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Abstract

Multimodal model training takes multiple types of inputs to
process with differently structured submodules, and aggre-
gates outcomes from the submodules to learn the relationship
among various types of inputs, e.g., correlating text to image
for text-to-image generation. The differences of submodule
architectures as well as their inputs lead to heterogeneity in
terms of computation efficiency. Failing to account for such
heterogeneity, existing distributed training systems treat all
submodules as a monolithic entity and thus have sub-optimal
performance. Moreover, the outcome aggregation phase in-
troduces cross-sample dependencies with contrasting positive
and negative sample pairs (i.e., contrastive loss). Such de-
pendencies make the existing pipeline parallelism scheduling
algorithms not applicable for multimodal training with con-
trastive loss.

To address the limitations of existing solutions, we propose
DISTMM. For a given multimodal model, DISTMM exploits
the heterogeneity among submodules, applying different dis-
tributed parallelism strategies for each submodule, e.g., using
Tensor Parallelism for a computation-intensive submodule,
and Data Parallelism for a submodule with a small number
of parameters. DISTMM balances the computation of par-
allelized submodules to reduce the computing resource idle
time of waiting for the slowest submodule. DISTMM further
optimizes the locality of submodules by leveraging the hetero-
geneous bandwidth of interconnections among accelerators.
To address the limitation of existing pipeline execution sched-
ules, we propose a new pipeline execution primitive, called
batch-sync instruction, and a corresponding schedule, called
DISTMM-Pipe. We build a prototype of DISTMM and eval-
uate it with existing solutions on models with various sizes
ranging from 1.1 billion to 26 billion parameters and observe
1.32-3.27× speedup over Megatron-LM.

∗Work was done when interned at AWS.

1 Introduction

Deep learning has recently witnessed the rise of foundation
unimodal models focused on processing unimodal data such
as GPT [4], LLaMA [36] and ViT [9], where models are pre-
trained on web-scale text or image data. However, real-world
data typically do not exist in isolation so human experience
itself is multimodal. For example, a movie is a blend of visu-
als, dialogue, and music. To bridge the gap between isolated
data modalities, multimodal models have emerged as a trans-
formative paradigm, which offers a holistic representation
to enhance performance in real-world scenarios, capturing
intricate relationships that remain elusive to unimodal models.

A multimodal model has unique characteristics in terms
of model structure, which consists of multiple submodules.
Each submodule has a specific functionality, e.g., transform-
ing image inputs to feature vectors, or combining multiple
feature vectors, etc. As the functionalities are different, the
architecture and the scale of the submodules vary accord-
ingly. For example, Contrastive Language–Image Pre-training
(CLIP) [29] adopts a deeper and wider structure for process-
ing image inputs, while using a relatively shallow design of
a submodule for transforming text inputs. Furthermore, the
data input sizes also vary across submodules, e.g., the im-
ages in Common Objects in Context (COCO) dataset [20]
have an input size of 512×512 pixels, while the input length
of corresponding text captions is from 5 to 20 words. The
heterogeneity among submodules leads to different demands
of computing powers. However, existing distributed training
systems are mainly designed for training unimodal models
with homogeneous computing power requirements, leading
to suboptimal performance in multimodal model training.

Moreover, multimodal models require a large number of
data samples to compute the contrastive loss function due
to model quality requirements [5]. In the distributed train-
ing setting, scaling out multimodal model training with data
parallelism and tensor parallelism linearly increases the max-
imum batch size for contrastive loss. However, scaling out
multimodal model training with pipeline parallelism results
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in a bounded maximum batch size for contrastive loss per
forward and backward. The absence of pipeline parallelism
support hinders the scalability of the multimodal model both
in training speed and model size.

To address the aforementioned challenges (more details
in Sec 3) for efficient multimodal model training, this paper
proposes DISTMM, which is, to the best of our knowledge,
the first distributed training system specifically designed for
multimodal models. DISTMM introduces four components
that work collaboratively to optimize multimodal model train-
ing. For a given multimodal model training task and a cluster
configuration, the modality-aware partitioner of DISTMM
adaptively applies parallelism strategies for different submod-
ules to minimize the overhead from parallelization. With
efficient parallelism for each submodule, the load balancer
redistributes the training data to ensure balanced computa-
tions among the submodules, which minimizes the computing
resource idle time of waiting for the slowest submodule. The
placement manager then assigns devices for each submodule
based on the parallelism solution and the interconnect topol-
ogy of devices, so that DISTMM can utilize heterogeneous
bandwidth. Finally, to achieve a targeted sample size required
by the training task, the pipeline executor generates the exe-
cution schedule (i.e., when and what to do for computations,
communications, or memory movements) for combining out-
puts across multiple micro-batches of input data.

In summary, we make the following contributions:
• We propose an idea to partition and parallelize the submod-

ules of a multimodal model based on their modalities and
redistribute the training data, resulting in balanced compu-
tation among submodules with high computation efficiency.

• We design a submodule placement mechanism to reduce
the communication volume by aligning the model’s hetero-
geneity with the heterogeneous bandwidth in the cluster.

• We propose a new pipeline parallelism instruction to in-
crease the supported batch size by fully utilizing the mem-
ory capacity, and a corresponding pipeline parallelism
schedule to avoid dependency overheads introduced by the
new instructions.

• Based on the above ideas, we build DISTMM and evalu-
ate it on eight Amazon EC2 p3.16xlarge instances with
64 GPUs. Our results show that DISTMM achieves 1.32-
3.27× speedup over Megatron-LM on three structurally
different multimodal models, i.e., CLIP, CoCa, and LiT.

2 Background

2.1 Unimodal and Multimodal Models

Unimodal models. The unimodal models are designed to
interpret and learn from one specific type of data modality,
e.g., text, images, or audio. The model architecture is thus
homogeneous with sequential execution order for consistently

processing a single type of data. A typical unimodal model
architecture consists of multiple transformer-based layers [4,
7, 36, 37]. Within each layer, the structure is the same, i.e.,
attention mechanisms and feed-forward networks.

Multimodal models. On the other hand, multimodal mod-
els aim to combine and align multiple data modalities, e.g.,
processing image and text data simultaneously. It relies on
specialized architectures or configurations for processing each
modality and aligning the processed feature vectors [9,29,38].
Typically, a multimodal model consists of multiple submod-
ules each processing one modality independently. As an ex-
ample, CLIP [29] employs two specialized modal submodules,
namely, text and image. The image submodule is a Vision
Transformer (ViT) [9] while the text submodule is a tradi-
tional Transformer submodule [37]. On top of multiple modal
submodules, the modality interactive submodule takes the
outputs from each modal submodule to compute the corre-
lation among them. An exception is the Multimodal Large
Language Model (MLLM) [1, 21, 41], whose LLM submod-
ule integrates both the functionality of modality interactive
submodule and text modal submodule.

2.2 Multimodal Model Training
To perform various multimodal tasks, multimodal models re-
quire different learning approaches. Fusion models integrate
multimodal data to perform tasks including classification, de-
tection, or prediction. This integration is either conducted
through contrastive learning or simply achieved by fusing
the features through operations such as cross-attention [38].
Co-learning models leverage information from one modality
to improve or supplement the learning in another modality. It
is achieved by contrastive learning to identify a unified rep-
resentation containing multimodal information. Generative
models generate content based on contextual understanding
across multiple data modalities. For generative models such
as MLLM, modal submodules are trained separately with
contrastive learning first, and then the whole model will be
trained with multimodal instruction tuning [21, 41].

Contrastive learning. Out of all multimodal learning meth-
ods used in various multimodal models, contrastive learning is
the most fundamental learning method. Since aligning the rep-
resentation across features of different modalities is crucial for
the downstream task, contrastive learning generates positive
and negative samples to contrast them to learn a robust uni-
fied representation across different modalities. Compared to
cross-modal learning or reconstruction-based representation
learning, contrastive learning is more effective by bridging
the processing abilities between different modal submodules
according to previous study [38]. Most multimodal models
adopt contrastive learning [5] as the only training method or
combine it with other unimodal learning methods.

Unlike only comparing each sample’s output feature vector
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with the corresponding label in unimodal learning, contrastive
learning systematically compares the feature vector of each
data point with all feature vectors across diverse modalities.
Specifically, positive pairs are constructed by comparing the
feature vectors of a single sample across different modalities,
affirming their shared identity. Conversely, negative pairs are
formed by comparing feature vectors from distinct samples
and modalities, establishing dissimilarity. Multimodal models
learn effective representations and understand relationships
between modalities by distinguishing positive and negative
pairs. To achieve this, the core of contrastive learning is to
compute a similarity matrix, which measures pairwise sim-
ilarities between feature vectors. During multimodal model
training, the loss of contrastive learning maximizes the sim-
ilarity scores of positive pairs and minimizes the similarity
scores of negative pairs. For example, CLIP model performs
contrastive learning by using dot products of their text and
vision submodules’ feature vectors to compute a similarity
matrix. With similarity matrix, the objective of CLIP training
is to minimize a cross-entropy loss over similarity scores.

The effectiveness of contrastive learning relies on a large
number of positive and negative samples from feature vectors
generated by the same model update [2]. For instance, Sim-
CLR [6] used a batch size of 4096 to generate 4096 positive
samples and 33,554,432 negative samples. CLIP [29] used a
batch size of 32,768 to generate 32,768 positive samples and
2,147,483,648 negative samples. Some low-cost alternatives
utilize feature vectors from the previous model updates to
approximate comparison in a large batch size. One problem
of such approximation is the downgraded model quality since
feature vectors are no longer consistent. PIRL [24] used a
memory bank to store the previous feature vectors. Mean-
while, MoCo [12] replaced the memory bank with a queue of
feature vectors generated by its momentum encoders. Accord-
ing to theory in [17], a larger number of consistent positive
and negative samples enhance the model’s discriminative
power, generalization ability, and understanding of complex
cross-modal relationships.

3 Motivation

This section discusses the problems in existing solutions and
corresponding objectives in designing a multimodal model
training system. The existing solutions did not take the unique
model architecture and special learning paradigm of multi-
modal models into account.

3.1 Multimodal Model Characteristics.

Heterogeneous submodules. As discussed in Section 2.1,
multimodal models have multiple modal submodules and
one or more modality interactive submodules. Influenced by
the design choices and architectural complexity, the sizes

(a) Vision > Text

Modality 
Interaction

(b) Vision = Text

Text data

(c) Text > Vision

Layers VisionText

Modality 
Interaction

Modality 
Interaction

Image data Text data Image data Text data Image data

Text Vision Text Vision

Figure 1: Three categories of vision-language models. The
height of each rectangle denotes the number of layers and
the width denotes hidden dimension of each layer. Text and
Vision denote text submodule and vision submodule.

of submodules in multimodal models can vary significantly,
which introduces heterogeneity.

Each modality (e.g., text, image, and audio) has unique char-
acteristics and features that may require specialized process-
ing to effectively capture modality-specific patterns. The fo-
cus of the multimodal task may also influence the processing
strategy, which requires more understanding of fine-grained
details on one modality than on others. The inherent com-
plexity of each modality and the task requirements result
in different computational demands among the modal sub-
modules. Figure 1 illustrates three different archetypes of
vision-language models. CLIP model belongs to Figure 1(a).
The heterogeneity of CLIP model is driven by its vision-
focused requirements, leading to a larger vision submodule.
The LiT [10] model belongs to the category of Figure 1(c),
whose text submodule has more parameters. The Contrastive
captioner (CoCa) [38] model falls in the category of Fig-
ure 1(b), which uses equal-sized vision and text submodules.

Heterogenous submodules have varied GPU utilization.
The parameter size differences result in varied hidden di-
mensions between heterogenous submodules, which lead to
differently scaled operations to execute. The scale of opera-
tions affects the choices of kernels for underlying libraries.
Large-scale operations are likely to be represented with more
efficient kernels than small-scale operations. Additionally,
fixed overheads such as kernel launches and memory trans-
fers are amortized by large-scale operations. The training
efficiency is limited by the submodules with fewer parame-
ters, as they may not utilize the hardware as efficiently as the
larger submodules.

Imbalanced input sizes. Depending on the modality type, the
input sizes can vary significantly as well, e.g., the text input
length is 77 words while the image input size is 512×512
pixels for CLIP training. Larger input sizes lead to more effi-
cient computation by leveraging the parallelism and vector-
ization capabilities of the hardware. This results in optimized
memory utilization and computational throughput. Within the
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multimodal model consists of submodules with imbalanced
inputs, the training efficiency is limited by the submodule
with smaller input sizes.

Large batch size requirement. According to the observa-
tions in [5, 29, 39] and the theory in [17], a larger number of
negative and positive samples are beneficial for learning ro-
bust and generalizable representations in contrastive learning,
which directly results in a trained model with higher quality
(i.e., more accurate, more robust, and more reliable). Further-
more, prior study [6] shows that training with a larger number
of negative and positive samples not only converges faster
but converges to a model that performs better, no matter how
long it is trained. Increasing the batch size for the similarity
matrix is the only way to generate the sufficient number of
negative and positive samples without bringing inconsistency.
For example, given a batch size of N, there are N positive
pairs and N2 −N negative pairs in a similarity matrix. As a
result, multimodal model training in practice requires a large
batch size to ensure expected model quality.

3.2 System Challenges.
Although 3-dimension (3D) parallelism strategies (data, ten-
sor, and pipeline parallelism) are effective for most unimodal
models, it is inefficient to apply them to train multimodal
models. We first lay out the reasons why applying the 3D
parallelism to multimodal model training is inefficient, then
conclude with the objectives on how to optimize 3D paral-
lelism for multimodal models.

Memory overhead and imbalanced computation of Data
Parallelism (DP). For models that can easily fit into one de-
vice, data parallelism is the go-to strategy to parallelize the
training. Data parallelism only partitions batch dimensions
and evenly distributes the data batch to all devices. Applying
data parallelism to a multimodal model training results in all
submodules being colocated on each device. Due to the colo-
cation, the heterogeneity and imbalanced input sizes among
different submodules lead to uneven computation scales and
hardware utilization. Moreover, the colocation of different
submodules also reduces the available memory per submod-
ule, which limits the batch size for computation and eventu-
ally reduces the computation efficiency. In conclusion, the
heterogeneous nature of the multimodal model cannot be
fully utilized under the colocation solution of data parallelism.
Therefore, it is needed to have a non-colocation solution to
support more efficient multimodal model training.

Unnecessary partition overheads of Tensor Parallelism
(TP). For models that cannot fit into a single device, tensor
parallelism is used to evenly split the model and parallelize
the model partition’s execution. For multimodal model train-
ing, tensor parallelism homogeneously partitions submodules
with different sizes according to the entire model’s memory
consumption. Since the smaller submodule only contributes

little to the entire model’s memory consumption, tensor paral-
lelism will overly partition the smaller submodule, leading to
unnecessary overhead. To address this issue, it is needed to
have an adaptive partitioning method that considers the model
sizes and structures of different submodules.

Unexpected training semantics with Pipeline Parallelism
(PP). As discussed in 3.1, multimodal model’s model qual-
ity is associated with the training batch size. However, all
existing pipeline parallelism schedules, including 1F1B [11],
GPipe [13], and PipeDream [25] split a global batch into
multiple micro-batches and conduct pipelined forward and
backward step on every micro-batch. Applying such pipeline
parallelism to multimodal model training results in model
quality degradation compared to non-pipeline parallelism ap-
proaches. Therefore, a new pipeline parallelism scheme for
multimodal model training is needed.

4 DISTMM Overview

DISTMM is a distributed training system optimized for mul-
timodal model training workloads by tackling the challenges
discussed in Section 3.2. The design of DISTMM improves
the computation efficiency of each submodule in a multi-
modal model, reduces communication overheads in multi-
node distributed training, and ensures the model quality when
pipeline parallelism is used for training large models. By
design, DISTMM treats submodules within a model sepa-
rately with independent parallelism strategies to maximize
efficiency. In addition, it aligns the computation duration of
each submodule to minimize the cost of interactions among
submodules. As shown in Figure 2, DISTMM has four com-
ponents, which are Modality-aware partitioner, Data load bal-
ancer, Heterogeneity-aware placement manager, and Pipeline
executor. We overview the components in the following text
and leave the detailed design and analysis in Section 5.

Modality-aware partitioner. Modality-aware partitioner
splits the whole multimodal model into submodules based on
their input modalities. The neural network architecture and
configuration of each submodule are typically different from
each other, due to the input modality differences, e.g., using
ViT [9] for vision inputs and BERT [7] for text inputs. Based
on the submodule sizes, Modality-aware partitioner applies
independent parallelism strategies to avoid overprovisioning
parallelism degrees for small submodules. Modality-aware
partitioner only handles model-level partitioning by trans-
forming model description input into submodule partitions,
leaving batch dimension partitioning to Data load balancer. In
principle, this allows DISTMM to maintain high computation
efficiency for each submodule.

Data load balancer. Without realizing the structural differ-
ences, a naive way is to assign the same amount of computing
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Figure 2: DISTMM overview.

devices and utilize the same batch size across all the sub-
module partitions of different modalities. This can easily lead
to computing resources idling at the interactive computation
phase because some submodules need fewer computation
cycles than others. To achieve overall high computation ef-
ficiency, submodule partitions require a careful design for
the resource allocation and adjustment of the batch size for
each modality input. Data load balancer takes submodule
partitions and cluster configuration as inputs, assigning dif-
ferent numbers of devices to different submodule partitions
based on their estimated memory consumption and measured
execution time. To minimize device idle time introduced by
the heterogeneous resource placement, Data load balancer
redistributes batch sizes of different modalities to balance the
computation duration.

Heterogeneity-aware placement manager. Computing
clusters typically have much higher bandwidths for intra-node
communication (e.g., NVLink) than that for inter-node com-
munication (e.g., Ethernet). Heterogeneity-aware placement
manager groups submodule partitions within the same modal-
ity and places them close to each other to exploit the high-
bandwidth links for frequent communication. Furthermore,
Heterogeneity-aware placement manager places submodule
partitions from different modalities on separate nodes so that
the infrequent communication volume (e.g., gradient AllRe-
duce) on low-bandwidth links will be reduced.

Pipeline executor. Pipeline executor generates a cus-
tomized pipeline parallelism execution schedule for each sub-
module. The customized schedule maintains the semantics
of the training procedure and minimizes hardware idle time.
Pipeline executor inserts mid-point synchronization to main-
tain the semantics of the modality interaction among different
modal submodules, in which each submodule gathers activa-
tions of prior micro-batches (from last mid-point synchroniza-

tion till now) from submodules with different modalities and
itself to complete the modality interaction.

An illustrated example. Figure 2 provides an example of
training a vision-language model with DISTMM in a cluster
with 64 devices across eight nodes. Assuming the multimodal
model has more parameters for encoding image data (yellow)
than that of processing text inputs (blue).

Modality-aware partitioner assigns different parallelism
strategies for each modal submodule, shown in the top-left
part. Different submodules are replicated differently (four
versus three) with different numbers of devices by Data load
balancer, so that submodules can complete the computation
of different batch sizes (18 versus 24) for a given global batch
at the same time.

Heterogeneity-aware placement manager deploys vision
submodules and text submodules on different devices and
groups the devices with the same modality, which reduces
both intra-node and inter-node communication volume.

Pipeline executor generates customized pipeline execution
plans for each device which integrates a synchronization in-
struction to preserve the same training semantics with non-
pipeline parallelism solution. The synchronization instruction
gathers feature vectors to conduct interactive computation. In
this case, a gathered global image feature vector consists of 3
pipeline parallelism groups’ 4 previous image feature vectors,
where each image feature vector’s batch size is 2. Similarly, a
gathered global text feature vector consists of 4 pipeline paral-
lelism groups’ 2 previous text feature vectors, where each text
feature vector’s batch size is 3. The workloads on submodules
for different modalities are balanced by Data load balancer
which ensures that they arrive at the synchronized interactive
computation at the same time.
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5 DISTMM Design

5.1 Modality-aware Partitioner

The heterogeneity of the model structure and the difference of
the inputs across modalities are the root cause of the low over-
all computation efficiency in multimodal training (detailed
in Section 3.1). Modality-aware partitioner therefore applies
adaptive partition strategy to improve the computation effi-
ciency, which accounts for heterogeneity among submodules.

Adaptive Partition Allocation. We design a new partition
strategy that fully utilizes the heterogeneous structure with the
multimodal model. Modality-aware partitioner takes model
definition as an input, which contains the configuration of
each modal submodule and modality interactive submodule.

Modality-aware partitioner first parallelizes submodules
with independent parallelism strategies to satisfy memory
constraints while maintaining low overheads. As discussed
in 3.1, modality interactive submodule focuses on aligning
high-level information, which does not require a complex
computation. It therefore has a highly parallelizable nature.
So Modality-aware partitioner equally distributes the compu-
tation load of modality interactive submodule to every device.

Modality-aware partitioner then individually applies adap-
tive partitioning to each modal submodule to maximize effi-
ciency. This component follows the common practice [15,34]
of efficiently training an unimodal model, which involves
determining the minimum parallelism degree required and
selecting parallelism strategies accordingly, with careful con-
sideration of the model size. For modal submodules that can
fit into a single device, our approach advocates the use of data
parallelism to maximize efficiency. Alternatively, for modal
submodules that cannot fit within a single device, employ-
ing tensor parallelism is recommended. Notably, for modal
submodules that surpass the capacity of a single node, our
strategy favors pipeline parallelism, as extant research [26]
indicates that extending tensor parallelism across nodes in-
troduces significant overheads. The resulting model partition
on each device after Modality-aware partitioner is an adap-
tively partitioned modal submodule and evenly parallelized
modality interactive submodules.

An illustrative example. We construct examples with hy-
pothetical performance numbers to illustrate how Modality-
aware partitioner works. Figure 3 (a) shows an example of
applying the tensor parallelism in a homogeneous way for
the entire model. This homogeneous way of applying tensor
parallelism leads to the sequential execution of the first and
smaller submodule (blue colored) with 10% GPU utilization,
and the second and larger submodule (orange colored) with
30%. As a result, its average GPU utilization for each GPU is
2 ·10%+3 ·30% = 22%, where the smaller submodule’s 10%
utilization is the performance bottleneck. Figure 3 (b) shows
the partition result by Modality-aware partitioner, where the
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Figure 3: Modality-aware partitioner example. Placements
(on left) describe how submodules are partitioned.
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duration stand for each submodule’s GPU utilization.
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Figure 4: Data load balancer example. Placements (on left)
describe the data sample assignment for each submodule.
Numbers inside the submodule are the number of assigned
data samples per batch.

smaller submodule is not partitioned and the larger submod-
ule is partitioned into three parts via the tensor parallelism.
The separation of submodules and adaptive tensor parallelism
partitioning allow the smaller submodule to achieve a much
better GPU utilization. The GPU utilization of the smaller
submodule can be improved from 10% to 20% due to the
increase in computational workload. The improved average
GPU utilization helps reduce the duration of the entire model.
However, it also introduces additional overhead of imbalanced
duration among GPUs (i.e., GPU1 versus other GPUs).

5.2 Data Load Balancer
While the adaptive partition strategy reduces partition over-
heads, it does not address the heterogeneity of inputs.
Modality-aware partitioner does not assign the batch size of
input data to submodule partitions. Different modal submod-
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ule partitions have different computation patterns and inputs
which results in different execution durations and memory
consumptions under the same batch size. Without considering
the differences, some modal submodules may finish first and
have to wait for others to gather the outputs.

We view Data load balancer as a resource manager, and
the goal is to balance the computing duration among differ-
ent modal submodules under memory constraints. Data load
balancer takes a cluster setup, i.e., the number of nodes and
the number of devices per node, and training configuration,
i.e., the model partitions generated by Modality-aware par-
titioner and the global batch size, as inputs. Note that each
model partition consists of an adaptively partitioned modal
submodule for a specific modality and an evenly partitioned
modality interactive submodule. Data load balancer produces
a resource assignment plan, which assigns the number of de-
vices and the data batch size for each model partition. This
resource assignment problem is equivalent to minimizing the
time taken by the slowest model partition, and has the opti-
mal substructure property: a resource assignment plan that
maximizes throughput is composed of resource assignments
for partial modalities that maximize throughput for smaller
clusters. DISTMM uses dynamic programming to find the
optimal solution.

An illustrative example. We construct examples with hy-
pothetical performance numbers to illustrate how Data load
balancer works. Figure 4 provides an example resource as-
signment plan from Data load balancer and compares it with a
colocated plan. The colocated plan colocates multiple modal
submodules and replicates each submodule onto all devices
(Figure 4 (a)). In contrast, Data load balancer together with
Modality-aware partitioner separates modal submodules with
different modalities and replicates them differently, i.e., the
smaller submodule has one replica, and the larger submodule
has three replicas (Figure 4 (b)). With a smaller number of
replicas for each submodule, the number of samples per de-
vice is increased, especially for the smaller submodule. Thus,
the computation efficiency improves for both submodules.

5.3 Heterogeneity-aware placement manager
The generated resource assignment plan from Data load bal-
ancer does not include the model placement to specific de-
vices. Heterogeneity-aware placement manager deploys the
resource assignment plan by placing the submodules in a
communication-efficient way. It takes bandwidth heterogene-
ity into consideration to optimize the communication over-
head in distributed multimodal model training.

5.3.1 Intra-submodule placements

Heterogeneity-aware placement manager prioritizes the com-
munication patterns within a single modal submodule for
placement assignments. The priority is determined by the

communication frequency and the data volume transmitted in
each communication pattern. Heterogeneity-aware placement
manager generates placement assignments where communi-
cations with higher priority (TP) are conducted in the network
with higher bandwidth (NVLinks within node) and communi-
cations with lower priority (PP and DP) are conducted in the
lower bandwidth network (Ethernet).

5.3.2 Inter-submodule placements

As a non-colocated solution, Heterogeneity-aware placement
manager only places one single-modality partition together
with evenly parallelized modality interactive submodules on
a single device, which reduces the communication volume
involved in modality interaction and gradient synchronization.

Overhead reduction in modality interaction. As described
in section 2.2, multimodal model’s modality interaction con-
sists of similarity matrix computation. For the multimodal
models with vision modality and text modality, the similarity
computation on each device consists of two dot products in
the distributed setting, the first dot product is between the
local image feature vectors and gathered entire text feature
vectors and the second dot product is between the local text
feature vectors and gathered image feature vectors. With non-
colocated placement, since there is only one modal submodule
on each device, the similarity computation is reduced to one
dot product between the feature vectors of local modality
and the gathered feature vectors of opposite modality. So
Heterogeneity-aware placement manager halves the commu-
nication volume of modality interaction compared with the
colocated placement since image and text feature vectors
share the same tensor shape.

Table 1: The list of symbols frequently used in the paper.

Symbol Description
Mbs Micro-batch size
Rbs Required micro-batch size for modality interaction
K Required number of micro-batches (K = Rbs/Mbs)
N Total number of GPUs
P The number of pipeline parallelism degree
M Memory capacity per GPU
Ms Static (Weight, gradient, state) memory consumption
Mg Gradient memory consumption
Ma Activation memory consumption

Note: Above symbols are of the whole multimodal model. We add index 1
and 2 to the above symbols to stand for the first and second submodules.

Overhead reduction in gradient synchronization. For com-
munication in gradient all-reduce, Heterogeneity-aware place-
ment manager reduces the communication volume from the
entire model’s gradients in colocated solution to the gradients
of the submodules hosted in this specific device. In the whole
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Figure 5: Communication reduction example. Placements
(on left) describe the patterns of gradient AllReduce (green
and red) under different placements. Duration breakdown (on
right) includes the computation and communication durations
within each device. The x-axis stands for each submodule’s
computation or communication duration.

system’s perspective, the volume is reduced from Mg1 +Mg2
to max(Mg1,Mg2). As shown in examples with hypothetical
duration numbers described by Figure 5, gradient communi-
cation volume is reduced from the whole model’s gradients
(red and green) to only the gradient of the larger submod-
ule (green). The gradient all-reduce volume does not change
with the mini-batch size. The computing duration increases
when the mini-batch size increases, which further reduces the
communication duration ratio in total training time.

5.4 Pipeline Executor

When applying existing pipeline parallelism to multimodal
model training, the available memory after static memory
consumption (weight, gradient, and state) is divided into P
blocks to store P micro-batches’ activation to ensure effi-
cient pipelining. Since static memory consumption and ac-
tivation are divided into P partitions, the maximum micro-
batch size is ((M−Ms/P)/(Ma/P))/P = (M−Ms/P)/Ma),
which is bounded by M/Ma. Such bounded micro-batch size
is much smaller than what is needed for training a qual-
ity multimodal model in practice. Note that Table 1 shows
the meaning of the symbols used in this paper. As a com-
parison, data parallelism’s maximum micro-batch size is
(M ·N−Ms ·N)/Ma) =N ·(M−Ms·)/Ma) and the tensor par-
allelism’s maximum micro-batch size is (M ·N −Ms)/Ma),
which means scaling out the cluster size N can linearly in-
crease the maximum micro-batch size.

To address this issue, we propose a new instruction in
pipeline parallelism called batch-sync instruction used by the
Pipeline executor. This instruction can preserve the required
semantics by ensuring the modality interactive submodule is
executed with the needed large batch size. We also propose
a new pipeline parallelism schedule called DISTMM-Pipe
which adopts batch-sync instruction without introducing any

extra idle cycles.

Batch-sync instruction. Given a model quality requirement
of batch size Rbs and K = Rbs/Mbs, Pipeline executor’s
batch-sync instruction consists of the following four steps:
(1) the memory movement step that concatenates K feature
vectors computed by previous K forward instructions into
a continuous feature vector, (2) the forward pass of modal
interactive submodule is executed with the continuous feature
vector, (3) the backward pass of modality interactive submod-
ule is executed, which produces gradients corresponding to
the continuous feature vector, and (4) the memory dispatching
step that dispatches the continuous gradients to K gradients
corresponding to the feature vectors of each micro-batch.

However, integrating batch-sync instruction to pipeline par-
allelism schedule introduces overhead due to dependency is-
sues. Since the batch-sync instruction depends on the previous
forward instructions and vice versa, the backward instructions
depend on the batch-sync instruction. The batch-sync instruc-
tion works as a barrier between the involved forward and
backward instructions. In 1 forward and 1 backward (1F1B)
schedule [25], batch-sync instruction can only be inserted be-
tween the 1 forward and 1 backward of a single micro-batch
due to dependency, which limits the maximum batch size for
modality interaction to a single micro-batch. In GPipe sched-
ule [13], batch-sync instructions can be inserted between the
required number of forward and backward instructions. As
shown in Figure 6, applying the batch-sync instruction with-
out a customized schedule results in dependency issues, where
forward and backward instructions are separated by the corre-
sponding batch-sync instruction and cause extra idle cycles.

DISTMM-Pipe schedule. To bypass the dependency barrier
so as to mitigate the overhead introduced by the batch-sync
instruction, we propose DISTMM-Pipe schedule. DISTMM-
Pipe launches 2 ·K micro-batches with Mbs/2 as the micro-
batch size for each gradient accumulation cycle. The doubled
micro-batches bypass the dependency barrier since each batch-
sync instruction only introduces dependency issues between
K forward and backward instructions. As shown in Figure 6,
after each batch-sync instruction, backward instruction and
forward instruction belonging to different K micro-batches are
executed in an interleaved way under DISTMM-Pipe sched-
ule, which ensures there are no extra idle cycles caused by
dependency issues.

In terms of model quality, Pipeline executor’s maximum
batch size to the modality interaction can be formulated as
((M−Ms/P)/(Ma/(2 ·P))) = (M ·P−Ms)/(2 ·Ma), which
grows linearly with the number of pipeline stages P. Com-
pared to existing pipeline parallelism’s maximum batch size
(M−Ms/P)/Ma which is bounded by M/Ma, Pipeline execu-
tor can preserve any model quality requirements by scaling
out the cluster size while existing pipeline parallelism cannot.

Schedule alignment. With the pipeline parallelism degree
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Figure 6: Comparison between pipeline parallelism schedule with dependency issue and DISTMM-Pipe schedule. S stands for
batch-sync instruction. The modal quality requirement is 2 ·Mbs.

assigned by Modality-aware partitioner and resource assign-
ment plan by Data load balancer, Pipeline executor generates
the DISTMM-Pipe schedule for each modal submodule. The
schedules for different modal submodules are aligned through
batch-sync instructions, which have a gathering communica-
tion for the global similarity matrix. Since the computation
durations of each submodule are already balanced by Data
load balancer, this alignment will not introduce any overhead
caused by imbalanced durations between different schedules.

6 Implementation

We have built DISTMM with ∼2600 lines of code in Python.
DISTMM is built on top of PyTorch [28]. It provides simple
APIs to transform model scripts written for training on a
single device to distributed multi-node multi-device setups.
The goal of DISTMM is to minimize the user effort while
fully utilizing the hardware resources.

APIs. There are four types of APIs: partition annotation,
training loop, data loading, and initialization. Users anno-
tate each submodule with the partition annotation API to
allow DISTMM to partition them accordingly based on the
pattern described by annotation. The training loop API pro-
vides an integrated function that includes both forward and
backward computation. Users can use this integrated function
to train the model, instead of constructing the training loop
by themselves. For logging purposes, we provide hooks to
log the intermediate results, e.g., loss values. For loading data
samples correctly for load balancing purposes (Section 5.2),
users need to wrap their data loading procedure using the
data loading API. The data loading API provides the same
user interface as the one from PyTorch framework, allowing
a drop-in replacement for the training script with PyTorch.
Before the computation starts on the cluster, training scripts
are required to call the initialization API with configurations
of the cluster and the model.

Configuration. DISTMM includes the multimodal model
implementations on OpenCLIP [14] with DISTMM’s parti-
tion annotations. The implemented models can be launched
by specifying the model type in the training script. For models
that have not been implemented, users need to provide the

model description and add partition annotations to the corre-
sponding operations and submodules, which helps Modality-
aware partitioner to correctly recognize and partition the
whole model. Users need to replace forward and backward
calls in the training loop with DISTMM’s integrated func-
tions, which return the equivalent result as a single forward
and backward computation. For submodules with pipeline
parallelism partitioning, the actual computation is a sequence
of forward and backward computations under DISTMM-Pipe
schedule. Besides DISTMM’s forward and backward replace-
ment, users need to call DISTMM’s initialization and specify
the data source with DISTMM’s data loading API in the
training loop. Users also need to provide the environment con-
figuration including cluster size, node size, and GPU memory
limits for Heterogeneity-aware placement manager. To control
the partitioning process, users can provide a partition strategy
configuration including the partition strategy candidates and
corresponding partition degree range to limit the search or
simply specify a particular partitioning solution.

7 Evaluation

In this section, we seek to answer the following questions:
• How well does DISTMM perform on models with different

structures?
• How well does DISTMM perform on models ranging from

small scale to large scale?
• How effective is each component? Specifically, What is the

impact of Modality-aware partitioner on the efficiency im-
provement of submodules with different structures? What is
the impact of Data load balancer on the efficiency improve-
ment with fixed submodule partitions? What is the impact
of Heterogeneity-aware placement manager on reducing
inter-node communication volume with fixed submodule
partitions and fixed resource allocation plans?
Our experiments are conducted on a cluster of 8 Amazon

EC2 p3.16xlarge nodes where each node contains dual 24-
core Intel Xeon CPUs and 8 NVIDIA Tesla V100 (16GB)
GPUs. The GPUs within a node are connected with NVLinks.
The nodes are connected to 25 Gbps networks. All nodes run
Ubuntu 20.04, CUDA 11.6 and PyTorch 2.0.1.

We measure the iteration time of training three different
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models, namely, CLIP [29], CoCa [38], LiT [39]. Each model
has unique characteristics in terms of the model structure.
Specifically, CLIP model, which is designed for image-text
retrieval (ITR), has a larger submodule for image modality
input; CoCa model, which is used in natural language for
visual reasoning (NLVR), has a relatively balanced (i.e., sizes
of the submodules are similar) submodules for image and text
inputs; LiT model, which is designed for visual question an-
swering (VQA), has a larger submodule for text inputs. These
selected models are representative, as they comprehensively
cover the design space for multimodal models with two input
data modalities, e.g., vision and language in our evaluation.

We further scale up the model sizes to study the system
performance characteristics according to scaling law [16]. In
our evaluation, we measure the system performance of model
sizes in three categories: 1) single-device scale: the model is
trainable on a single device; 2) single-node scale: the model
requires memory more than the capacity of a single device,
but the aggregated memory of devices in a single node is
sufficient; 3) multi-node scale: the model is only trainable on
multiple nodes. We summarize the configuration of models
in Table 2.

We use Megatron-LM [34] as the baseline. Megatron-
LM system provides state-of-the-art performance for training
transformer-based unimodal models. As elaborated in Sec-
tion 5.4, existing pipeline parallelism schedules cannot pre-
serve the semantics of the user-defined training configuration.
Therefore, we only use Tensor and Data Parallelisms from
Megatron-LM. According to the convention of multimodal
training for vision and language tasks, we use sequence length
of 77 words and images sized 336×336 pixels [9].

7.1 End-to-End Performance
As shown in Figure 7, for models sized at single-device scale,
DISTMM is 1.32–1.39× faster than Megatron-LM. These
models include CLIP(760M, 350M), CoCa(760M,760M),
and LiT(350M, 760M) 1. At this model scale, Megatron-
LM colocates two submodules in every GPU. In compari-
son, DISTMM uses Modality-aware partitioner to separate
submodules, and balances the computation workloads among
submodules via Data load balancer. DISTMM also optimizes
the placement with Heterogeneity-aware placement manager
to lower the communication cost.

For models that are not trainable on a single GPU, but can
be trained on eight GPUs on a single node, i.e., single-node
scale, DISTMM is 1.48–1.67× faster than Megatron-LM.
The evaluated models include CLIP(6.7B, 2.7B), CoCa(6.7B,
6.7B), and LiT(2.7B, 6.7B). Megatron-LM partitions two sub-
modules using the same tensor parallelism degrees. On the
other hand, DISTMM applies modality-aware partitioning
and assigns the most computation-efficient tensor parallelism
degree to each submodule depending on their parameter sizes.

1(X, Y) denotes the sizes of vision and text submodule, respectively.

When scaling the model size to multi-node scale, DISTMM
outperforms the baseline by up to 3.27×. The evaluation
includes CLIP(13B, 6.7B), CoCa(13B, 13B), and LiT(6.7B,
13B). For these models, we enable pipeline parallelism in
DISTMM using Pipeline executor. Megatron-LM cannot
maintain the batch size requirement of the training (de-
tailed in Section 5.4), thus only the tensor parallelism is
enabled. To support model sizes at the multi-node scale,
Megatron-LM uses tensor parallelism across multiple nodes,
e.g., CoCa (13B, 13B) is partitioned into 16 tensor paral-
lelism. Its 16 partitions are placed on two nodes. In compari-
son, DISTMM uses tensor parallelism within each node, and
leverages pipeline parallelism crossing nodes. Thus, we have
much lower communication overhead [27, 34] as compared
to Megatron-LM.

7.2 Effectiveness of Individual Components
To understand the sources of improvement, we designed a
sequence of experiments, each dedicated to activating a sin-
gle component of DISTMM at a time. We tailored the model
setup and cluster configuration for each targeted component to
mitigate potential side effects and dependencies on other com-
ponents. Modality-aware partitioner and Data load balancer
contribute to the training duration reduction by improving
GPU utilization through adaptive partitioning and load bal-
ancing. In this paper, the GPU utilization is calculated by:

Model FLOPs
FLOPS ·T

, where Model FLOPs is the number of floating-point opera-
tions required to perform a single forward and backward pass,
FLOPS represents the number of floating-point operations per
second supported by a GPU, and T denotes duration.

To evaluate the Modality-aware partitioner, we choose
the single-node scaled models that need tensor parallelism
to demonstrate the GPU utilization differences between
DISTMM’s adaptive partitioning and Megatron-LM’s ho-
mogenous partitioning. In the evaluation of Data load bal-
ancer, we need to mitigate the side effects of Modality-aware
partitioner. To do this, we choose the single-device scaled
models that do not need tensor parallelism to demonstrate the
GPU utilization differences after Data load balancer’s load bal-
ancing. Heterogeneity-aware placement manager contributes
to the training duration reduction by reducing inter-node com-
munication volume through communication-efficient place-
ment. To evaluate it excluding DISTMM’s computation op-
timization side effects, we choose the single-device scaled
models to demonstrate the communication percentage differ-
ences between Megatron-LM and Heterogeneity-aware place-
ment manager’s placement without load balancing. Since
DISTMM-Pipe is the only pipeline parallelism schedule that
can be applied to multimodal model training without changing
the training semantics as described in Section 5.4, DISTMM-
Pipe is effective by ensuring the required modal quality.
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Model Vision submodule Text submodule Total # of Parameters

Layers Hidden Size # of Parameters Layers Hidden Size # of Parameters

CLIP
24 1536 760M 24 1024 350M 1.1B
32 4096 6.7B 32 2560 2.7B 9.3B
40 5140 13B 32 4096 6.7B 19.7B

CoCa
24 1536 760M 24 1536 760M 1.52B
32 4096 6.7B 32 4096 6.7B 13.4B
40 5140 13B 40 5140 13B 26B

LiT
24 1024 350M 24 1536 760M 1.1B
32 2560 2.7B 32 4096 6.7B 9.4B
32 4096 6.7B 40 5140 13B 19.7B

Table 2: Configuration details of the models: CLIP, CoCa, and LiT.
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Figure 7: End-to-end iteration times of DISTMM normalized to Megatron-LM on three models with varied parameter configura-
tions. The label of x-axis (X, Y): (size of vision submodule, size of text submodule)
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Figure 8: GPU utilization comparison on text and vision sub-
modules between DISTMM and Megatron-LM’s data paral-
lelism and tensor parallelism combined solution.

7.2.1 Effectiveness of Modality-aware Partitioner

Experimental setup. We use performance timers to mea-
sure the computing duration when running CLIP(6.7B, 2.7B),
CoCa(6.7B, 6.7B), and LiT(2.7B, 6.7B) in the 8 Amazon EC2
p3.16xlarge instances setting. Megatron-LM applies tensor
parallelism degree 8 to both text and vision submodules and
applies data parallelism to replicate the two submodules as a
whole. In DISTMM’s solution, the Modality-aware partitioner
applies adaptive partitioning individually to two submodules.

Results. Figure 8 shows the GPU utilization differences
of both text and vision submodules between DISTMM and
Megatron-LM. For CLIP(6.7B, 2.7B), the text submodule’s
GPU utilization is largely increased, since the tensor par-

allelism is reduced from 8 to 4. For CoCa(6.7B, 6.7B),
Megatron-LM’s colocated solution limits the GPU utilization
of text submodule by sharing the same batch size as vision sub-
module. In DISTMM’s solution, text submodule and vision
submodule share the same tensor parallelism partition degree
but have larger batch sizes for increasing available memory
under non-colocation. For LiT(2.7B, 6.7B), its lower activa-
tion memory consumption leads to a larger global batch size,
resulting in higher GPU utilization than CLIP(6.7B, 2.7B).

7.2.2 Effectiveness of Data Load Balancer

Experimental setup. We use performance timers to measure
the computation duration when running CLIP(760M, 350M),
CoCa(760M, 760M), and LiT(350M, 760M) in the 8 Amazon
EC2 p3.16xlarge instances setting. Megatron-LM applies data
parallelism to the whole model. In DISTMM’s solution, the
Data load balancer redistributes the data to different submod-
ules, resulting in more balanced workloads.

Results. As shown in Figure 9, the GPU utilization of both
submodules have improved. The improvement amount is as-
sociated with the size of the submodule. DISTMM’s Data
load balancer puts more workload on the smaller submodule
to balance the duration and efficiency. In CLIP(760M, 350M),
the text submodule’s batch size is increased from 8 to 150
while the vision submodule’s batch size is increased from 8 to
10. The resulting GPU utilization improvement comes from
increased batch sizes. For CoCa(760M, 760M), even though
the parameter sizes are the same for text and vision submod-
ules, the sequence length differences lead to the workload
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Figure 9: GPU utilization comparison on text and vision sub-
modules between DISTMM and Megatron-LM.

CLIP CoCa LiT
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Co
m

m
un

ica
tio

n 
pe

rc
en

ta
ge

s

35.4%

25.7%

44.0%

24.5%

32.5%

19.9%

Megatron-LM
DistMM

Figure 10: Communication duration’s percentage in end-to-
end training comparison between DISTMM and Megatron-
LM’s data parallelism solution.

imbalance. After the data load balancing, the text submodule
gains a large GPU utilization improvement, where text sub-
module replicates 16 times and vision submodule replicates
48 times. For LiT(350M, 760M), since the submodules are
balanced before Data load balancer, both submodules gain
large GPU utilization improvements for increased batch sizes.

7.2.3 Effectiveness of Heterogeneity-aware Placement
Manager

Experimental setup. We use performance timers to measure
communication duration when running CLIP(760M, 350M),
CoCa(760M, 760M), and LiT(350M, 760M) in the 8 Ama-
zon EC2 p3.16xlarge instances setting. The communication
duration involves all-gather communication for distributed
modality interaction and all-reduce communication for gradi-
ent synchronization. Megatron-LM applies data parallelism
to the whole model. In DISTMM’s solution, Heterogeneity-
aware placement manager places submodules of different
modalities onto different nodes without load balancing.

Results. As shown in Figure 10, the communication percent-
ages of each model have been reduced due to the communica-
tion volume reduction. DISTMM’s solution achieves largest
communication reduction in CoCa(760M, 760M), since its

text and vision submodules share a similar parameter size.

8 Related Work

Model reordering. IOS [8] explores the parallel opportuni-
ties within the modal structure similar to DISTMM through
reordering the operators on the same device to improve ef-
ficiency, while DISTMM reorders operators on different de-
vices. Rammer [23] orders operators by fusing parallelizable
operations without dependencies into a fused kernel to im-
prove resource utilization, which focuses on inference with
an extremely small batch size instead of DISTMM’s training
workload. DeepSpeed-MoE [30] proposes expert parallelism
to reorder and parallelize homogeneous MoE experts, while
DISTMM focuses on heterogeneous modal submodules.

Model partitioning. Several systems implement one or many
strategies out of the 3D parallelism partitioning. Pytorch’s
DDP [19] and Horovod [32] replicate a model on every de-
vice to use data parallelism, while ZeRO [31] splits both
weights and model states across all devices to accommo-
date larger models for data parallelism. FlexFlow [22], Mesh-
Tensorflow [33], and Gshard [18] split operations in a way
to represent data parallelism and model parallelism. Mega-
tron [34] and DeepSpeed-Megatron [35] support 3D paral-
lelism to parallelize the models in a manually optimized way.
Alpa [40] and Pathway [3] combine single program multiple
data (SPMD) and multiple programs multiple data (MPMD)
abstraction to enable automatic 3D parallelism parallelization.
However, unlike DISTMM, these systems do not consider the
heterogeneous nature of multimodal models.

9 Conclusion

This paper introduced DISTMM, a distributed multimodal
model training system. It consists of four heterogeneity-aware
system components designed specifically for multimodal
model training. DISTMM utilizes the parallelization opportu-
nities within the multimodal model structure, and successfully
solves the performance bottlenecks through adaptively par-
titioning each submodule and load balancing the partitions.
To preserve the model quality, DISTMM also orchestrates a
parallel execution by introducing new pipeline parallelism in-
struction and corresponding schedule. Our experiments show
that DISTMM can outperform the state-of-the-art training
system for models with varied structures and varied sizes.
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