
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Reasoning about Network Traffic Load Property
at Production Scale

Ruihan Li, Peking University and Alibaba Cloud; Fangdan Ye, Yifei Yuan, Ruizhen Yang,
Bingchuan Tian, Tianchen Guo, Hao Wu, Xiaobo Zhu, Zhongyu Guan, Qing Ma,

and Xianlong Zeng, Alibaba Cloud; Chenren Xu, Peking University;
Dennis Cai and Ennan Zhai, Alibaba Cloud

https://www.usenix.org/conference/nsdi24/presentation/li-ruihan

Reasoning about Network Traffic Load Property at Production Scale
Ruihan LiPA, Fangdan YeA, Yifei YuanA, Ruizhen YangA, Bingchuan TianA, Tianchen GuoA, Hao WuA,
Xiaobo ZhuA, Zhongyu GuanA, Qing MaA, Xianlong ZengA, Chenren XuP, Dennis CaiA, Ennan ZhaiA

PPeking University AAlibaba Cloud

Abstract
This paper presents JINGUBANG, the first reported system for
checking network traffic load properties (e.g., if any link’s
utilization would exceed 80% during a network change) in
a production Wide Area Network (WAN). Motivated by
our network operators, JINGUBANG should meet three im-
portant requirements: (R1) comprehensive support for com-
plex traffic behavior under BGP, IS-IS, policy-based routes
(PBR), and segment routes (SR), (R2) reasoning on traffic
load of billions of flows across a period of time, (R3) real-
time failure-tolerance analysis. These requirements pose chal-
lenges in modeling the complex traffic behavior and main-
taining the checking efficiency. JINGUBANG has successfully
addressed these challenges. First, we propose the traffic distri-
bution graph (or TDG), capable of modeling equal-cost multi-
path (ECMP), packet rewriting, and tunneling, introduced by
BGP/IS-IS, PBR, and SR, respectively. Second, we design an
algorithm based on TDG to simulate traffic distribution for
billions of flows across a time period both efficiently and ac-
curately. Third, JINGUBANG proposes an incremental traffic
simulation approach that first computes an incremental TDG
and then simulates only the differential traffic distribution,
avoiding the need to simulate the entire network traffic distri-
bution from scratch. JINGUBANG has been used in the daily
checking of our WAN for more than one year and prevented
service downtime resulting from traffic load violations.

1 Introduction
Alibaba Cloud serves over one billion customers with its ser-
vices including cloud computing, search, and video. To sup-
port these services, we operate a global Wide Area Network
(WAN) infrastructure to interconnect tens of data centers. Our
WAN is a traditional, distributed network, rather than an SDN
network. This WAN maintains hundreds of routers and for-
wards a huge amount of service traffic by combining diverse
protocols including BGP, IS-IS, policy-based routes (PBR),
and segment routes (SR). According to our recent three-year
records, more than 90% of outages caused by misconfigura-
tions on our WAN were related to traffic load violations.1

Checking whether network traffic load meets our variety
of specifications, therefore, is vital to the availability and reli-
ability of our WAN. For example, in the scenario of planned
network changes (e.g., updating configurations and upgrading

1Since Hoyan [41] was used three years ago, Hoyan has prevented most
misconfigurations causing routing reachability errors in our network. The
remaining misconfiguration-related outages, in recent three years, happened
tens of times a year and accounted for about 30% of all our network outages.

network routers), our network operators need to ensure that
no link would be overloaded at any point during the entire
planned change time window. As another example, our op-
erators need to check whether any traffic load property (e.g.,
no drastic traffic load increase on any link) may be violated
if given links fail. Conventional techniques (e.g., traffic engi-
neering [4, 11, 17, 19, 25, 26]) do not help since they mainly
focus on optimizing and controlling traffic load; however,
what we need is a system capable of answering our queries
about specified traffic load properties.

Requirements. We decided to build a system to model the
traffic behavior and proactively check traffic load violations
in our WAN. By surveying our operators, a practical checking
system must meet the following requirements.

R1: Comprehensive protocol support. The checker should
support comprehensive traffic behavior under BGP, IS-IS,
PBR, SR, and static routes. Our WAN uses BGP and IS-IS for
routing; our traffic scheduling and engineering heavily rely
on PBR and SR, due to their precise traffic control and low
operation cost. For example, SR can specify forwarding paths
on a per-hop basis, while PBR can identify QoS and classify
traffic into different classes.

R2: Reasoning on traffic load for billions of flows in a
period of time. The checker should support the traffic load
reasoning not only at a single time point, but also during a
period of time. In a network change scenario, the change time
window may last multiple hours; thus, our operators need to
check whether the intended traffic load properties can hold
during the entire change window. In addition, billions of flows
can appear during the time period; thus, the checker must be
scalable to reason on the traffic load of billions of flows.

R3: Real-time failure-tolerance analysis. Our operations
frequently run failure-tolerance analysis to check if a set of
failed routers and links would cause traffic load violations.
The checker should offer an efficient what-if analysis to meet
the real-time requirement of our operators.

State of the arts. No prior work, nevertheless, can simultane-
ously satisfy all the above requirements. Specifically, current
network verification systems have been focused on checking
reachability properties (e.g., if packets/route advertisements
sent from a router A can reach another router B) in terms of
control plane [1, 2, 10, 12, 14, 15, 22, 31, 32, 34, 39–42] and
data plane [3, 18, 20, 21, 23, 24, 28, 30, 35, 37]; thus, they are
unable to reason about traffic load properties in the network.

A recent effort, QARC [36], closest to our goal, proposes a
verification approach to checking whether links may be over-
loaded under any failure up to a given degree (i.e., k-failure

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1063

tolerance reasoning for network traffic load). QARC, how-
ever, cannot meet our requirements. First, QARC’s encoding
is based on the shortest path with flow quantities. It is non-
trivial to extend the encoding to support PBR and SR, which
introduces traffic behavior beyond shortest-path-forwarding,
e.g., packet rewriting and tunneling. Second, the verification
algorithm of QARC mainly focuses on traffic load reasoning
at a single time point. Extending the algorithm to efficient
verification of traffic load in a period of time is not straight-
forward. Finally, QARC’s main focus is k-failure tolerance
typically with small k, it is reported that it cannot scale to a
larger number of failed links/routers (e.g., k > 5) [36].

Our approach: JINGUBANG.2 In this paper, we present JIN-
GUBANG, the first system for checking network traffic load
properties for WANs. JINGUBANG simultaneously achieves
the above-mentioned requirements proposed by our operators.
In essence, JINGUBANG is a system that can simulate traf-
fic distribution (i.e., traffic load on each link) for traffic load
property reasoning. Specifically, JINGUBANG takes as inputs
(i) the network topology and routers’ configurations, (ii) IP
prefixes advertised into the network, and (iii) multiple traffic
snapshots each recording the traffic information of a set of
flows entering the network at a time point, then accurately
simulates the traffic distribution, and finally checks whether
it meets the given traffic load property.

Building JINGUBANG requires us to address three chal-
lenges (corresponding to the three requirements, respectively).
First, the traffic behavior under BGP, IS-IS, PBR, and SR is
complex. In particular, SR relies on tunneling and PBR offers
fine-grained flow processing such as packet rewriting. In ad-
dition, routing protocols (e.g., BGP, IS-IS) enforce protocol-
based equal-cost multipath (ECMP), where traffic is load-
balanced first between BGP next hops and then between IS-IS
next hops. To comprehensively model the traffic behavior
under those protocols, we introduce the traffic distribution
graph (or TDG), translating the traffic behavior of different
protocols into a uniform traffic forwarding representation.
TDG can represent not only destination-based forwarding be-
havior (like BGP and IS-IS) with ECMP but also tunneling
and packet rewriting used in SR and PBR. (§4.1)

The second challenge is efficiently reasoning on traffic
load for billions of flows in a period of time. In our operation,
the time period to be checked typically lasts several hours,
involving a huge number of time points (1 minute for each
in our settings). A strawman solution is to generate many
TDGs, each corresponding to a time point, and then run traf-
fic simulation on each of all these TDGs. Such a solution is
inefficient. We observe that traffic flows across different time
points highly overlap. Driven by this insight, we propose an
approach that constructs only one TDG with the union of all
the traffic flows, enabling us to simulate traffic distribution

2In ancient Chinese mythology, Jingu Bang is a tool used by Yu the Great
to measure water levels during his efforts to control floods. Therefore, we
named our network traffic load checking system JINGUBANG.

across a period of time within one run. To further improve the
efficiency of handling billions of flows, we propose two opti-
mizations based on sampling and equivalence classes which
significantly reduce the number of flows to be considered
while still maintaining accuracy. (§4.2-§4.4)

Third, daily operation requires a large number of what-
if analysis on network link (or router) failures. Straightfor-
wardly simulating traffic for each link (or router) failure re-
quest cannot meet the real-time requirement of our operators.
To support real-time failure-tolerance analysis, JINGUBANG
proposes an incremental traffic simulation approach that first
computes an incremental TDG and then simulates only the
differential traffic distribution, avoiding the need to simulate
the entire network traffic distribution from scratch. (§5)

Scope. JINGUBANG operates under two key settings: (i) a time
point is defined as a minute for the purpose of checking traffic
load properties, (ii) traffic is assumed to be distributed evenly
or based on pre-configured weights across ECMP paths. Thus,
the examination of micro-burst congestion [45] and ECMP
unfairness falls outside the scope of this paper, as these consid-
erations are orthogonal to our operators’ requirements. 3 In
addition, JINGUBANG takes as input flows entering our WAN
and external routes advertised into our WAN, and will suffer
from inaccuracy if traffic measurement is imprecise [5, 38] or
route monitoring is incomplete (§7).

Real-world deployment. JINGUBANG has been used to check
network traffic load in our WAN and successfully prevented
service downtime in operations such as network changes and
failure-tolerance analysis. We share our experience with JIN-
GUBANG in §6 and evaluate JINGUBANG in §7.

Ethics. This work does not raise any ethical issues.

2 Background and Motivation
This section starts by describing the background of our WAN
(§2.1), and then presents our motivation (§2.2).

2.1 Background: Our Production WAN
Alibaba Cloud operates a private WAN infrastructure that
interconnects all its data centers and peers with external ISPs,
serving both traffic internal to Alibaba Cloud and traffic be-
tween Alibaba Cloud and external networks. Our WAN is a
distributed setting without a centralized SDN controller. By
Jan 2023, this WAN has tens of autonomous systems (ASes),
nearly a thousand routers, and tens of thousands of links,
where each router has a forwarding table with millions of
entries. 4 Our operators conduct hundreds of network changes
per week, with frequent changes such as link capacity expan-
sions and IP prefix publications happening a dozen times per
day. Our WAN uses BGP (including eBGP and iBGP), IS-IS,
static routes, SR, and PBR to route our network traffic.

3 In >99% of our WAN links, the top flow consumes <1% bandwidth.
With a large number of flows and no elephant flows, flow-level ECMP can
be approximated by evenly distributing flow volumes across ECMP paths.

4We omit absolute numbers for the confidentiality reason.

1064 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Interface X

G
10.0.0.7

A
10.0.0.1

B
10.0.0.2

D
10.0.0.4

E
10.0.0.5

F
10.0.0.6

Interface IP 11.0.0.5

G's PBR config:
interface X, inbound
 match src 20/8
 remark dscp 5

BGP RIB:
 *30/8, nexthop 11.0.0.5
Connected RIB:
 *11.0.0.4/30, directly connected

BGP RIB:
 *30/8, nexthop 10.0.0.5
 *30/8, nexthop 10.0.0.6
IS-IS RIB:
 *10.0.0.5/32, SR tunneled
 *10.0.0.6/32, SR tunneled

A's SR config:
route 10.0.0.5/32, match dscp 5
 path 10.0.0.2, 10.0.0.5 weight=10
route 10.0.0.6/32, match dscp 5
 path 10.0.0.3, 10.0.0.6 weight=8
 path 10.0.0.4, 10.0.0.6 weight=2

2~
12 G

bps

f2: 2~12 Gbps
20.0.0.1->30.0.0.1
dscp=0

5~10 Gbps

4~8 Gbps

1~2 Gbps

5~10 Gbps

4~8 Gbps

1~2 Gbps

f1: 8 Gbps
20.0.0.1->30.0.0.1
dscp=5

C 10.0.0.3

AS 200

AS 100

Figure 1: Motivating example. The green boxes represent
RIBs for router A and G, respectively. Two yellow boxes are
G’s PBR configuration and A’s SR configuration, respectively.
In the given period of time (say one hour), the traffic rate of
f2 fluctuates between 2 Gbps and 12 Gbps, while f1 keeps
8 Gbps. G belongs to AS 100, and A~F belong to AS 200.
This example shows how BGP, IS-IS, PBR, and SR work
together to distribute the traffic in our WAN.

PBR and SR. Unlike routing protocols (e.g., IS-IS and BGP),
PBR and SR are non-destination-based forwarding techniques.
A PBR policy can match packets by their destination ad-
dresses, source addresses, and DSCP values; for matched
packets, it can set next hops or modify packet fields (e.g.,
DSCP). SR forwards the packets along one or more explicit
paths built on Multiprotocol Label Switching (MPLS) or IPv6
stacks (i.e., SRv6); different paths may have different routing
weights. The mainstream SR used in our WAN is SRv6.

Traffic monitoring. Our WAN employs a large-scale traffic
monitoring system that collects detailed traffic information
from the network via Netflow [8] and sFlow [29] at a sampling
rate of 8192. The monitoring system records the information
of traffic flows entering each interface of routers, including the
value of each field (e.g., the IP-port 5-tuple), the timestamp of
report time, and the total traffic volume of each flow sent since
the last report time. The system generates a traffic snapshot
per minute, recording the traffic flows (entering our WAN)
and their rates in that minute. JINGUBANG receives 60 one-
minute traffic snapshots every hour.

2.2 Motivations and Goals
Motivating example. Figure 1 shows a small but illustrative
example of a traffic distribution situation in our operation.
Suppose two traffic flows f1 and f2 enter the network by
router A and G, respectively. In the given period of time,
the traffic rate of f1 keeps 8 Gbps, while f2’s rate fluctuates
between 2~12 Gbps. When receiving f2, G sets f2’s DSCP
to 5 according to G’s PBR configuration; then, G routes f2
to A based on its eBGP route. By receiving f1 and f2 (both
with DSCP=5), A performs the longest prefix matching for the
flow based on A’s routing information base (RIB), identifying
two iBGP next hops E and F . The traffic rate from A to E

Figure 2: Traffic load fluctuation on one of the links in our
WAN during randomly sampled three days.

and F is equal, i.e., 10~20 Gbps/2=5~10 Gbps, because of the
ECMP of iBGP. Router A looks up the direct next hop to E
and F by checking A’s SR configuration. According to A’s SR
configuration in Figure 1, A distributes the traffic into three
paths (A→ B, A→C, and A→ D) in traffic rates 5~10 Gbps,
4~8 Gbps, and 1~2 Gbps, respectively. Note that A→C and
A→ D forward traffic rates in a ratio of 4:1 due to weights 8
and 2 specified in A’s SR configuration.

Requirements from our operators. It is hard to ensure
whether the traffic meets the intended properties (say “whether
all traffic on C→ F keeps the rate lower than 8 Gbps even
if B→ E fails”) in a real WAN which is much larger than
the above-mentioned motivating example. By surveying our
operators, Table 1 lists representative scenarios where our
operators need to check traffic load properties. There are
mainly two types of analysis: what-if analysis and auditing.
The former mainly focuses on network changes and specified
failure scenarios, while the latter checks a network without
any change. As shown in Table 1, our operators want to check
traffic not only at a single time point but also over a period
of time, because the network traffic fluctuates significantly
during a time period. Figure 2 shows the traffic fluctuation
occurred on one link in our WAN in randomly sampled three
days. We can observe that the network traffic load fluctuates
between 10% and 50% of this link bandwidth during these
three days. Furthermore, as shown in Table 1, we should sup-
port protocols including BGP, IS-IS, SR, and PBR, since our
WAN employs these types of protocols to forward traffic.

Traffic load properties of interest. The network traffic load
property our operators mainly focus on is whether the traffic
load/rate (in absolute number or percentage) or the change
of it on a given set of links is above or below the specified
threshold, such as “the traffic rate on the given set of links
should be lower than 3 Gbps” and “given a network change,
the traffic load on a specified link should not increase by 40%
during the change”. The prop in Figure 4 shows the formal
definition of properties of interest (detailed in §3.3).

Representative scenarios for what-if analysis. We now de-
scribe two representative scenarios (network change analysis
and failure tolerance analysis) to illustrate why we need what-
if analysis in our WAN.

Network change analysis. Network changes, e.g., changing
configuration and updating routers, are one of the most im-
portant operations. In a typical network change, the operator
makes a step-by-step change plan including each atomic step

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1065

Table 1: The main specifications our operators express in their operations.
Type Name Specification Protocols

What-if
Analysis

Change analysis Whether the traffic load property holds in the network change time window BGP/IS-IS/SR/PBR
Change safety Whether the network change would cause a traffic violation for a specified period of time BGP/IS-IS/SR/PBR
Failure tolerance Whether the traffic load property holds if a specified set of routers or links becomes unavailable BGP/IS-IS/SR/PBR

Auditing Daily auditing Whether the traffic load property holds for a given period of time BGP/IS-IS/SR/PBR

to be executed (e.g., changing routing policy, turning off inter-
faces, and cutting off the connection with neighbor routers),
and reserves a network change time window (e.g., 1am-7am
on the upcoming Thursday). Because network changes are
prone to failures [27,41], our operators want to check whether
the network change would cause traffic load violations at
any point in the change time window (note that network traf-
fic fluctuates significantly during a period of time as shown
in Figure 2) based on the traffic monitored in similar time
periods (e.g., 1am-7am on last Thursday).

Failure tolerance analysis. Another key type of operations
is to check whether the load property holds if a specified set
of links (or routers) becomes unavailable, due to the follow-
ing scenarios: (i) router upgrading/replacement, and (ii) link
maintenance. In the above cases, the router or link should
be specified as unavailable, and the operators want to know
whether the “failure” may cause any property violation.

Non-goal. JINGUBANG can check failure tolerance under
a given set of failed routers or links, but cannot check arbi-
trary k-failure tolerance (i.e., whether the property holds if
arbitrary k links fail). While QARC [36] presented a good
first step toward checking arbitrary k-failure tolerance, our
operation experience found that designing a production-scale
k-failure-tolerance checking for quantitative properties is ex-
tremely hard. This is because such a checker needs to support
more detailed protocol properties, e.g., BGP add-path and SR
tunnels, which significantly expands the encoding space. We
leave scalable k-failure traffic load checking to future work.

2.3 Related Work
For the traffic load property reasoning, why the state-of-the-
art efforts do not help? Existing verification systems [2, 3,
10, 12, 14, 15, 18, 20, 21, 23, 24, 28, 30–32, 34, 35, 37, 39–43]
mainly focus on checking qualitative properties such as packet
reachability (e.g., “whether a given route sent from router A
can reach another router B”). To the best of our knowledge,
except QARC [36], none of the prior work is able to check
quantitative properties related to the traffic load.

Traffic engineering. The major goal of traffic engineering
(TE) is to optimize network traffic and resource usage [4, 11,
17, 19, 25, 26]. Our goal, on the contrary, is to check whether
the network implementation (e.g., network topology, router
configurations, and injected routes) satisfies the high-level
traffic load properties. In particular, Alibaba Cloud uses a
hybrid approach to realizing the TE optimization objectives
via reconfiguring routers (e.g., setting up SR tunnels) and
injecting routes (e.g., advertising BGP routes). However, they
are unable to answer what-if or auditing queries about traffic

Flow Number
Reduction (§4.4)

Basic checking part

TDG Construction
(§4.1) TDG

- RIBs
- PBR
- SR tunnels

Route Simulation
via Hoyan Traffic Distribution

Traffic Snapshots:
S1...Sn

Prefixes

Topology &
Configurations

Failure
Model

Traffic
Distribution

Traffic Distribution
Under Failure

Traffic Load Property

YES
or

NO

- Diff. RIBs
- PBR
- SR tunnels Real-time checking part

Traffic Simulation
(§4.2, §4.3)

Real-Time Failure
Tolerance Analysis (§5)

S'1...S'n

Figure 3: JINGUBANG’s workflow overview. Solid arrows
denote the basic traffic property checking process; dashed
arrows mean the failure-tolerance checking process.

properties as shown in Table 1. In addition, our work can
also be used in non-TE scenarios. For example, when a router
needs to be updated from vendor A to B, JINGUBANG can
check that the new configuration under vendor B is correct in
that no traffic load properties are violated.

Network emulation. Network emulators, e.g., Crystal-
Net [27], run the real control plane software in emulated
environments and generate the corresponding forwarding be-
haviors for validation purposes. We do not choose emulation
due to two issues. First, the emulator needs vendors to provide
their router firmware within virtual machines or containers.
However, we found it practically hard to get such support
from all vendors for all router models in our WAN. Second,
running real router software requires a large number of com-
puting resources (e.g., $100 per hour for emulating just one
data center [27]). As routers in WAN typically have much
more sophisticated firmware than data center switches, emulat-
ing a WAN can be even more expensive. Therefore, emulation
is useful but not a good choice for our purpose.

Quantitative property analysis. Our focus on traffic proper-
ties is also different from the work on probabilistic analysis of
the network control plane [16, 34, 44] and data plane [13, 33].
We check traffic at the network implementation level, which is
different from the work [6, 46] that validates network designs.

3 JINGUBANG Overview
We built JINGUBANG, the first system for checking traffic load
properties in production. JINGUBANG meets the requirements
specified by our operators in §1.

3.1 JINGUBANG Workflow
Figure 3 shows the workflow of JINGUBANG. At a high level,
JINGUBANG takes as inputs (i) the network topology and
routers’ configurations, (ii) IP prefixes advertised into the
network, and (iii) multiple traffic snapshots each recording
a set of traffic flow information at a time point (say one
minute), then accurately simulates the traffic distribution (de-
fined later), and finally checks whether the distribution meets

1066 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Important terminologies.
Terms Meaning

flow A traffic flow, defined as ⟨dst, src, dscp⟩
located flow A traffic flow at a particular interface

defined as ⟨dst, src, dscp, interface, traffic volume⟩
traffic snapshot A set recording all located flows entering the

network at the given time point
traffic distribution A vector recording the traffic load of each link

in the network at the given time point

the specified traffic load property. For failure-tolerance anal-
ysis, JINGUBANG takes an additional failure model as input,
which specifies a collection of unavailable routers or links.

As shown in Figure 3, we have two parts in JINGUBANG:
the basic checking part (i.e., the solid arrows) and the real-
time checking part (i.e., the dashed arrows). The real-time part
is used for failure-tolerance analysis, i.e., checking “whether
the property holds if a specified set of routers or links becomes
unavailable”, while the basic part is responsible for the regular
checking, such as network change analysis and daily auditing.

Basic checking part. In the basic part, we use Hoyan [41]
to generate the RIBs, PBR, and SR tunnels for each virtual
routing and forwarding (VRF) of all routers in the network.

Then, JINGUBANG reads multiple traffic snapshots
S1, · · · ,Sn. Each traffic snapshot records a set of located flows
entering the network at the corresponding time point (e.g., all
traffic flow information from 12:30am to 12:31am on Aug
20, 2022), where a located flow is represented as ⟨dst, src,
dscp, interface, traffic volume⟩. For example, in Figure 1, f1
can be represented as ⟨30.0.0.1, 20.0.0.1, dscp=5, interfaceA,
8 Gbps⟩. By reading n traffic snapshots, S1, · · · ,Sn, JIN-
GUBANG’s flow number reduction module (§4.4) generates n
snapshots, S ′1, · · · ,S ′n, but each with a much smaller size due
to our proposed sampling and equivalence class approaches.

By putting the above information together, JINGUBANG
constructs a traffic distribution graph (or TDG) and simulates
the traffic distribution (§4.2, §4.3). Finally, it checks whether
the traffic distribution meets the specified property.

Real-time checking part. In the real-time part, JINGUBANG
takes the failure model—containing a collection of specified
failed routers or links—as input. We first use Hoyan to gener-
ate differential RIBs that record the difference of RIBs due to
the failure. Then, JINGUBANG checks the TDG computed in
the basic process and only updates the affected part. Finally,
JINGUBANG computes traffic distribution under the given
failure via the incremental traffic simulation module (§5).

3.2 Important Terminologies
Table 2 summarizes important terminologies, including flow,
located flow, traffic snapshot, and traffic distribution. For the
sake of simplicity, we may use the term “flow” for the located
flow when the context is clear. Besides, the terms “traffic rate”
and “traffic volume” of a flow may be used interchangeably
at a given time point, since they are equal in unit time.

task ::= conf ; flow ; [fail ;] prop ; Checking task
· · · · · ·

prop ::= (link l : expr)∗ Traffic load property
expr ::= (load |diff) (≥|≤) n (Gbps |%) Per-link property

Figure 4: Specification of JINGUBANG checking tasks.

3.3 JINGUBANG Checking Task’s Specification
The specification of an JINGUBANG’s checking task is similar
to previous verification systems [2,3,9,37] with the additional
traffic load properties. As shown in Figure 4, our operators
will use a domain-specific language (DSL) to specify four
parts: conf, flow, fail (optional), and prop: (i) conf specifies
the topologies and configurations of the network to check;
(ii) flow specifies the traffic snapshots; (iii) fail is only used
for real-time checking, and allows the operators to specify a
failure model, i.e., a collection of failed routers and links in
this checking task; (iv) prop specifies the traffic load property,
defined as a set of ⟨link, per-link traffic load property⟩ pairs,
where a per-link traffic load property (defined in expr) speci-
fies the condition that the traffic load or its difference (in the
failure scenario) on a link should hold.

Given a task defined above, JINGUBANG simulates the traf-
fic distribution and checks if the specified traffic load property
holds. The checking part follows directly from the simulated
traffic distribution. Below we discuss how to simulate the
traffic distribution accurately and efficiently in detail.

4 Traffic Simulation Using TDG
Given the complex features used in our WAN, flows exhibit
various behavior as described in §2.2. In order to accurately
simulate the traffic load on each link, we need to correctly
model the traffic behavior of each flow in the traffic snapshots,
such as ECMP, packet rewriting, and tunneling.

In this section, we first introduce the traffic distribution
graph (TDG), capable of modeling the above-mentioned traf-
fic behavior of flows. We then describe how to simulate traffic
distribution based on TDG. Finally, we propose additional
optimizations to further improve the simulation efficiency.

4.1 Traffic Distribution Graph
There are two existing ways that may be used to model the
network behavior: 1) the shortest-path-based approach [14,
36] and 2) the SMT-based approach [2]. Neither of them can
model the traffic behavior in our WAN. First, the shortest-path-
based approach uses a weighted graph to model the behavior
of each traffic class, where the shortest paths correspond to
the actual forwarding paths. This approach is fundamentally
limited in expressiveness: it cannot model iBGP and local
preference which are inevitable in WANs. Second, the SMT-
based approach encodes the entire control plane into an SMT
formula and employs a solver to solve the formula. While
there are encodings [2] for BGP, it is nontrivial to extend
them to model the complex features in our WAN. In addition,
SMT solving often induces prohibitively high overhead in

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1067

n0 : (f1, iA0 ,⊥) n1 : (f1,vrf A
0 ,⊥) n2 : (f1,vrf A

0 ,E)

n3 : (f1,vrf A
0 ,F)

n4 : (f1,vrf A
0 , p1) n5 : (f1,eA

1 , p1) n6 : (f1, iB0 , p1) n7 : (f1,vrf B
0 , p1)

n8 : (f1,eB
1 , p1)

n9 : (f1, iE0 , p1)

n10 : (f1,vrf A
0 , p2) ...

n11 : (f1,vrf A
0 , p3) ...

n18 : (f1, iA2 ,⊥)n17 : (f1,eG
1 ,A)

n16 : (f1,vrf G
0 ,A) n15 : (f1,vrf G

0 ,⊥) n14 : (f2, iG0 ,⊥)

1 0.5

0.5

1 1 1 1

1

1

0.8

0.2

1

1
11

1

1
1

Figure 5: A (partial) TDG representing the example scenario in Figure 1. The green, red, yellow, and purple nodes correspond to
router A, B, E, and G, respectively. Other nodes are omitted due to space limits.

runtime [36], which makes it impractical for our WAN with a
large number of routers and prefixes.

To model the complex behavior under BGP, IS-IS, PBR,
and SR, while still supporting efficient reasoning for traffic
load properties, we introduce the traffic distribution graph (or
TDG). Below, we first define the TDG and illustrate the TDG
for the motivating example in Figure 1. The formal definition
and construction of TDG can be found in Appendix B.
Definition. A TDG, corresponding to a traffic snapshot, mod-
els the entire traversal of all flows in this traffic snapshot in a
fine-grained manner. Specifically, a TDG is a directed acyclic
graph (JINGUBANG performs loop checking beforehand and
will report errors if the TDG contains loops), where a node
contains three elements: (i) the corresponding flow, i.e., ⟨dst,
src, dscp⟩, (ii) its location (e.g., receiving at an interface or
being processed at a VRF), and (iii) its next hop (e.g., an IP
address or an SR tunnel) based on the RIB lookup and policy
matching results on the router. An edge between two nodes
denotes a single processing step for this flow, such as forward-
ing the flow from an interface on router A to an interface on
router B, looking up the RIB on a router’s VRF, and so on.
Each edge is associated with a non-negative weight repre-
senting the fraction of traffic volume distributed on that edge;
thus, it is required that the sum of weights on all outgoing
edges of a node equals 1. Finally, the sources in the TDG
denote the initial state of flows entering the network.
Example. Figure 5 shows a (partial) TDG for the motivating
example shown in Figure 1. For readability, nodes are colored
based on the routers they correspond to; specially, green, red,
yellow, and purple nodes correspond to routers A, B, E, and
G, respectively. Each node is labeled with a name nk. We use
vrf X

k to denote the k-th VRF on router X . We also use iXk (eX
k ,

resp.) to denote the k-th interface labeled with the incoming
(outgoing, resp.) flow direction on router X .

The node n0 denotes the initial state of flow f1 entering the
network on router A’s interface iA0 , where ⊥ means that the
next hop is currently unknown. The edge (n0,n1) corresponds
to the step that f1 will be matched against the RIB on vrf A

0 .
The two edges from n1 correspond to the BGP lookup step,
which finds the next hop E and F . Note that the weights
on the two edges are both 0.5, reflecting the BGP ECMP
mechanism implemented by router vendors. The edge (n2,n4)
corresponds to the step that A resolves the next hop for E and

finds the SR tunnel p1; the two edges from n3 denote that two
tunnels are resolved for F and the weights reflect the ones set
in the SR configurations. Then (n4,n5) and (n5,n6) denote
that the flow is sent to the outgoing interface and forwarded to
B’s interface iB0 ; the meaning of other edges follows directly.

Similarly, the node n14 denotes the initial state of flow f2
entering router G’s interface iG0 with no next hops. The edge
(n14,n15) corresponds to the PBR step which modifies f2 to f1.
The edges from n15 to n18 and finally to n1 are similar to the
ones described above. Note that after f2’s DSCP is modified,
it undergoes processing identical to f1. Therefore, the TDG
does not have repetitive nodes for f2 after n18, showcasing its
efficiency in WAN scenarios where it is common for flows to
enter through different ingress points but later be processed
identically. In contrast, the shortest-path-based modeling [14,
36] has to build complete graphs for both f1 and f2, even
though the two graphs may share a large common subgraph.

4.2 Simulating A Single Traffic Snapshot
Given a TDG modeling the traffic behavior of all flows in
a traffic snapshot, we can compute the traffic distribution of
each flow on the TDG following its structure. By aggregating
the traffic load of all flows traversing a link, we can obtain
the traffic load of that link for the given traffic snapshot.

Algorithm 1 shows the traffic simulation algorithm for a sin-
gle traffic snapshot S , implementing the above idea. First, the
function TRAFFICSIM constructs a TDG for all located flows
in the traffic snapshot S . After that, the function TRAFFICSI-
MONTDG takes the generated TDG and the traffic snapshot
S as inputs to compute TL, i.e., the traffic distribution at the
given time point. Recall that the traffic distribution is a vector
that records the traffic load of each link in the given snap-
shot (§3). Specifically, TRAFFICSIMONTDG calculates the
traffic volume entering each node and distributes it on each
edge of the TDG in topological order. For each node n in the
TDG, we compute the traffic volume that reaches n (i.e., V [n])
by summing up all volumes V [e] on each incoming edge e
of n (line 7). Then, the volume at n is distributed into each
outgoing edge of n determined by their weights, e.g., ECMP
and SR weight (line 8). Finally, a link l’s volume (or rate)
TL[l] is computed by aggregating V [e] for each edge e where
e denotes the forwarding step along the link l (line 10). Thus,
we obtain a traffic distribution for a given time point.

1068 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Traffic simulation at a time point
1 Function TRAFFICSIM(S) :
2 Construct the TDG (N,E,w) for all (fk, ik,vk) in S ;
3 return TRAFFICSIMONTDG(S , T DG(N,E,w));

4 Function TRAFFICSIMONTDG(S , T DG(N,E,w)) :
5 Add an incoming edge e′k to source node nk for each located

flow in S and let V [e′k]← vk;
6 forall n in N sorted in topological order do
7 V [n]← sum{V [e]} for all n’s incoming edge e;
8 V [e]←V [n]×w(e) for all n’s outgoing edge e;

9 forall link l in the network do
10 TL[l]← sum{V [e]} for all e in E that share the same pair

of interfaces with l;

11 return TL;

4.3 Simulating Multiple Traffic Snapshots
We now consider the case where the system accepts multiple
traffic snapshots as input and needs to validate traffic load
properties for a period of time. A naive solution may simply
apply the TRAFFICSIM function, which is designed for a sin-
gle traffic snapshot, to each input traffic snapshot. However, it
is inefficient for scenarios requiring a large number of traffic
snapshots. For example, a planned change with a 2-hour time
window requires 120 per-minute traffic snapshots.

To improve efficiency, we make the key observation that
the input traffic snapshots are highly correlated. In the above
example, all the traffic snapshots are extracted from the con-
tinuous 2-hour period. Thus, a located flow may appear across
multiple snapshots which allows us to avoid repetitive com-
putation for each appearance.

We then propose a global-construction separate-evaluation
approach. As shown in Algorithm 2, JINGUBANG constructs
a global TDG representing the union of all flows in all traffic
snapshots (line 2) and calls TRAFFICSIMONTDG with the
global TDG and each given traffic snapshot (line 3). Thus, the
output of the algorithm TLM is a matrix recording the traffic
distributions across multiple time points.

4.4 Flow Number Reduction Optimization
To further improve the efficiency of traffic simulation, we next
propose two optimization techniques that can significantly
reduce the number of flows needed to be simulated.

Traffic sampling optimization. First, we propose a sampling
approach with provable guarantees on the accuracy loss to
reduce the number of flows in the traffic snapshot. Our key
insight is that a flow with a higher traffic volume should have
a higher probability of being sampled, and the total traffic
volume should be preserved. For example, if we sample only
one flow from the traffic snapshot S , the sampled flow should
carry the total volume of all flows in S .

Based on this insight, we propose the traffic sampling algo-
rithm. This algorithm attempts to draw K located flows from
the traffic snapshot S . In each round, the algorithm draws

a flow from S such that a flow with a volume v gets drawn
with probability v/V , where V is the total traffic volume of
all flows. Then, we assign V/K as the volume to the sam-
pled flow and add it to the new traffic snapshot S ′. Repeating
this process K times, we sample K located flows with a pre-
served total volume. We leave the algorithm’s mathematical
representation and pseudocode in Appendix A.1.

It is important to note that the number of distinct flows
in the sampled traffic snapshot is likely to be much lower
than the parameter K. This is because high-volume flows are
likely to be sampled multiple times, and their volumes can
be aggregated in the sampling process. We define the flow
sample ratio as the ratio of the number of distinct flows in
the sampled snapshot S ′ to the number of distinct flows in S ,
which is related not only to the sample parameter K, but also
to the distribution of volumes in S .

Traffic sampling can introduce errors in estimating the
traffic load on a link. Intuitively, for links with low/high traffic
load, it is reasonable to require that the estimated traffic load
does not deviate by an unacceptable absolute/relative value,
respectively. We rigorously establish a lower bound of K
such that traffic volumes of all links are guaranteed not to
deviate by given absolute and relative values at a given level
of confidence. The significance of K’s proven bound lies in its
tightness, making it practical for the use in our WAN, which is
detailed in Appendix A.2. In the derivation of K’s bound, we
start from the law of large numbers and make no assumptions
about the distribution of flows in S . We also evaluate traffic
sampling by experiments in §7.

Traffic equivalence class optimization. Besides, we observe
that many flows exhibit the same behavior in the network
despite that they differ in field values and incoming locations.
For example, suppose in the motivating example there is an-
other flow f3 entering the network at some interface of A
and matches the same BGP route and SR policy as f1 does.
Instead of performing the computation for both f1 and f3, we
may only perform the computation for one of them, assuming
it carries the volume of both flows.

Leveraging this insight, we propose the traffic equivalence
class (TEC). Two flows are equivalent if they have the same
traffic distribution over all links of the network; a TEC is a
set of located flows that are equivalent to one another. See
Appendix C for the formal definition and generation of TECs.

Among multiple flows in a TEC, we only need to consider
one for traffic simulation. Therefore, given a traffic snapshot
S , we can aggregate flows in the same TEC by replacing them
with a single flow that has the combined volume of all flows
in the TEC. As a result, we generate a new traffic snapshot S ′
that has a much smaller number of flows.

5 Real-Time Failure-Tolerance Analysis
Checking whether the network satisfies the intended traffic
load properties under a variety of failure scenarios is a key
task in our daily operation (see Table 1). In such a task, our op-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1069

Algorithm 2: Traffic simulation for a period of time
1 Function TRAFFICSIMMUL({Sk}m

k=1) :
2 Construct the TDG (N,E,w) for all (fk, ik,vk) in

⋃m
k=1 Sk;

3 TLM[Sk]← TRAFFICSIMONTDG(Sk , (N,E,w)) for all
k = 1, · · · ,m;

4 return TLM;

erators submit a large number of checking requests for failure-
tolerance analysis, each specifying a set of failed routers or
links, and expect to obtain results within seconds.

To meet the high-efficiency challenge, we observe that a
typical checking request contains a small number (i.e., O(10))
of link and router failures. Thus, the new TDG for the failure
scenario may only differ slightly from the one without failure.
For example in Figure 1, if B→ E fails, the new TDG has
all the nodes and edges except the edges n1 → n2 → ··· →
n9 in Figure 5. This observation allows us to adopt a two-
phase design, where we first compute the TDG and store the
necessary information for the network (without failure) in
the basic checking part (see Figure 3), and then perform an
incremental computation in the real-time checking part (see
Figure 3) for each received failure-tolerance checking request.

There are two key steps to be conducted incrementally:
TDG construction (§5.1) and traffic simulation (§5.2).

5.1 Incremental TDG Construction
When a failure happens, RIBs on routers converge to a new
state (including the new SR tunnels); thus, the routes/tunnels
may change, and the nodes in the old TDG corresponding to
changed routes/tunnels may need to be updated (e.g., connect-
ing to different nodes or changing the weights of outgoing
edges). In addition, the nodes corresponding to the failed links
or routers should also be updated by removing their associated
edges. All other nodes irrelevant to the failure (e.g., receiving
a flow at an active interface) remain unchanged. Therefore, to
construct the new TDG, we keep most nodes and edges in the
old TDG, and only re-run the construction for changed nodes.

Based on this observation, we construct the TDG for a
given failure model incrementally. The algorithm takes the
old TDG, the set of changed routes (e.g., next hops changed)
and tunnels (e.g., tunnel removed) ∆Rib, and the new RIBs
(denote Rib′) for the failure as input, and generates the new
TDG incrementally. The algorithm also outputs the set of
changed nodes chg for the post incremental traffic simulation
(§5.2). Note that simulating Rib′ and ∆Rib is easy; many
existing systems [12, 41] can extract the information.

The pseudocode and detailed description of the algorithm
can be found in Appendix D.1. We illustrate how the algo-
rithm works using the following example.

Example. Suppose B→ E in Figure 1 fails. Due to the failure,
the SR tunnel A→ B→ E becomes invalid and thus the set
chg contains the nodes for matching tunnel p1 (i.e., n2 and
n4-n9 in Figure 5). Furthermore, the BGP next hop E is also

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

1

1 0.8

0.2

1

1

1

Figure 6: The (partial) TDG representing the example in
Figure 1 when link B→ E fails. Solid lines represent edges
in both the old (i.e., before failure) and new (i.e., after failure)
TDGs; dashed lines represent edges only in the old TDG.

inactive, so chg also contains n1 (in Figure 5) representing the
match of the BGP route that is changed by the failure. Then
the algorithm removes all outgoing edges for the nodes in chg.
Using BFS exploration, the algorithm only re-constructs the
edge from n1 to n3 with weight 1. The constructed TDG is
shown in Figure 6.

5.2 Incremental Traffic Simulation
With the new TDG, one may re-run the traffic simulation al-
gorithm on it to compute the volume on each node and edge
as in Algorithm 1. However, since the new TDG largely over-
laps with the old TDG, this straightforward approach leads to
numerous redundant computations. In particular, if a node’s
volume remains unchanged and its outgoing edges/weights
are also unchanged, the traffic distribution on the outgoing
edges of that node should remain the same as that in the
old TDG. We therefore only need to run the simulation for
the affected nodes where either the volume or the outgoing
edges/weights change. Clearly, all nodes in chg are affected
nodes since their outgoing edges are changed; all nodes with
incoming edges (in the old TDG) from any node in chg may
also be affected, since their volumes may be changed. In addi-
tion, when updating the volume on the new TDG, other nodes
may also be affected due to the change in their volume; thus,
we also need to update the set of affected nodes along with
the execution of traffic simulation.

Algorithm 3 shows the incremental traffic simulation for
a single traffic snapshot; it can be naturally generalized to
support multiple snapshots similar to the approach described
in §4.3. The detailed description is in Appendix D.2.

Example. We illustrate the incremental computation of the
example in §5.1. Suppose without failure, the volume of n1’s
incoming edges is 8 and 2 Gbps respectively as shown in
Figure 7. As shown in Figure 7a, the affected nodes α initially
contain n1, n2, and all nodes from n4 to n9, since all of them
are in chg as described in §5.1. Thus, the first node that needs
to be updated is n2 or anyone from n4 to n9, as none of them
have any incoming edges in the new TDG G′. Suppose n5
gets updated first. Since n5 has no incoming edges in G′, its
volume is updated to 0; since the outgoing edge n5→ n6 only
appears in the old TDG G, the algorithm also decreases the
traffic distribution on the corresponding link from A→ B,
as shown in Figure 7b. The update of n2 and others from
n4 to n9 is similar and we omit the detailed description due

1070 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

8G 5G

5G

5G

4G

1G

2G

(a) Initially, affected nodes α contains n1,
n2, and all nodes from n4 to n9 as described
in §5.1.

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

8G 5G

5G

0G

4G

1G

2G

(b) After updating n5, the volume on n5→
n6 is decreased to 0 Gbps. Since n5→ n6
corresponds to link l = A→ B in Figure 1,
TL[l] is updated to 0.

... n1 · · ·

n3

n5 n6 ...

n10 ...

n11 ...

...

8G 0G

10G

0G

4G

1G

2G

(c) After updating n1, the volume on n1→
n3 is increased to 10 Gbps and n3 is added
to α.

Figure 7: Representative steps of Algorithm 3 running on the TDG in Figure 6. The black (blue, resp.) number on an edge e
denotes the value of ve (v′e, resp.), and the nodes in red are in α, after the corresponding step.

Algorithm 3: Incremental traffic simulation
1 Function INCTRAFFICSIM(G, V , TL, G′, chg) :
2 Let G = (N,E,w), G′ = (N′,E ′,w′);
3 V ′[n]←V [n] for all n ∈ N′;
4 V ′[e]←V [e] for all n ∈ E ′;
5 α← chg∪{n|∃n′ ∈ chg s.t. (n′,n) ∈ E};
6 forall n in N′ sorted in topological order of G′ do
7 if n is not in α then
8 continue;

9 V ′[n]← sum{V ′[e]} for all n’s incoming edge e ∈ E ′;
10 forall e = (n,n′) ∈ E ′ ∪E do
11 V ′[e]←V ′[n]×w′(e) if e ∈ E ′;
12 Let ve =V [e] if e ∈ E else 0;
13 Let v′e =V ′[e] if e ∈ E ′ else 0;
14 if v′e ̸= ve then
15 Add n′ to α ;
16 TL[l]← TL[l]+v′e−ve if e corresponds to link l;

17 return TL;

to space limits. After those nodes are updated, the traffic
distribution on link B→ E is correctly decreased to 0 as
expected. The next node of interest to be updated is n1. As
shown in Figure 7c, since the volume on the only outgoing
edge n1 → n3 increases, the algorithm adds n3 to α. In the
following iterations, the algorithm updates n3 and all other
nodes afterward, which results in the correct increase of traffic
distribution for all links on the paths from A to F .

6 Deployment and Use Cases
JINGUBANG has been used in our WAN for more than one
year and covers operation scenarios in Table 1. During this
time, no outage resulting from traffic load violations occurred,
since JINGUBANG successfully detected many violations
ahead of time; before JINGUBANG, tens of outages caused by
load violations happened every year. As a result, JINGUBANG
prevents millions of dollars in losses. We next present real
cases for two representative operation scenarios, i.e., validat-
ing network changes and validating failure tolerance.

6.1 Validating Network Changes
JINGUBANG has been regularly used to check whether net-
work change plans are correctly designed. JINGUBANG suc-

Table 3: Network change risks detected by JINGUBANG: root
causes and their frequency of occurrence.

Root causes
Change plan

errors
Unexpected

routes
Existing

misconfiguration
Percentage 44% 33% 23%

cessfully detected several severe network change risks. Ta-
ble 3 shows the statistics of root causes of network changes
that were detected by JINGUBANG in the past one year. We
classify the root causes into three types: change plan errors,
unexpected routes, and existing misconfiguration. Specifically,
change plan errors refer to errors in the change plan itself; un-
expected routes mean that the change triggers issues because
certain routes were not considered during the change; existing
misconfiguration refers to hidden misconfigurations in the
network that were not triggered because there was no traffic,
but this change triggered the error configuration. We now
detail several real, tricky cases as examples for demonstrating
the effectiveness of JINGUBANG.

Change plan errors. Given the complexity and large size of
our WAN, it is nontrivial to change the network correctly even
for simple configuration-changing tasks. Our operators use
JINGUBANG to check a change plan against intended link load
properties during the time window of network changes. In
one of our real network changes, our operators planned an im-
portant topology architecture upgrade for one business region
in our WAN. The original topology in that region has many
edge routers and border routers. Each edge router Ai is di-
rectly connected with all the border routers B j with 100 Gbps
links, while all the edge routers are connected in full mesh
with 10 Gbps links. All routers run IS-IS as underlay and SR
as overlay; the IS-IS cost for the links between the edge and
border routers is 10000, and the cost between the edge routers
is 5. For the new topology, our operators planned to add a
layer of core routers Ck between the edge layer and border
layer connected using 100 Gbps links. The IS-IS cost of links
between the core routers and the border routers should be
10, while the cost of the links between core routers and edge
routers is 10000. After the upgrade, traffic from border routers
to edge routers should pass the core routers. In this network
change, our operators first added all the core routers and set
up the links without disabling old links between the border
routers and the edge routers. Then, our operators disabled

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1071

AS1

DC1 DC2… …
DC1

DC2

DC3
10/29

10/24

AS2
WAN

Region 1 Region 2
B

A

C2

C1 B1

B2

(a) Unexpected routes. (b) Existing misconfiguration.

Figure 8: Severe risks detected by JINGUBANG.

IS-IS on the links between edge and border layers one by one
via changing the interfaces on the edge routers to passive.

Given the change plan, JINGUBANG checked link overload
for all links in the WAN using traffic snapshots in a similar
time window. JINGUBANG detected that just after disabling
the first edge router’s (A1) interfaces to the border routers, the
utilization of links between A1 and other edge routers sud-
denly increases to up to 150% during the time period, indicat-
ing severe link overload that would result in service downtime.
The reason for the link overload is that: after disabling A1’s
link to the border routers, the IS-IS shortest path from the
border router B j to A1 becomes B j-Ai-A1 instead of B j-Ck-A1
as in the desired topology; meanwhile, the links between A1
and other edge routers as backup links have a capacity of only
10 Gbps, significantly smaller than the 100 Gbps of other
links. As a result, the traffic from border routers to A1 caused
links between A1 and other edge routers to overload.

This situation is very hard to be detected without JIN-
GUBANG. First, without JINGUBANG, our operators have to
manually check link overload for each step in the change
plan, which is error-prone. Second, what we describe is just a
subset topology of our WAN. Our operators have to analyze
IS-IS shortest paths for the entire scope, which should cover
at least nearby regions. Third, the backup links between edge
routers are designed to carry a small amount of traffic; thus, in
addition to identifying that IS-IS shortest paths pass through
those links, our operators have to manually analyze the traffic
rate passing those links. As a result, our operators cannot
detect such complex outages without JINGUBANG. Before
JINGUBANG, similar problems occurred multiple times.

Unexpected routes. Our WAN carries millions of routes;
some of them are well understood while some of them are
unexpected. It is impossible for the operators to examine the
effect of a change on all of the routes, especially for the un-
expected routes. JINGUBANG offers an intuitive approach to
checking the correctness of a change plan under the existence
of unexpected routes. Figure 8(a) shows such a case. In this
scenario, router A was configured with a default route (i.e.,
0/0) to forward DC2’s traffic to router B while router B did
not advertise any routes to router A. Due to business reasons,
our operators needed to block the traffic from DC2 going
to Region 2. After carefully checking that no traffic flowing
from DC2 to Region 2, our operators planned to update the
policy on router B such that it can advertise routes from Re-
gion 2 (those routes have pre-defined communities) to router
A, and also add policies on router A to explicitly drop traffic
matching those routes. Our operators used JINGUBANG to

check that the traffic load should remain the same during the
change. However, JINGUBANG identified load decreases on
links in Region 1, violating the intended traffic load property.
The root cause is that, DC3 in Region 2 was advertising a
10/24 route, while a service in DC1 in Region 1 unexpectedly
used and advertised 10/29. Before the change, traffic from
DC2 can reach the service in DC1 by matching the default
route on router A and the 10/29 route on router B. After the
change on routers A and B, the traffic would match the 10/24
route on router A and thus get dropped, which may cause a
service outage. Without JINGUBANG, such risk is very hard
to detect due to the unawareness of those routes; but fortu-
nately, JINGUBANG successfully prevented it by identifying
the violation to the specified traffic load property.

Existing misconfiguration. A typical network change may
only involve a small set of routers. However, given the exist-
ing misconfiguration on other routers in the network, such
changes can introduce severe risks. Figure 8(b) shows a real
case in our WAN. In this scenario, traffic from DC1 to DC2
used to exit AS1 via router C2. Our operator planned to shift
the exit point from C2 to C1. To achieve this, our operators
first changed the policies on the routers that act as BGP route
reflectors [7] (not shown in the figure) to propagate routes
that would be advertised by C1 to DC2; then changed the poli-
cies on C1 to advertise these routes while assigning them a
higher local preference to make them effective. Our operators
use JINGUBANG to check that no links in the network would
be overloaded during the change. JINGUBANG successfully
detected overloaded links between B1 and B2 (highlighted in
red). The root cause of this risk was that, while the change plan
could successfully steer the traffic from C2 to C1, however,
due to the incorrect IS-IS cost setup in AS2, traffic transited
from B1 to B2 instead of flowing directed to DC2, causing
the low-capacity links between B1 and B2 to overload. This
risk is extremely hard for our operators to identify manually
because (i) the change plan correctly altered the exit point
on AS1 as intended and (ii) the misconfigured IS-IS costs in
AS2 were not a problem before the change because there was
no large volume of traffic going through those links. Fortu-
nately, JINGUBANG successfully prevented the severe risk by
detecting the overloaded links.

6.2 Validating Failure Tolerance
Our WAN is designed to tolerate failures up to a certain level
by configuring redundant links and backup routers, which
we call the redundancy property. However, due to the high-
churn network changes and carelessness of our operators,
redundancy property is violated in many regions in our WAN.
Our operators cannot know the violations without a checker.
Once the bottlenecked links or routers fail, a cascading failure
would span across the entire WAN.

Our operators systematically inject router and link failures
and use JINGUBANG to check two properties: (i) no link over-
load and (ii) no drastic drop in link load (which is typically

1072 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

caused by reachability issues). JINGUBANG has successfully
detected tens of failure risks. One of them happened on a re-
mote site of our WAN, where we deployed two border routers
to provide service to our customers abroad. After our oper-
ators injected a failure model that made one of the border
routers unavailable, JINGUBANG detected that the traffic load
on several links close to that site dropped hugely. Further ana-
lyzing each flow using JINGUBANG’s capability of flow-level
traffic simulation, JINGUBANG successfully identified a prefix
where flows with destinations in that prefix got dropped on the
other router. We examined this situation with our operators,
and confirmed that the prefix belongs to a new service and
one of the routers is configured incorrectly such that the prefix
is only advertised out of another router.

7 Evaluation
We evaluate the accuracy and efficiency of JINGUBANG using
real-world data obtained from our production WAN.

Experiment setup. Besides the entire WAN, we select two
sub-networks, N1 and N2, to represent diverse scales of net-
work traffic. N1 and N2 are chosen as they respectively ac-
count for 7% and 85% of the total traffic in our WAN. In each
hour, there are billions of flows entering N2 and hundreds of
millions of flows entering N1. There are hundreds of routers
in both N1 and N2. All networks are configured with BGP,
IS-IS, SR, and PBR. Unless otherwise specified, we use JIN-
GUBANG to check traffic load across one hour (i.e., 60 time
points). All the experiments are conducted on a server with
768 GB RAM and a 2.50 GHz 104-core processor.

Performance. We first use JINGUBANG to check traffic load
for each hour across one randomly selected day. As shown
in Figure 9, the time cost for checking these hours is within
an order of magnitude, ranging from 19.6 s to 25.6 s for N1,
168.2 s to 272.4 s for N2, and 225.5 s to 308.4 s for the WAN.

Accuracy. We inject failures that actually occurred in the
selected hours. We define the accuracy for each link as
min(rsim,rreal)
max(rsim,rreal)

×100% where rsim represents the traffic rate com-
puted by JINGUBANG and rreal represents the rate measured
by the router. Based on this, we further determine the overall
accuracy of JINGUBANG by averaging accuracy of all links
with weights proportional to the link’s traffic load. Figure 9
depicts such accuracy of each hour. The overall accuracy
ranges from 88.2% to 94.6% for N1, 87.4% to 92.5% for N2,
and 87.8% to 92.1% for the WAN, which is stable and meets
our operators’ requirements. Nevertheless, the accuracy is
not 100%, mostly because our route simulation takes external
routes advertised into our WAN as input and they are provided
by our internal route monitoring system, which occasionally
misses certain routes due to coverage issues.

We further demonstrate the variation of rsim and rreal dur-
ing one hour using an example link. The link connects two
service areas of our WAN and its link load varies between
40% and 95% within a single hour. As shown in Figure 10,

JINGUBANG can accurately track these fluctuations. Over the
60 time points, the median, 90th-percentile, and maximum
error rate is 4.0%, 8.7%, and 19.0%, respectively, indicating
the high accuracy of JINGUBANG.

Multiple traffic snapshots. 5 We evaluate the checking time
of JINGUBANG for different numbers of time points. As
shown in Figure 11, JINGUBANG’s checking speed at 60 time
points is only 4.2× (from 4.5s to 18.9s) and 5.2× (from 67.5s
to 353.9s) slower than at one time point for networks N1 and
N2, respectively. The reason behind this is that the sets of
flows at consecutive time points have a significant amount of
overlap with each other. By constructing a single TDG for
all 60 time points, JINGUBANG avoids duplicate processing
and speeds up the checking by 14.1× (11.4×) for N1 (N2),
compared to construct separate TDGs for each time point.

Traffic equivalence classes. In Figure 12, we show the im-
pact of applying TEC on the performance of JINGUBANG for
different flow sample ratios in network N1. When traffic sam-
pling is disabled, the use of TEC significantly accelerates the
checking, from 601.8s to 18.4s, resulting in a 32.7× speedup.
This improvement is substantial due to the large number of
flows that can be grouped into a single class. However, when
the flow sample ratio is 11%, the speedup is only 3.8× (from
33.4s to 8.8s) as many low-rate flows are not sampled, but
their equivalence class still exists because of either the large
flow number in the class or the presence of an elephant flow.
We do not evaluate the use of TEC in N2 as it would result in
memory exhaustion without TEC.

Traffic sampling. Figure 13 illustrates the relationship be-
tween the flow sample ratio and the time cost of JINGUBANG
in network N2. By setting the sample ratio to 11%, the check-
ing time can be significantly reduced from 358.3s to 113.7s, a
3.2× speedup. To assess its impact on accuracy, we define the
maximum accuracy loss as the maximum reduction in link
load accuracy for all links that use ≥5% of their bandwidth.
As also shown in Figure 13, the accuracy loss does not exceed
1.1% across 10 runs. Besides, for links with bandwidth uti-
lization <5%, the absolute changes in their traffic rates due to
traffic sampling never exceed 60 Mbps. Therefore, for most
links, the accuracy loss is not substantial at all. As an example,
in Figure 10, we additionally plot rsim after sampling at the
flow ratio of 11%, and the difference is barely noticeable.

Incremental simulation. The daily operation of our WAN
involves handling up to O(100) checking requests per hour,
each of which asks us to validate a few traffic load properties
under up to O(10) failed links. To compare the checking
time between incremental and full simulation, we randomly
selected O(100) checking requests and depict the CDF of
time cost using two methods in Figure 14. We apply the traffic
sampling with a flow ratio of 11% in N2. As demonstrated in

5Since our operation suggests that JINGUBANG can check N2 and the
WAN at a similar time cost (as also shown in Figure 9), and for simplicity,
we do not evaluate JINGUBANG on the WAN in the following experiments.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1073

N1 N2 WAN
Network

0

100

200

300

Si
m

ul
at

io
n

tim
e

(s
)

Time cost
Accuracy

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Figure 9: Performance and accuracy.

0 10 20 30 40 50 60
Minute

0%

20%

40%

60%

80%

100%

Tr
af

fic
 lo

ad
 p

er
ce

nt
ag

e

Simulation, not sampled
Simulation, 11%-sampled
Ground truth

Figure 10: Per-minute accuracy.

13 6 10 20 60
Number of time points

0

1000

2000

3000

4000

Si
m

ul
at

io
n

tim
e

(s
) N2, single TDG

N2, sep. TDGs
N1, single TDG
N1, sep. TDGs

Figure 11: Effects of the single TDG.

9% 14% 20% 29% 38% 100%
Flow sample ratio

0

200

400

600

Si
m

ul
at

io
n

tim
e

(s
) Time

Time (No TEC)

Figure 12: Effects of TEC.

11% 17% 26% 36%47% 100%
Flow sample ratio

0%

1%

2%

3%

4%

5%

M
ax

. a
cc

ur
ac

y
lo

ss
0

200

400

600

Si
m

ul
at

io
n

tim
e

(s
)Time

Accuracy loss

Figure 13: Effects of traffic sampling.

0 20 40 60 80 100 120
Traffic simulation time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

qu
es

ts

N2(s=11%) incr.
N2(s=11%) full
N1(s=100%) incr.
N1(s=100%) full

Figure 14: Failure-tolerance check time.

the figure, the average time cost for incremental simulation is
4.3s, which is a significant improvement over the average time
cost of 113.7s for full simulation. This 26.2× speedup meets
our deployment requirements and shows the effectiveness of
using incremental simulation in our WAN.

JINGUBANG is also capable of handling router failures in
an incremental manner. However, such requests are relatively
infrequent, occurring dozens of times per month. Neverthe-
less, with ∼100 checking requests that involve supported
kinds of router failures, we find that incremental simulation
in N1 (N2) costs 2.3s (14.5s) on average, which is still 8.0×
(7.8×) faster than full simulation.

8 Discussions and Lessons
We now present our lessons and discuss limitations.

Verifying arbitrary k-failure tolerance. The k-failure prob-
lem lies beyond the scope of this paper, as discussed in §2.2.
Meanwhile, we argue that JINGUBANG provides a solid foun-
dation by efficiently modeling comprehensive traffic behav-
iors at a production scale. We plan to extend the model to
support arbitrary k-failure verification in future research.

Addressing vendor-specific behaviors. Improving JIN-
GUBANG’s precision is often hindered by vendor-specific traf-
fic behaviors and unexpected corner cases. For instance, SR
tunnels are configured with specific next-hop IPs and DSCP
values. If traffic flows match the next-hop IP but exhibit differ-
ent DSCP values, routers from one vendor attempt alternative
SR tunnels configured for other DSCP values, while other
routers default to the IS-IS shortest path. 6 We refine JIN-
GUBANG’s accuracy over years of operation and defer the
proactive identification of such behaviors to future work.

Enhancing user experience. JINGUBANG can indicate if traf-
fic properties remain intact under various conditions but falls
short in diagnosing reasons for property violations. Even with
additional traffic flow visualization utilities, pinpointing the
root issues remains time-intensive for both system developers

6We use real examples, but omit the vendor names.

and network operators. We envision an automated system that
can find victim routes, identify configuration errors, and even
offer potential repair solutions as the next step.

Handling altered traffic snapshots. JINGUBANG cannot
reason about shifts in traffic snapshots. Failures, for example,
can prompt routers to announce altered routes to ISPs, leading
to changes in the traffic entering our WAN. Since ISP routers
fall outside our simulation domain and are not covered by
our monitoring system, we currently rely on heuristic rules
defined by our operators to adapt to such changes in traffic
snapshots. A rigorous methodology to understand variations
in traffic snapshots is left for subsequent research.

9 Conclusion
This paper presents JINGUBANG, the first traffic load property
checking system for production WAN. JINGUBANG makes
three contributions: (i) a new model, named the traffic distri-
bution graph, capable of encoding complex traffic behavior
under BGP, IS-IS, SR, and PBR; (ii) an efficient traffic simula-
tion approach, which can handle billions of flows in a period
of time; (iii) an incremental simulation approach, enabling
real-time failure-tolerance checking. JINGUBANG has been
used to check our WAN for more than one year and prevented
many potential failures resulting from traffic load violations.

Acknowledgments
We thank our shepherd, Stefano Vissicchio, and anonymous re-
viewers for their insightful comments. This work is supported
in part by National Key Research and Development Plan,
China (Grant No. 2023YFB2903902), National Natural Sci-
ence Foundation of China (Grant No. 62022005, 62272010,
and 62061146001), and Alibaba Cloud through Alibaba Re-
search Intern Program and Alibaba Innovative Research Pro-
gram. Ennan Zhai and Chenren Xu are co-corresponding
authors. Ruihan Li and Chenren Xu are affiliated with School
of Computer Science at Peking University, Zhongguancun
Laboratory, and Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education.

1074 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,

and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, Santa Clara, CA, February 2020. USENIX
Association.

[2] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 155–168, New York, NY, USA,
2017. Association for Computing Machinery.

[3] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 328–341, New York,
NY, USA, 2016. Association for Computing Machinery.

[4] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. Teavar: striking the right utilization-
availability balance in wan traffic engineering. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 29–43,
New York, NY, USA, 2019. Association for Computing
Machinery.

[5] Tobias Bühler, Romain Jacob, Ingmar Poese, and Lau-
rent Vanbever. Enhancing global network monitoring
with magnifier. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23),
pages 1521–1539, Boston, MA, April 2023. USENIX
Association.

[6] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani.
Robust validation of network designs under uncertain
demands and failures. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 347–362, Boston, MA, March 2017. USENIX
Association.

[7] Enke Chen, Tony J. Bates, and Ravi Chandra. BGP
Route Reflection: An Alternative to Full Mesh Internal
BGP (IBGP). RFC 4456, April 2006.

[8] Benoît Claise. Cisco Systems NetFlow Services Export
Version 9. RFC 3954, October 2004.

[9] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. NetComplete: Practical Network-
Wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 579–594, Renton,
WA, April 2018. USENIX Association.

[10] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Maha-
jan, Todd Millstein, Vyas Sekar, and George Varghese.
Efficient network reachability analysis using a succinct
control plane representation. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 217–232, Savannah, GA, November
2016. USENIX Association.

[11] Mikel Jimenez Fernandez and Henry Kwok. Building
express backbone: Facebook’s new long-haul network,
2017.

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, Oakland, CA, May 2015. USENIX Associa-
tion.

[13] Nate Foster, Dexter Kozen, Konstantinos Mamouras,
Mark Reitblatt, and Alexandra Silva. Probabilistic
netkat. In Peter Thiemann, editor, Programming Lan-
guages and Systems, pages 282–309, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[14] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis
using an abstract representation. In Proceedings of the
2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 300–313, New York, NY, USA, 2016. Association
for Computing Machinery.

[15] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and
David Walker. Efficient verification of network fault
tolerance via counterexample-guided refinement. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification, pages 305–323, Cham, 2019. Springer In-
ternational Publishing.

[16] Nick Giannarakis, Alexandra Silva, and David Walker.
Probnv: probabilistic verification of network control
planes. Proc. ACM Program. Lang., 5(ICFP), aug 2021.

[17] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 15–26,
New York, NY, USA, 2013. Association for Computing
Machinery.

[18] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1075

14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 735–749, Boston,
MA, March 2017. USENIX Association.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: experi-
ence with a globally-deployed software defined wan. In
Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 3–14, New York,
NY, USA, 2013. Association for Computing Machinery.

[20] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at scale.
In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 200–213,
New York, NY, USA, 2019. Association for Computing
Machinery.

[21] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred,
and Charlie Kaufman. Automated analysis and debug-
ging of network connectivity policies. Technical Report
MSR-TR-2014-102, Microsoft, July 2014.

[22] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz
Arzani, Todd Millstein, and George Varghese. Groot:
Proactive verification of dns configurations. In Proceed-
ings of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 310–328, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[23] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12), pages 113–
126, San Jose, CA, April 2012. USENIX Association.

[24] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
Network-Wide invariants in real time. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 15–27, Lombard, IL, April
2013. USENIX Association.

[25] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghu-
raman, Nikhil Kasinadhuni, Enrique Cauich Zermeno,
C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,

Stephen Stuart, and Amin Vahdat. Bwe: Flexible, hier-
archical bandwidth allocation for wan distributed com-
puting. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 1–14, New York, NY, USA, 2015.
Association for Computing Machinery.

[26] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
page 527–538, New York, NY, USA, 2014. Association
for Computing Machinery.

[27] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 599–613, New York, NY,
USA, 2017. Association for Computing Machinery.

[28] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid,
Karthick Jayaraman, and George Varghese. Checking
beliefs in dynamic networks. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), pages 499–512, Oakland, CA, May 2015.
USENIX Association.

[29] Sonia Panchen, Neil McKee, and Peter Phaal. InMon
Corporation’s sFlow: A Method for Monitoring Traffic
in Switched and Routed Networks. RFC 3176, Septem-
ber 2001.

[30] Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael
Schapira, and Scott Shenker. New Directions for Net-
work Verification. In Thomas Ball, Rastislav Bodik,
Shriram Krishnamurthi, Benjamin S. Lerner, and Greg
Morriset, editors, 1st Summit on Advances in Program-
ming Languages (SNAPL 2015), volume 32 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pages 209–220, Dagstuhl, Germany, 2015. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[31] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly
Sagiv, and Scott Shenker. Verifying reachability in net-
works with mutable datapaths. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 699–718, Boston, MA, March 2017.
USENIX Association.

[32] B. Quoitin and S. Uhlig. Modeling the routing of an au-
tonomous system with c-bgp. IEEE Network, 19(6):12–
19, 2005.

[33] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter
Kozen, and Alexandra Silva. Cantor meets scott: se-

1076 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mantic foundations for probabilistic networks. In Pro-
ceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL ’17, page
557–571, New York, NY, USA, 2017. Association for
Computing Machinery.

[34] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent
Vanbever, and Martin Vechev. Probabilistic verification
of network configurations. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 750–764, New York, NY,
USA, 2020. Association for Computing Machinery.

[35] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Scalable symbolic execution
for modern networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 314–327,
New York, NY, USA, 2016. Association for Computing
Machinery.

[36] Kausik Subramanian, Anubhavnidhi Abhashkumar,
Loris D’Antoni, and Aditya Akella. Detecting network
load violations for distributed control planes. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2020, page 974–988, New York, NY, USA, 2020.
Association for Computing Machinery.

[37] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,
Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network acl con-
figurations with intent language. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 214–226, New York, NY, USA,
2019. Association for Computing Machinery.

[38] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano
Vissicchio, and Laurent Vanbever. Stroboscope: Declar-
ative network monitoring on a budget. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 18), pages 467–482, Renton, WA,
April 2018. USENIX Association.

[39] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander
Rabinovich, Mooly Sagiv, Scott Shenker, and Sharon
Shoham. Some complexity results for stateful network
verification. In Marsha Chechik and Jean-François
Raskin, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 811–830, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[40] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren,
Boon Thau Loo, Jennifer Rexford, Vivek Nigam, An-

dre Scedrov, and Carolyn Talcott. Fsr: Formal analysis
and implementation toolkit for safe interdomain routing.
IEEE/ACM Transactions on Networking, 20(6):1814–
1827, 2012.

[41] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu,
Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu,
Tianchen Guo, Cheng Jin, Duncheng She, Qing Ma,
Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and
Rodrigo Fonseca. Accuracy, scalability, coverage: A
practical configuration verifier on a global wan. In Pro-
ceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
599–614, New York, NY, USA, 2020. Association for
Computing Machinery.

[42] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakr-
ishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang.
Check before you change: Preventing correlated fail-
ures in service updates. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 575–589, Santa Clara, CA, February 2020.
USENIX Association.

[43] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo,
Yuhao Huang, Xu Liu, and Hao Li. Differential network
analysis. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
601–615, Renton, WA, April 2022. USENIX Associa-
tion.

[44] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson.
Symbolic router execution. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page
336–349, New York, NY, USA, 2022. Association for
Computing Machinery.

[45] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17, page 78–85, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[46] Yunmo Zhang, Hong Xu, Chun Jason Xue, and Tei-Wei
Kuo. Probabilistic analysis of network availability. In
2022 IEEE 30th International Conference on Network
Protocols (ICNP), pages 1–11, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1077

APPENDIX
A Traffic Sampling
In this appendix, we will formally define the traffic sampling
process (first presented in §4.4), then prove a practical bound
for the error rate, and demonstrate its use in our WAN.

A.1 Algorithm
Initially, we consider a single network and a single traffic
snapshot at a specific time point. We will extend our anal-
ysis to encompass multiple networks (e.g., networks under
different failure scenarios) and multiple time points later.

Suppose that there are N located flows f1, · · · , fN in the
traffic snapshot S , with volumes v1, · · · ,vN , respectively. We
denote the set of flows as F , i.e., F := { f1, · · · , fN} and the
total volume as V , i.e., V := ∑

N
i=1 vi. The network contains

M links, where the volume of the i-th link is li, which is a
function of the traffic snapshot.

Lemma 1. Assuming the absence of traffic loops, the volume
on each link in the network is a linear function of the volumes
of the flows in the traffic snapshot. More specifically,

li =
N

∑
j=1

wi(f j)v j,

where
wi : F → [0,1]

is the flow weight function for the i-th link, for all i= 1, · · · ,M.

Proof. This lemma follows from the construction of TDGs
during the traffic simulation process. The flow weight func-
tions can be easily calculated according to these TDGs.

Then we give a formal definition of traffic sampling, corre-
sponding to Algorithm 4.

Definition 1. In traffic sampling, a new traffic snapshot S ′ is
generated by selecting K flows, F1, · · · ,FK , from the original
traffic snapshot S , each with a volume of V

K . These K flows
are considered as K independent and identically distributed
(i.i.d.) random variables, and the probability of selecting the
i-th flow in the original traffic snapshot is defined as

P(F1 = fi) =
vi

V

for all i = 1, · · · ,N.

As noted previously in Appendix A.1, the number of dis-
tinct flows in the sampled traffic snapshot is typically much
less than K, since a flow with a large volume can easily be
sampled multiple times.

Algorithm 4: Traffic sampling algorithm
1 Function SAMPLE(S , K) :
2 Let V be the total volume of all flows in S ;
3 Let P be the probability distribution s.t.

∀(fk, ik,vk) ∈ S ,P(fk, ik) = vk/V ;
4 S ′← /0;
5 repeat K times
6 Draw a (fk, ik) from the probability distribution P;
7 Add (fk, ik,V/K) to S ′;
8 return S ′;

A.2 Error Bound
We next introduce the error bound for traffic sampling.

Theorem A.1. Suppose that M links have volumes l1, · · · , lM
before sampling. After sampling, these links have volumes
represented by M random variables L1, · · · ,LM . Given a max-
imum relative error µ, a maximum absolute error ∆, and a
confidence parameter δ, the following holds with probability
at least 1−δ:∣∣Li− li

∣∣≤max
{

∆,µli
}
∀i ∈ {1, · · · ,M}

if the number of samples K satisfies

K ≥ 2V
∆

(
1
µ
+

1
3

)
ln
(

2M
δ

)
.

Proof. For the i-th link, we define K random variables

X (i)
j = wi(Fj)

V
K

∀ j ∈ {1, · · · ,K}.

Since F1, · · · ,FK are i.i.d., X (i)
1 , · · · ,X (i)

K are i.i.d., too. Besides,
we have

E
[
X (i)

1

]
=

N

∑
r=1

wi(fr)
V
K
P(F1 = fr)

=
N

∑
r=1

wi(fr)
V
K

vr

V

=
1
K

N

∑
r=1

wi(fr)vr =
li
K

and

Var
[
X (i)

1

]
= E

[(
X (i)

1

)2
]
−
(
E
[
X (i)

1

])2

≤
N

∑
r=1

(
wi(fr)

V
K

)2

P(F1 = fr)

≤
N

∑
r=1

wi(fr)
V 2

K2
vr

V
=

V
K2 li.

According to Lemma 1, we know

Li =
K

∑
i=1

wi(Fk)
V
K

=
K

∑
i=1

X (i)
i ,

1078 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

which implies E[Li] = KE
[
X (i)

1

]
= li as well as Var[Li] =

K Var
[
X (i)

1

]
≤ V

K li.

As 0≤ X (i)
1 ≤

V
K holds almost surely, the use of Bernstein’s

equalities on
{

X (i)
j −

li
K

}K

j=1
yields

P
[∣∣Li− li

∣∣≥ t
]
≤ 2exp

(
−

1
2 t2

Var[Li]+
1
3

V
K t

)

≤ 2exp
(
−K

V
3t2

6li +2t

)
for any t > 0.

Taking t as max{∆,µli}, we have

P
[∣∣Li− li

∣∣≥max
{

∆,µli
}]
≤ 2exp

(
−K

V

(
2li
t2 +

2
3t

)−1
)

≤ 2exp

(
−K

V

(
1
µ

2
∆
+

1
3

2
∆

)−1
)
.

So

P
[∣∣Li− li

∣∣≥max
{

∆,µli
}]
≤ δ

M
as given

K ≥ 2V
∆

(
1
µ
+

1
3

)
ln
(

2M
δ

)
.

Finally, by the union bound,

P
[
∀i ∈ {1, · · · ,M}

∣∣Li− li
∣∣< max

{
∆,µli

}]
= 1−P

[
∃i ∈ {1, · · · ,M}

∣∣Li− li
∣∣≥max

{
∆,µli

}]
≥ 1−

M

∑
i=1

P
[∣∣Li− li

∣∣≥max
{

∆,µli
}]

≥ 1−M× δ

M
= 1−δ,

which proves the theorem.

This theorem bounds either the relative error or absolute
error. As a corollary, we can bound only the relative error for
links whose volumes are greater than a threshold value.

Corollary A.1. Given a maximum relative error µ, a thresh-
old volume VT , and a confidence parameter δ, the inequality∣∣Li− li

∣∣≤ µli holds for all links with volumes above the thresh-
old (i.e., li ≥VT) with probability at least 1−δ, if the number
of samples K satisfies

K ≥ 2V
VT

(
1
µ2 +

1
3µ

)
ln
(

2M
δ

)
.

Proof. Setting ∆ = µVT , we have∣∣Li− li
∣∣≤max

{
∆,µli

}
= µli

for all links satisfying li ≥ VT . Therefore, applying Theo-
rem A.1 directly proves this corollary.

Thus far, we have demonstrated the theorem for a single
failure model and a single traffic snapshot. However, it is
straightforward to extend these results to accommodate multi-
ple models and snapshots. This can be achieved by treating
links associated with different failure models or traffic snap-
shots as distinct entities. As a result, instead of examining M
interfaces, we consider M×A×B interface-failure-snapshot
combinations, where A is the number of failure models and B
is the number of snapshots. The proof of the theorem remains
valid. It is worth noting that the parameter M appears within
the logarithmic function in the inequality. Thus, its increase
has a minimal impact on the overall result.

Evaluation. The proven bound is practical enough for use
in our WAN. In network N2 (as defined in §7), we employ a
flow sample ratio of 11% to expedite the checking process by
a factor of 3.2. The application of the theorem ensures that
the error is limited to either 150 Mbps in absolute terms or
2.4% in relative terms for all links, with probability at least
99%. In our experiments (as detailed in §7), across 10 trials,
either the relative error does not exceed 1.1% or the absolute
error does not exceed 60 Mbps for all links in network N2.

B Traffic Distribution Graph
In this appendix, we will formally define the traffic distribu-
tion graph (i.e., TDG, first presented in §4.1), and then detail
our TDG construction algorithm.

B.1 Formal Definition
Formally, let F denote the space of all flows, V denote the set
of all VRFs in the network, I denote the set of all interfaces,
IP denote the set of all IP addresses, and T denote the set of
tunnels (e.g., established by SR and MPLS) in the network.
To differentiate the direction of a flow at an interface, we use
I ∗ = I ×{in,out} to denote the set of interfaces labeled with
flow directions. A traffic distribution graph is defined as a
triple (N,E,w), where N ⊂ F × (I ∗∪V)× (IP ∪T ∪{⊥})
is the set of nodes in the graph, E ⊂ N×N is the set of edges,
w : E→ R[0,1] is the weight function where R[0,1] denotes the
set of real numbers ranging from 0 to 1 (inclusive).

B.2 TDG Construction
Algorithm 5 shows the overall construction algorithm. Func-
tion CONSTRUCTTDG takes a set of located flows as input
and constructs the TDG in a standard BFS fashion as shown
in function BFSEXPLORE. Function EXPLORENODE takes a
newly generated node and explores new edges and nodes ac-
cording to the network’s behavior on that node. Specially, we
currently support the following five types of flow processing
used in our production network.
• (Line 12-14) When a flow is received at an interface, a
PBR policy defined on that interface may be applied to the
flow. In this case, the algorithm needs to generate a node
corresponding to the PBR’s modification to the flow and its

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1079

Algorithm 5: Construction of TDG
1 Function CONSTRUCTTDG({(fk , ik)}m

k=1) :
2 S←{(fk , ik ,⊥) : k = 1, ..,m}; N← /0; E← /0; w is undefined;
3 BFSEXPLORE(S, N, E, w);
4 return (N,E,w);

5 Function BFSEXPLORE(S, N, E, w, Rib) :
6 while S is not empty do
7 Pop a node n from S and add it to N;
8 EXPLORENODE(n, N, E, w, Rib);

9 Function EXPLORENODE(n, N, E, w, Rib) :
10 Let n = (f ,x,h);
11 switch (f ,x,h) do
12 case x is an interface and f is incoming to x do
13 Generate a node n′ = (f ′,y,h) if the PBR policy defined on x

modifies f to f ′ and change its location to y;
14 Add e = ((f ,x,h),(f ′,y,h)) to E and set w(e) to 1;

15 case x is an interface and f is outgoing do
16 Generate a node n′ = (f ,y,h′) where y is the interface

connected with x, h′ is h if h is a tunnel otherwise ⊥;
17 Add e = ((f ,x,h),n′) to E and set w(e) to 1;

18 case x is a VRF and h is an SR tunnel do
19 If the router is the endpoint of h, then generate a node

n′ = (f ,x,⊥); otherwise generate a node n′ = (f ,y,h)
where y is the outgoing interface of h on the corresponding
router;

20 Add e = ((f ,x,h),n′) to E and set w(e) to 1;

21 case x is a VRF and performs BGP matching for f do
22 Generate nodes nk = (f ,x,hk) for all BGP next hops hk using

Rib;
23 Add ek = ((f ,x,h),nk) to E and set w(ek) to 1/m for all k

where m is the total number of next hops;

24 case x is a VRF and h is an indirect next hop do
25 Generate nodes nk = (f ,x,hk) for all resolved next hops hk

(can be IP addresses or tunnels) using Rib;
26 Add ek = ((f ,x,h),nk) to E and set w(ek) according to the

weight defined on corresponding the SR policy or IS-IS;

27 Add new generated nodes into S if they are not in N;

location (e.g., redirect the flow to a VRF), and add an edge
with weight 1 to the node.
• (Line 15-17) When a flow is ready to be forwarded out to an-
other router, the algorithm generates a node for the receiving
interface and adds an edge with weight 1.
• (Line 18-20) When a flow is forwarded in an SR tunnel, the
algorithm needs to generate nodes based on whether the flow
reaches the endpoint. If so, the algorithm generates a node
with next hop ⊥ indicating that the flow reaches the endpoint
of the tunnel and needs further lookup for the next hops;
otherwise, the algorithm generates a node with the same next
hop and the corresponding outgoing interface. The weight of
the edge is set to 1 in both cases.
• (Line 21-23) When a flow needs to look up the BGP RIB
on a VRF, the algorithm needs to generate nodes for all next
hops. To reflect the BGP ECMP mechanism implemented by
router vendors, the weights of the edges to those nodes should
be set equally.
• (Line 24-26) If an indirect next hop needs to be resolved by
IS-IS or SR, the algorithm needs to generate nodes for each
resolved next hop. The weights on the edges to the nodes
should be correctly set based on the SR configuration or the
IS-IS protocol (e.g., normal ECMP).

C Traffic Equivalence Class
In this appendix, we will formally define the traffic equiva-
lence class (i.e., TEC, first presented in §4.4), and then detail
our TEC construction algorithm.

C.1 Formal Definition
We define traffic equivalence class (TEC) using the notion of
TDG. Given a TDG G, we use G[f1 7→ f2, i1 7→ i2] to denote
the TDG obtained by changing f1 to f2 and i1 to i2 for all
nodes in G.

We first define the notion of flow equivalence.

Definition C.1. Two located flows (fk, ik),k = 1,2 are
equivalent, denoted as (f1, i1) ≡ (f2, i2), iff G1 = G2[f2 7→
f1, i2 7→ i1)] and G2 = G1[f1 7→ f2, i1 7→ i2)], where Gk =
CONSTRUCTTDG({ fk, ik}) is the TDG constructed for
(fk, ik).

Now we define the notion of traffic equivalence class below.

Definition C.2. A set of located flows {(fk, ik),k = 1, · · · ,m}
forms a traffic equivalence class, if (f j, i j) ≡ (fk, ik) for all
j,k ∈ {1, · · · ,m}.

C.2 TEC Generation
Ideally, to achieve optimal efficiency we may want each TEC
to contain as many flows as possible. However, this task is
computationally hard due to the large number of flows. To
balance computational efficiency with the optimality of TECs,
we adopt a compositional approach. We establish equivalence
classes for the value space of each field based on a global
view of the network and then compose these classes together.

Let D and S be the sets of all prefixes (which can be effi-
ciently collected from RIBs and router configurations) used
to match destination and source IPs, respectively. Two flows
((s1,d1,v), i1) and ((s2,d2,v), i2) are considered equivalent if
(i) the longest prefix match in S (D, resp.) for s1 (d1, resp.)
is the same as that for s2 (d2, resp.) and (ii) two interfaces
i1 and i2 sit in the same VRF and are configured with the
same PBR policy. The correctness relies on the fact that at
any router, there must be a subset of prefixes D′ ⊂ D (S′ ⊂ S)
used to match destination (source) IPs; therefore, d1 and d2
(s1 and s2) still share the same longest prefix match, leading to
the same forwarding behavior and traffic distribution. While
establishing equivalence for DSCPs is feasible, we do not
further consider such equivalence, since our WAN only uses
a small number of them.

D Incremental TDG Construction and Traffic
Simulation

In this appendix, we provide the detailed description of our in-
cremental TDG construction and traffic simulation algorithms,
in §D.1 and §D.2, respectively.

1080 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 6: Incremental TDG construction
1 Function INCUPDATETDG((N,E,w), ∆Rib, Rib′) :
2 N′← N; E ′← E; w′← w;
3 let chg be the set of nodes n ∈ N s.t. n representing the

matching of some r ∈ ∆Rib or a failed router/link;
4 forall n ∈ chg do
5 remove e from E ′ and w′(e)←undefined for all n’s

outgoing edge e;

6 BFSEXPLORE(chg, N′, E ′, w′, Rib′);
7 return G′ = (N′,E ′,w′), chg

D.1 Algorithm for Incremental TDG Construc-
tion

Algorithm 6 presents how to incrementally construct a TDG
for a given failure model. The algorithm takes the old TDG,
the set of changed routes (e.g., next hops changed) and tunnels
(e.g., tunnel removed) ∆Rib, and the new RIBs (denote Rib′)
for the failure as input, and generates the new TDG incremen-
tally. Note that simulating Rib′ and ∆Rib is easy, since many
existing systems [12, 41] can extract the information.

In the first step, we find the nodes that may change in
the given TDG. As described above, a node changes if (i)
it represents route/tunnel matching for some r in ∆Rib; or
(ii) its location field is associated with a failed link or router
(e.g., the location field is an interface of some failed link). To
efficiently identify those nodes, we maintain a mapping from
routers, links, and routes/tunnels respectively to nodes in the
TDG, when constructing a TDG (in the basic part).

Second, for those changed nodes chg, the algorithm re-
moves all their outgoing edges and invalids all associated
weights, since they may be inconsistent with the failure case.
To reflect the new behavior under the failure, the algorithm
performs the standard BFS algorithm from those changed
nodes to construct the new edges and nodes using the new
RIBs Rib′. Finally, the algorithm returns a new TDG with the
set of changed nodes chg for the post processing (§5.2).

D.2 Detailed Description of Incremental Traf-
fic Simulation Algorithm

Algorithm 3 shows the incremental traffic simulation for a
single traffic snapshot. Using the approach described in §4.3,
it can be naturally generalized to support multiple snapshots.

Algorithm 3 takes two parts of input: (i) the information
computed in the basic part including the old TDG G, the
volume V for nodes and edges in G, and the traffic distribution
TL for all links, and (ii) the new TDG G′ and the changed
nodes chg computed by the incremental TDG construction
(as detailed in §5.1).

The algorithm then computes the volume V ′ on nodes and
edges incrementally based on the old volume V and also up-
dates the traffic distribution TL incrementally based on the
change of volume on edges. Similar to the traffic simulation al-
gorithm in the basic part, the incremental algorithm computes

the new volume of nodes and edges following the topologi-
cal order of the new TDG G′ but only for the affected nodes
(line 6-16). Initially, the affected nodes α contains all nodes
in chg and those having incoming edges from chg (line 5) as
described above, and keeps adding potentially affected nodes
to α. For an affected node n, the algorithm updates its volume
(line 9) and computes the volume of all its outgoing edges
in G′ (line 11). Then the algorithm checks if any outgoing
edges’ volumes get changed for all the edges in both G and
G′. If some edge’s volume has changed, the node on the other
end of the edge may become affected and so the algorithm
adds that node to α (line 15). Furthermore, the algorithm also
updates the traffic distribution by adding the changed volume
to the corresponding link if needed. Finally, the updated TL
contains the traffic distribution for all links under the failure
and is returned.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1081

	Introduction
	Background and Motivation
	Background: Our Production WAN
	Motivations and Goals
	Related Work

	Jingubang Overview
	Jingubang Workflow
	Important Terminologies
	Jingubang Checking Task's Specification

	Traffic Simulation Using TDG
	Traffic Distribution Graph
	Simulating A Single Traffic Snapshot
	Simulating Multiple Traffic Snapshots
	Flow Number Reduction Optimization

	Real-Time Failure-Tolerance Analysis
	Incremental TDG Construction
	Incremental Traffic Simulation

	Deployment and Use Cases
	Validating Network Changes
	Validating Failure Tolerance

	Evaluation
	Discussions and Lessons
	Conclusion
	Traffic Sampling
	Algorithm
	Error Bound

	Traffic Distribution Graph
	Formal Definition
	TDG Construction

	Traffic Equivalence Class
	Formal Definition
	TEC Generation

	Incremental TDG Construction and Traffic Simulation
	Algorithm for Incremental TDG Construction
	Detailed Description of Incremental Traffic Simulation Algorithm

