nevertheless, the typical filter used in RSS is a 4-tuple

hash over IP addresses and TCP ports of a packet. Based on

our observations from implementing, most of the commer-

cial off-the-shelf NICs do not perform RSS for packets with

unknown ether types and they just send all packets with un-

known type to a single RX queue. Hence, we implement a

software-based dispatcher to enable multi-threading packet

processing in iStack with two dispatching strategies: dispatch-

ing based on hashing entire names and dispatching randomly.

4.3.3 Reliability and Security

Although the raw type of socket provides maximum flexibil-

ity for applications, a general-purpose network stack should

provide interfaces with different levels of granularity in

terms of reliability. Hence, besides the basic socket type

SOCK_RAW and SOCK_DGRAM, we also implement the

type SOCK_SEQPACKET in iStack. SOCK_RAW only pro-

vides a basic interface for applications to send and receive

packets. SOCK_DGRAM provides packet encapsulating and

decapsulating functions with which applications can focus on

names and content rather than manually deal with packet for-

mat. SOCK_SEQPACKET provides more reliability. In the

sock part of this type of socket, we implement slice-window

flow control, retransmission, and name-based reordering. To

save space, more details are not elaborated here.

It is worth noting that iStack represents an in-kernel design

and prototype for NDN. Its primary value lies in its robust

framework. It is designed to offer fundamental NDN func-

tionalities and facilitate integration of additional features and

strategies, rather than presenting a finalized production-ready

solution. Given that ICN/NDN fundamentally transforms the

network communication paradigm from host-dependent to

host-independent, and introduces state into the network, the

required transport abstractions may differ significantly from

the established end-to-end protocols in IP realm. Ongoing

research has been dedicated to transport-layer services [26],

congestion control [27–29], and etc. Furthermore, in NDN,

each Data carries a unique name, resulting in distinct transport

service requirements compared to traditional models. Con-

sequently, iStack currently incorporates essential transport

functionalities for application development, rather than fully

piggy-back established end-to-end transport abstractions like

TCP/QUIC. We will keep the evolution of iStack.

NDN secures data directly by requiring data producers to

cryptographically sign every Data packet [1]. There are also

literatures investigating security mechanisms for different

scenarios [30–32]. Based on the basic Interest/Data commu-

nication, users can retrieve both content and the corresponding

keys and perform verifications. We leave the security opera-

tions to user space and plan to carry out function libraries for

the convenience of applications in the future.

5 Evaluation and Discussion

5.1 Implementation and Experimentation

We have implemented iStack in the Linux kernel 4.14 and

4.19 and tested on PCs, servers, Raspberry Pies (4B+), and

edge routers. We also implemented several applications over

iStack, including file transfer, streaming video player, and

etc. Our prior test shows that iStack can achieve 1 Gbps line

speed on laptops and low-end devices like Raspberry Pies.

We built a pure NDN local area network (LAN) with iStack

and applications including file transfer and video player ran

in the LAN successfully. In this paper, our evaluation focus

on two aspects: (i) network performance benchmark and (ii)

application-level performance for real edge.

For the network performance measurement, we ran a

provider-side file transfer application on a server equipped

with dual 6 cores CPUs (hyper to 24 threads in total) and con-

nected it to a packet (Interest) generator. As the hyper thread

of a core is abstracted as a processor in the Linux kernel, we

interchangeably use the terms core and thread in the follow-

ing paper. We evaluated the maximum network throughput

with different working threads and compared the delay of

cached Data response between in-kernel and out-kernel CS.

To evaluate application-level performance for real edge, we

deployed multiple consumer-side file transfer applications to

request different files from the server. All applications use the

same format of content names and an example is /Net-A/prdc-
01/0/PubFiles/ABCD/1 which consists of three distinct parts:

1) A prefix of the provider (/Net-A/prdc-01).

2) A provider application defined prefix part (/0/PubFiles).

3) A part of application-specific information including a

segment number (/ABCD/1, /ABCD/2).

As the consumer applications run with socket APIs in user

space, this scenario can obtain "goodput", application-layer

throughput, and monitor CPU usage and memory consump-

tion as the applications are running. For fair comparison with

existing forwarders, the throughput and the forwarding rate in

the evaluation only accounts for Data packets. Hence the total

packet forwarding rate (including both Interest and Data) is

at least twice3 of the results in this paper.

3There is potential of Interest packet loss and retransmission which makes

the total packet forwarding rate may higher than twice of the reported results.
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Figure 5: Throughput with different processor affinity settings

Table 1: Delay comparison between in/out-kernel CS

CS size
Avg Delay for Cache Hit (us)

Reduction RatioIn-Kernel Out-Kernel

10 MB 3.85 7.14 46.08%

100 MB 4.17 7.69 45.77%

1 GB 4.55 8.33 45.38%

5.2 Throughput and Delay

As described in Sec. 4.3, the commercial off-the-shelf NICs

do not perform RSS for the packets with unknown ether types.

All these packets are passed to a single RX queue and handled

by one thread. Hence, in our current implementation, there is

only one thread running the dispatcher which distributes all

incoming packets to different CPU cores. In the experiments,

we used a random dispatching strategy, in which packets are

dispatched to different kernel threads randomly and evenly.

Fig. 5 shows that both of the throughput and the Data
forwarding rate grow almost linearly up to 8 or 12 forwarding

cores. After that, the growing slows down and finally achieves

6.50 and 6.13 Gbps with 24 cores. We also evaluated the

performance influence of whether using a separated core for

the dispatcher. Note in Fig. 5 that the separated-* represents

that the dispatcher never dispatches packets to the core it is

running on. The core (separated or shared) for dispatcher is

also counted in the number of working cores, hence the result

of separated-* starts from two.

In Fig. 5, we observe that the performance of shared core is

higher than that of the separated core with up to 4 cores. This

is because the software based dispatcher has not achieved its

performance bottleneck yet and separating a core for it means

decreasing the number of cores for packet forwarding and

finally leads to performance decreasing. However, when there

are more than 8 cores, the forwarding throughput is relatively

sufficient and the single core dispatcher becomes the bottle-

neck. In this case, sharing a core decreases the throughput of

the dispatcher and finally limits the maximum throughput of

iStack. Hence, with a separated core for the dispatcher, the
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Figure 6: Goodput with different content-payload sizes

input bottleneck comes later (12 instead of 4 cores as shown

in Fig. 5) and the maximum throughput of iStack achieves

6.50 Gbps. Given that the number of cores for packet ingress

depends on how many NICs are installed on the system and

the hardware RSS of the NICs, we plan to eliminate the dis-

patching bottleneck in the future work.

In order to evaluate the overhead reduction of taking CS

into kernel space, we also implemented an out-kernel version

which communicates with iStack through Netlink sockets. CS

in user space needs to copy packet buffer from/to kernel space

via system calls for Data insertion/retrieval. It has signifi-

cant overhead comparing with the in-kernel version. Table.

1 presents the forwarding delay with capacity varying from

10 K to 1M. The forwarding delay increases slightly with

capacity as larger capacity means higher workload. Table. 1

also shows that the in-kernel CS of iStack reduces over 45%

forwarding delay for the case of cache hit.

5.3 Application Performance

Fig. 6 shows that varying content size, the goodput grows

up linearly from 762.4 Mbps to 5.07 Gbps. Meanwhile the

Data forwarding rate keeps at about 0.45 Mpps, which proves

that the payload length has limited impact on iStack forward-

ing rate but is important for application goodput. Due to the

applications imports additional overhead, the measured maxi-

mum Data forwarding rate (0.48 Mpps) is slightly lower than

that measured with the Interest generator, which achieves

0.53 Mpps. Another observation is that comparing with an

iStack router, an edge host running applications with iStack

can achieve 90.5% of the maximum performance.

In Fig. 6, the differences between the results of excluding

and including names are similar with different content size,

whereas it is worth noting that with the content size growing,

the proportion of the difference decreases. Hence, if the name

does not carry application information, using larger content

size and shorter name is more efficient.
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5.4 CPU Usage and Memory Consumption

As iStack targets to deploy on edge hosts and routers for

general purpose, we evaluated CPU usage and memory con-

sumption of it. The result is measured from the entire system

instead of some specific applications. Hence it can better indi-

cate the resource overhead of an end host. In this measurement

CS was disabled on end hosts to avoid its influence on mem-

ory consumption. All consumer applications continuously ran

for 30 times after a warm-up running.

The result is illustrated in Fig. 7. Note that the two hosts

were equipped with different cores of CPU and hence the

celling of CPU usage in Fig. 7(a) and Fig. 7(b) are 800% and

2400%, respectively. The CPU usage of consumer applica-

tions is relatively high, because the consumer-side applica-

tions used sockets with the type SOCK_SEQPACKET, each

of which ran a TCP-like sliding window algorithm and took

care of retransmission based on timeout. The average goodput

in this measurement is about 4.97 Gbps. Fig. 7(b) shows that

such scenario is an easy task for providers as most of the time

the CPU usage is under 200% (maximum 343.3%).

We measured initial system memory consumption before

running consumer/provider applications and the result in

Fig. 7 is the real-time measurement minus the initial value.

Fig. 7(a) shows that the total memory consumption with 15

consumer applications concurrently running is less than 50

MBytes. The memory consumption of both the server and the

host vary slightly, which indicates that excepting CS, iStack

has little memory consumption and is suitable for edge usage.

5.5 Discussion

Our evaluations show that iStack is a promising in-kernel

network stack for general purpose. iStack achieves up to

6.50 Gbps throughput and meanwhile keeps low CPU usage

and memory consumption. A comparison among iStack and

other NDN forwarders is shown in Table 2. NDN-DPDK has

the highest throughput. Nevertheless, DPDK-based solutions

have limitation of hardware depending and polling-based I/O

is not suitable for edge usages, especially for low-end devices.

Among all event-driven forwarders, iStack outperforms in

terms of the throughput/goodput with a factor of 6.26x-16.25x.

Besides, our in-kernel CS eliminates the overhead of memory

copy between kernel space and user space for caching and

retrieving Data, respectively. The evaluation result shows that

in-kernel caching reduces upto 46.08% forwarding latency in

case of cache hit. It is worth noting that currently iStack has

not been fully optimized and the single-thread dispatcher also

limits its multi-threading performance.

iStack is not another NDN forwarder but an ICN protocol

stack. The other implementations in Table 2 are all user-space

forwarders. In contrast, iStack is designed and implemented

integrated with OS kernel and our prototypes can be compiled

with the source code of Linux kernel. iStack provides system-
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Figure 7: CPU usage and memory consumption

level NDN functionality supporting. Applications can access

the named network through OS network sockets directly.

5.6 Lessons Learned
Our experiences constructing iStack have revealed important

insights into putting NDN into OS kernel. First, we have dis-

covered that from a system perspective, the namespace of

NDN should be carefully organized. Allowing applications to

register arbitrary prefixes into FIB results in unnecessary over-

head of the in-kernel network stack. Hence, iStack classifies

prefixes into routable ones and application-specific ones. In

the network layer of iStack, FIB only deals with routable pre-

fixes. Applications can binding more specific prefixes which

are handled by BPT. Hence, iStack decouples local demul-

tiplexing from network-layer routing and forwarding, while

keeping NDN name-based communication model.

Second, in contrast to IP’s stateless forwarding design,

NDN maintains per-packet state at the network layer. Crafting

a robust stateful network stack introduces additional complex-

ity. One challenge arises from the potential for network state

to create blockages with certain OS interfaces. Events such

as socket closed or network cable unplugged can occur while
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Table 2: Comparison with other forwarders

Forwarder/Stack Type I/O Driven Programming Model Net. Throughput App. Goodput Language

NFD [33] App-level Event Specific API 0.4 Gbps N/A C++

NFD-Opt. [33] ditto ditto ditto 0.9 Gbps N/A ditto

YaNFD [23] App-level Event Specific API N/A 0.81 Gbps Go

MW-NFD [22] App-level Polling Specific API 4.26 Gbps N/A C++

NDN-DPDK [20] Bypass kernel Polling Specific API N/A 22 Gbps* C & Go

iStack In kernel Event Network socket 6.50 Gbps 5.07 Gbps C
* NDN-DPDK achieves 108 Gbps throughput with Jumbo frames (8000 B). For fairness, we list results that are based on standard Ethernet frames (1500 B).

corresponding Interests are still pending in PIT. iStack mit-

igates such potential blockages through its thread-safe face

system, elaborated in Section 3.3.3. Another consideration

is the need for judicious management of overhead. iStack

employs streamlined forwarding data structures and avoids

packet duplication to minimize the overhead with stateful net-

work processing. Additionally, iStack adopts an interruption-

based packet reception approach rather than a polling-based

one. Note that in cases of extremely high throughput demands,

such as those in data-center server environments, a polling

approach like DPDK might be a viable alternative. However,

such solutions often lead to elevated CPU usage even during

idle periods, potentially monopolizing resources required for

non-networking processes. Consequently, iStack ultimately

embraces an interruption-based approach.

Third, as NDN enables in-network caching, an in-kernel

network stack for it involves storage into the OS kernel. As

mentioned in Sec. 4.3.1, taking storage into kernel should

consider two issues: memory consumption and capacity. As a

packet certainly exists in the network stack before it is cached,

an in-kernel stack can directly cache Data packets in kernel-

space memory for fast response. However, consuming too

much memory for fast in-network caching hinders other tasks

running on the host. Hence, iStack carefully limits the in-

kernel memory usage for CS and utilizes external storage to

extend CS capacity. The Linux kernel disapproves operating

files directly and from our developing experience, there are

two promising methods to achieve this. One is building a user-

space CS and exchange packets with in-kernel stack through

socket interfaces. Another one is designing a new storage

mode for the rising in-network caching involved by NDN.

Network stacks in current OS is built to support the exist-

ing node-centric networking model, with the intrinsic notion

of socket-connection-interface mapping. An in-kernel stack

communicates with user-space applications through system

calls. Specifically for networking, there are socket-based sys-

tem calls. Although presently the socket API of iStack is able

to support essential NDN communication functionalities, it

is a send/receive programming model and lacks the aware of

symmetrical flow, the unique naming of each packet, and other

features included by NDN. Hence, designing an information-

centric programming model and the corresponding API for

NDN applications is an attractive research topic.

6 Conclusion and Future Work

This paper describes iStack, a general-purpose information-

centric network stack, taking NDN into OS kernel, for practi-

cal deployment and usage. Our work contains both intellectual

and practical contributions. On the intellectual side, iStack

shows how to integrate a stateful, entirely name-based proto-

col stack into OS kernel and be compatible with the socket

mechanism. On the practical side, iStack demonstrates itself

as a practical kernel-level protocol stack for NDN.

We implement iStack prototypes on different four kinds of

platforms from high performance servers to low-end devices.

Evaluation shows that iStack achieves 6.50 Gbps throughput

and meanwhile keeps reasonable CPU usage and memory

consumption, which indicates that iStack is sufficient for the

requirements of general usage and practical deployment.

To the best of our knowledge, iStack is the first in-kernel

stack for NDN and achieves both generality and high per-

formance. In terms of generality, iStack supports multiple

applications that have different purposes and requirements

with network socket mechanism implemented by operating

systems directly. In terms of performance, iStack outperforms

the NDN-testbed forwarder by a factor of 16.25x and even

faster than the polling-based MW-NFD by a factor of 1.52x.

Our future work includes the following aspects. First, we

also design a series of information-centric socket primitives

and the corresponding programming models for iStack to

be published. Second, we are working on porting iStack to

other platforms including Andriod and Windows. Third, with

further developing and extensive testing in more cases, we

will provide a well-polished version for community as well

as long term support and evolution in the near future4. We

believe that iStack is not just another forwarder for NDN, but

a step forward for the development of ICN.
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