
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Understanding Routable PCIe Performance
for Composable Infrastructures

Wentao Hou, University of Wisconsin-Madison; Jie Zhang and
Zeke Wang, Zhejiang University; Ming Liu, University of Wisconsin-Madison

https://www.usenix.org/conference/nsdi24/presentation/hou

Understanding Routable PCIe Performance for Composable Infrastructures

Wentao Hou1, Jie Zhang2, Zeke Wang2, and Ming Liu1

1University of Wisconsin-Madison 2Zhejiang University

Abstract
Routable PCIe has become the predominant cluster inter-

connect to build emerging composable infrastructures. Em-
powered by PCIe non-transparent bridge devices, PCIe trans-
actions can traverse multiple switching domains, enabling a
server to elastically integrate a number of remote PCIe de-
vices as local ones. However, it is unclear how to move data
or perform communication efficiently over the routable PCIe
fabric without understanding its capabilities and limitations.

This paper presents the design and implementation of rP-
CIeBench1, a software-hardware co-designed benchmarking
framework to systematically characterize the routable PCIe
fabric. rPCIeBench provides flexible data communication
primitives, exposes end-to-end PCIe transaction observability,
and enables reconfigurable experiment deployment. Using
rPCIeBench, we first analyze the communication characteris-
tics of a routable PCIe path, quantify its performance tax, and
compare it with the local PCIe link. We then use it to dissect
in-fabric traffic orchestration behaviors and draw three inter-
esting findings: approximate max-min bandwidth partition,
fast end-to-end bandwidth synchronization, and interference-
free among orthogonal data paths. Finally, we encode gath-
ered characterization insights as traffic orchestration rules and
develop an edge constraints relaxing algorithm to estimate
PCIe flow transmission performance over a shared fabric. We
validate its accuracy and demonstrate its potential to provide
an optimization guide to design efficient flow schedulers.

1 Introduction
Composable infrastructures–organizing computing, memory,
and storage as elastic resource pools–have gained a rising
attraction recently. Empowering by emerging cluster inter-
connects [7, 8, 16], applications running over such a platform
can access disaggregated hardware resources natively as lo-
cal ones, adaptively scale based on workload demands, and
achieve fine-grained sharing with co-located tenants, yield-
ing independent scaling capability, high device utilization,

1rPCIeBench is available at https://github.com/netlab-wiscons
in/rPCIeBench.

and cost-efficiency improvement. We have seen a number of
early engineering samples and commodity prototypes, such
as GigaIO’s FabreX [10], Liqid’s SmartStack [13], H3’s Fal-
con [12], Groq’s GroqRack [11], and Enfabria’s ACF [9].

PCIe (Peripheral Component Interconnect Express) is the
defacto interconnect for high-performance intra-host com-
munications. With the introduction of a specialized non-
transparent bridge (NTB) device, one can extend the PCIe
bus tree and facilitate communications between PCIe devices
from different switching domains, enabling inter-host PCIe
transactions or routable PCIe. Based on this capability, we
can interconnect tens to hundreds of PCIe devices using NTB-
enabled PCIe switches and adapters, which lays the founda-
tion for many of today’s composable infrastructures. More
importantly, routable PCIe also serves as the basis for emerg-
ing memory fabrics, like CXL [8].

However, our community lacks a systematic understanding
of the capabilities and limitations of routable PCIe. Specif-
ically, first, as a routable PCIe fabric introduces extra exter-
nal hops to PCIe transitions, what are the latency and band-
width overheads? Second, since the fabric concatenates an-
other PCIe switching domain at the endpoint of the local
PCIe bus tree, compared with the intra-host PCIe link, how
does the inter-host link behave? How well does it orches-
trate co-located flows? Third, the routable PCIe fabric allows
concurrent host-device and device-device communications.
Since the existing PCIe layered protocol still applies with no
changes, when different communication paths interleave, how
do they interact with each other? In sum, there is a strong
need to characterize the routable PCIe fabric, firmly answer
these questions, and derive some design guidelines to assist
in building communication sublayers and runtime systems
atop routable PCIe-enabled composable infrastructures.

Toward this end, we design and implement a software-
hardware co-designed benchmarking framework (called rP-
CIeBench) to help us conduct the characterization study. It
consists of three major components: (1) programming APIs
that provide various data movement primitives and allow de-
velopers to configure arbitrary testing scenarios; (2) host run-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 297

https://github.com/netlab-wisconsin/rPCIeBench
https://github.com/netlab-wisconsin/rPCIeBench

time and driver, responsible for both data-plane PCIe trans-
action delivery as well as control-plane platform manage-
ment and profiling; (3) FPGA bitstream, realizing the device-
side logic and manifesting itself as a reconfigurable target
accelerator. Overall, rPCIeBench is generic and device/fabric-
independent, enables end-to-end PCIe transaction observabil-
ity, and allows flexible HW/SW/traffic configurations.

We apply rPCIeBench to GigaIO’s FabreX testbed [10] and
first examine the performance characteristics of one routable
PCIe path. We find routable PCIe indeed incurs performance
tax. Its one-way PCIe latency between two endpoints is 868.6
ns, while a local one takes 379.0 ns. The forwarding rate of an
external PCIe switch is slower than a server internal one, yield-
ing 30.4% and 6.9% bandwidth degradation for host→device
and device→host scenarios. Further, as routable PCIe hinges
on the credit-based flow control, the more intermediate hops
along a routable PCIe path, the more time it takes to replenish
credits, resulting in higher latencies, especially when band-
width is oversubscribed. Our findings also indicate that an
external PCIe link preserves most proprieties of a local one
due to the inherent same layered protocol architecture. For ex-
ample, the bandwidth partition among concurrent PCIe flows
over a link depends on the ratio of their outstanding bytes.
PCIe is bidirectional, imposing little interference between
concurrent reversed flows, regardless of local or external.

We then use rPCIeBench to dissect in-fabric traffic orches-
tration characteristics and draw three findings. First, in a
routable PCIe fabric, each communication port realizes a
credit-by-credit round-robin scheduling discipline across ac-
tive lanes, yielding an approximate max-min bandwidth parti-
tion. Second, the fabric preserves little buffering at adapters
and switches, where the bandwidth availability can be pig-
gybacked via credits and quickly back-propagated from the
congestion point to other parts along the path. Third, orthogo-
nal data communication paths over the routable PCIe fabric
can be viewed as physically isolated communication domains,
imposing little performance interference.

Finally, we formalize the data movement problem over a
routable PCIe fabric, encode our empirical findings as traf-
fic orchestration rules, and derive a solution to estimate flow
transmission performance. Our edge constraints relaxing al-
gorithm takes the underlying fabric topology and PCIe flow
properties as inputs, applies iterative reduction by gradually
constraining flow bandwidth based on the capacity of oversub-
scribed links, and outputs the per-flow achieved bandwidth.
Our characterization insights make the routable PCIe fab-
ric well-structured and predictable, holding great potential to
assist flow scheduling design. We validate the algorithm in
three different experimental settings and show that the average
performance prediction error rate is 2.9–11.3%.

2 Background
This section provides the necessary background about
routable PCIe and the resulting composable infrastructures.

2.1 PCIe Non-Transparent Bridge and Routable PCIe

PCIe [16], introduced in 2003, is an interconnect for com-
munication among processors and peripheral devices. It is
a packet-based data communication network and provides
point-to-point connections through high-speed serial buses.
PCIe is organized into three layers: (a) physical layer, which
transmits/accepts packets over a link and performs packet
encoding/decoding; (b) data link layer, maintaining data in-
tegrity, sequencing packets from the transaction layer, and
ensuring reliable delivery via the credit-based flow control
protocol [38–40]; (c) transaction layer that realizes different
request and completion transaction semantics. Today, PCIe
Gen3/4 devices and ecosystems are predominant, Gen5/6 is
gaining adoption, and industry standardization of Gen7 is
underway and expected to be finalized in 2025.

Generally, a PCIe interconnect network consists of end-
points, switches, bridges, and root complexes, running under
one memory domain within a host and supporting the cor-
responding layer functionalities. A bridge, switch, and root
complex forwards and routes packets using memory-mapped
I/O (MMIO) addresses or requester IDs. To enable cross-host
PCIe communication, a special type of PCIe bridge device–
PCIe Non-Transparent Bridge (NTB)–is introduced. A PCIe
NTB allows a local host to interact with a remote device via
native PCIe transactions by building two memory address
mappings: (1) between a remote host and a local NTB: and
(2) between an NTB and a local host. As such, one can en-
able routable PCIe traversing through multiple hosts without
sharing the same memory domain. To realize scalable deploy-
ment, one can integrate a PCIe NTB into an external PCIe
switch that interconnects tens of remote PCIe devices. Con-
sequently, these remote PCIe devices will appear in the host
PCIe subsystem as a PCIe subtree, laying out the foundation
for composable infrastructures. More importantly, routable
PCIe has become the basis of emerging memory fabrics (such
as CXL [8] and CCIX [7]).

2.2 Composable Infrastructures

Infrastructure composability has gained significant attraction
recently because of its independent scaling capability, high
device utilization, and improved cost efficiency. By exposing
remote accelerators and I/O devices as local, applications can
access a large pool of computation/storage resources using
native PCIe or other interconnect transactions (without proto-
col conversion), adaptively scale based on workload demands,
and achieve fine-grained sharing with co-located tenants. We
have seen a rising number of infrastructure startups delivering
a variety of solutions, such as GigaIO’s FabreX [10], Liqid’s
SmartStack [13], H3’s Falcon [12], Groq’s GroqRack [11],
and more. We use the FabreX system as the developing target,
and our benchmarking system generally applies to others. Fig-
ure 1-a and -b depict our prototyped composable testbed and
the architecture of a typical routable PCIe fabric. It encloses
(1) a couple of external PCIe switches that realize scalable

298 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Endpoint
Adapters
Endpoint
Adapters

Host
Adapters

Host
Adapters

PCIe Switch

Host
Adapters

Host Servers (1…n)
System APIs

Runtime&Driver

Bitstream
Accel. (1…

n)

Routable PCIe Fabric

Endpoint
Adapters

Perf. Profiler

CMD FIFO C
M

D
Fabricator

CMD
Parser
CMD
Exe.

Completion
Notifier

(c). System architecture of the runtime and bitstream

(b). rPCIeBench overview

M
em

or
y

M
an

ag
er Response Hdl.

Sub.
Sched

(a). Prototyped testbed

PCIe switch

Host Adapter

Endpoint
Adapter

FPGA

Figure 1: The software architecture of rPCIeBench and its tar-
geted composable hardware testbed.

topologies; (2) host PCIe adapters, offering server-side con-
nectivity; (3) endpoint PCIe adapters, which hold accelerators
and I/O devices in standalone chassis. All connections use
PCIe copper SFF-8644 cables [18]. There is a fabric manager
deployed at one dedicated server, responsible for system man-
agement, such as device enumeration, topology configuration,
and liveness monitoring.

As discussed above, routable PCIe is the technology en-
abler to build composable infrastructure. However, our com-
munity lacks a systematic understanding and detailed per-
formance characterization of routable PCIe, especially when
communicating with composable devices. There are no canon-
ical software utilities, test suites, or referenced hardware plat-
forms. Thus, we fill this gap by developing a benchmarking
framework (called rPCIeBench). Based on it, we design vari-
ous experimental composable scenarios, dissect how routable
PCIe interacts with remote devices, and analyze its in-fabric
traffic characteristics.

3 rPCIeBench Framework

This section first describes the design principles of rP-
CIeBench, and presents its system design and implementation.

3.1 Design Principles

Our goal is to systematically characterize the performance of
routable PCIe and analyze its execution behavior under dif-
ferent composable scenarios. We build rPCIeBench adhering
to the following principles:

• Generality. rPCIeBench supports any PCIe-based hosts
and routable PCIe fabric testbeds, not relying on device-
dependent functionalities. We divide the benchmarking
functionalities between host servers and target devices;

• End-to-end operation. rPCIeBench should capture the
communication performance of an entire data movement
between the data generator and data consumer. We enable
end-to-end tracing and equip a reconfigurable accelerator
at the target side to interact with hosts flexibly;

• Reconfigurability. rPCIeBench should be able to generate
stipulated benchmarking requests based on a traffic profile.
We expose a set of programmable APIs, open-source the
reference hardware architecture and software implementa-
tion, and define pluggable interfaces for module updates.

3.2 Overview

rPCIeBench consists of three components (Figure 1-b),
spreading across host servers and remote devices. The first
one is programming APIs that allow developers to implement
and deploy arbitrary testing scenarios. Users prescribe bench-
marking servers and target devices, initialize the system envi-
ronment, and configure data movement patterns and attributes.
The second part is the host runtime and driver, responsible for
fabricating and submitting PCIe requests, interacting with the
underlying PCIe subsystem and host adapter, handling trans-
action completions, and conducting performance analyses.
The last piece is the bitstream within the FPGA accelerator.
An FPGA generally encloses programmable LUTs (lookup
tables), DSPs (digital signal processors), domain-specific en-
gines, and heterogeneous memory domains (like block RAMs
and HBMs), enabling us to emulate different types of data
communications. Specifically, our bitstream sets up the FPGA
execution environment, receives data transfer requests, instan-
tiates a series of data transfers via DMA engines over routable
PCIe fabric, reads/writes data to memory destinations, and
issues completion signals back.

3.3 System APIs

rPCIeBench provides three types of APIs. The first one is
used to initialize the execution environment of remote FP-
GAs, configure the device memory, and set up the host-device
address mapping. The second category allows device-side
memory management such that one can specify the source
and destination of memory locations for a data transfer. The
last one offers generic communication primitives, enabling
host-device and device-device data movement via the MMIO
(memory-mapped I/O) or DMA engine. We equip each primi-
tive with several attributes, such as performing batched com-
munications via a scatter-gather list, enabling flexible load
balancing among multiple queues, and more.

3.4 Software Components

rPCIeBench benchmarks and characterizes the routable PCIe
fabric using three software subsystems (Figure 1-b).

Performance Profiler. We trace a PCIe transaction’s en-
tire lifetime, from when the benchmarking application sub-
mits the requests until receiving the completion signals. Our
utility timestamps the transaction queueing time at the host
server (phase 1), data traversing time over the fabric (phase
2), and command execution at the remote accelerator (phase
3). All timestamps are marked at the nanosecond precision.
We use polling to improve the system profiling accuracy.
After all stipulated requests are finished, we report (a) the
overall bandwidth, queueing, and average/tail latency; (b) the
CDF/histogram of each transaction and its individual phases.
We follow design strategies (e.g., bitwise recording format,
compact data structure, and memory logger) of contemporary
perf tools [15, 17] when building the profiler.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 299

Category API Description

Device Conf.
dev_init (pci_bus_addr, bar_addr, size) Initialize the FPGA device and map the corresponding BAR address

dev_mem_init(pci_bus_addr, region) Instantiate the memory manager for the given FPGA memory region
dev_setup_mapping(pci_bus_addr, region, hmem_addr) Map the FPGA’s region to the host and set up the device mapping

Memory Mgt.
dev_mem_alloc (pci_bus_addr, region, size) Allocate the device memory from a given region of an FPGA

dev_mem_free (pci_bus_addr, dmem_addr) Free the allocated address from an FPGA and clear up the mapping
dev_mem_getaddr (pci_bus_addr, hmem|dmem_addr) Obtain the memory-mapped host(device) address

Communication
mmio_rd|wr(pci_bus_addr, hmem_addr, dmem_addr, size) Perform an MMIO read/write from the host to a device

h2d|d2h(pci_bus_addr, hmem_addr, size, dmem_addr, qnum) Move data between the host and the device via a given DMA queue
dev2dev_rd|wr(pci_bus_addr, dmem1_addr, size, dmem2_addr, qnum) Move data between two FPGA devices via a given DMA queue

Table 1: The rPCIeBench API list. hmem/dmem = Host(Device) memory address. All communication APIs support a batched version.

Runtime & Driver. Our system runtime has three parts: (a)
a memory manager that allocates and reclaims host-side mem-
ory for data movements; (b) a request submission scheduler,
determining the next issuing transaction based on the specified
policy; (c) a response handler, which polls the completion vec-
tor and wakes up the corresponding submission path. We use
the Linux hugepage and implement a segment-based memory
allocator [23, 24] atop. As shown in Figure 1-c, the sched-
uler is a multi-queueing system, exposing a programmable
interface for users to limit the number of outstanding requests
and define the scheduling policy. One can further control
the scheduling behavior at a fine granularity for each queue.
Besides, our driver layer realizes a slim PCIe subsystem that
implements the basic functionalities (such as bus enumeration,
device registration, and buffer/engine management) to interact
with the device on the control plane (using memory-mapped
registers) and data plane (through DMA).

Bitstream. Figure 1-c depicts the circuit diagram of the
remote accelerator. It has three 64-bit base address register
(BAR) spaces for different roles. BAR0 is used for configuring
the DMA engine, and BAR2 enables passing benchmarking
parameters. BAR4 is connected with the FPGA’s HBM and
mapped to the host memory for data movement. One can
also use BlockRAM in this case and we present the latency
comparison in Appendix B. There are five modules along
the command execution pipeline: (a) command FIFO queues,
taking user requests via MMIO write, where the host runtime
specifies the queue ID; (b) command parser, analyzing the
request format, extracting the parameters, and checking the
request’s validity; (c) command fabricator, which encapsu-
lates PCIe transactions and submits them to the DMA engine;
(d) command executor, reading from device-side memory,
buffering data temporarily, and issuing PCIe writes to the host
memory under host→device communications (device→host
works vice versa); (e) completion notifier, writing the com-
pletion signal to a predefined memory region. Note that (1)
host→device and device→host, albeit exhibiting similar pro-
cessing paths, use different hardware components; (2) we real-
ize device↔device communications by mapping one FPGA’s
HBM to the host memory and accessing it via another FPGA’s
DMA engine, causing data copied from one FPGA to another.

3.5 Command Data Path

rPCIeBench supports three types of communication primi-
tives (Table 1). An MMIO read/write, issued from the host

processor, is the first category, generating only one PCIe
read/write transaction to access the device memory. The sec-
ond one is a host-device data movement. As depicted in Fig-
ure 2-a/b, it encompasses four steps: (a) passing command
arguments via an MMIO write, (b) moving data between host
and device, (c) reading/writing to the HBM, and (d) issuing
completion signals via another PCIe write, yielding 1 MMIO
write and 2 PCIe transfers (which will translate to multiple
PCIe transactions based on the command size) in total. The
last type is device-device communication (Figure 2-c/d), oper-
ating similarly to the host-device case. The difference is that
two device memory accesses are triggered at both source and
destination. We use a server host to submit requests and catch
completion signals. In our implementation, command FIFO
queues and data buffer (of the command execution engine) are
located in the block RAMs (BRAMs). Under batch execution,
the command fabricator within each device (Figure 1-c) for-
malizes a list of transactions and schedules them concurrently.
We trace each primitive between submitting the command
and receiving the completion acknowledgment.

3.6 Workflow

Using the rPCIeBench framework requires three basic steps,
and we follow them when performing the characterization
throughout this paper. First, one should configure the com-
posable testbed based on the experimental data movement
flows, considering how host adapters, PCIe switches, and end-
point adapters are connected. The second step is to write
profiling applications using our system APIs. This includes
determining traffic profiles and benchmarking parameters. Fi-
nally, one will deploy the host execution environment, load
the bitstream into FPGAs, run the profiling application, and
collect performance results.

4 Basic Performance of Routable PCIe
This section examines the performance characteristics of
routable PCIe and compares them with the local PCIe case.

4.1 Experimental Methodology

Hardware testbed. Our host servers are 2U Dell R740
boxes, enclosing two 20-core Intel Xeon Gold 6248 pro-
cessors (running at 2.5GHz), 192GB DRAM, and 1.92TB
HDD. We disable both Hyper-Threading and Turbo Boost
features. All PCIe lanes of the server are Gen3. We use Xilinx
Alveo U55C cards (×16) as the major fabric-attached devices.
As discussed above, we choose the GigaIO’s Fabrex as the

300 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU

Host FPGA

HBM

1 CMD FIFO

CMD Exe.2

Cpl. Notifier

3
HBM
writes

DRAM

(a). Host-2-Device (1 MMIO write + 1 PCIe read + 1 PCIe write)

4

Pass CMD arguments via MMIO writes

Issue completion signals via PCIe writes

Copy data from host DRAM to device
buffer via PCIe reads

CPU

Host FPGA

HBM

1 CMD FIFO

3

Cpl. Notifier

2
HBM
reads

DRAM

(b). Device-2-Host (1 MMIO write + 1 PCIe write + 1 PCIe write)

4

Pass CMD arguments via MMIO writes

Issue completion signals via PCIe writes

Copy data from device buffer to host
DRAM via PCIe writes CMD Exe.

FPGA1

HBM

CMD FIFO CMD Exe.

Cpl. Notifier

4
HBM
writes

Host

DRAM

(c). Device-2-Device Read (1 MMIO write + 1 PCIe read + 1 PCIe write)

1 Pass CMD arguments via
MMIO writesCPU

FPGA2

HBM

CMD FIFO

Cpl. Notifier

2
HBM
reads

Copy data from device
buffer to device buffer
via PCIe reads

3

5 Issue completion signals
via PCIe writes

FPGA1

HBM

CMD FIFO

Cpl. Notifier

2
HBM
read

Host

DRAM

1 Pass CMD arguments via
MMIO writesCPU

FPGA2

HBM

CMD FIFO

Cpl. Notifier

4
HBM
writes

Copy data from device
buffer to device buffer
via PCIe writes

3

5 Issue completion signals
via MMIO writes

(d). Device-2-Device Write (1 MMIO write + 1 PCIe write + 1 PCIe write)

CMD Exe.

CMD Exe.

CMD Exe.

Figure 2: Data path of four communication primitives. We consider the data movement between host DRAM and device HBM.

 0
 2
 4
 6
 8

 10
 12
 14

8 16 32 64 128 256 512

L
a

te
n

c
y
 (

u
s
)

MMIO Read Size (B)

Local
Remote

Local w/ NUMA
Remote w/ NUMA

(a) MMIO.

 0

 2

 4

 6

 8

 10

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

L
a

te
n

c
y
 (

u
s
)

Data Movement Size (B)

Local
Remote

Local w/ NUMA
Remote w/ NUMA

(b) Device→Host.

 0

 2

 4

 6

 8

 10

 12

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

L
a

te
n

c
y
 (

u
s
)

Data Movement Size (B)

Local
Remote

Local w/ NUMA
Remote w/ NUMA

(c) Host→Device.

Figure 3: Latency of MMIO, Device→Host, and Host→Device communication when varying the data sizes.

routable PCIe-based composable testbed. Its RS4024 switch
has 24 ports, where each connects to a PCIe Gen3×4 link.

Terminology. We use a PCIe flow to describe one data
transfer from a source entity to a destination entity. Multiple
flows can interleave over the same communication path for
different data movements. A PCIe transaction layer packet (or
packet for short) and a PCIe transaction are used interchange-
ably, referring to the smallest transmission granularity of a
PCIe flow. Our work mainly considers three types of PCIe
transactions [16]: memory read, completion with data, and
memory write. The first two are non-posted, requiring data
responses, while the last one is a simple posted transaction.
MPS (maximum payload size) and MRRS (maximum read
request size) limit the size of corresponding packets, which
are 1024B and 512B in our case.

Experiment configuration. This section focuses on the
single communication path. There are three types of commu-
nication paths in a composable testbed: host→device (H2D),
device→host (D2H), and device→device (D2D). We set up
each of them and use the rPCIeBench’s communication prim-
itives for traffic generation. We change our traffic profile by
varying the number of outstanding PCIe flows, the packet size
per flow, and its burstness. rPCIeBench reports average/tail
latency and throughput as the major performance metrics.

4.2 Latency

One-way PCIe. We first dissect the one-way PCIe latency
between two entities using the rPCIeBench’ tracing function-
ality. When communicating within a server, we find out that
the local PCIe one-way latency is 379.0 ns, which matches
the number reported in recent literature [1, 2, 56]. However,
when traversing across the routable PCIe fabric, the one-way
PCIe latency rises to 868.6 ns, adding 489.6 ns (129.2%)

overheads! This is non-trivial for small-sized PCIe transfers.
We further worked with the device vendor and performed a
latency breakdown. We find that (1) the host adapter, switch,
and target adapter consume ∼105ns each due to the NTB
switching, respectively; (2) the propagation delay of the cop-
per wire is around 5ns; (3) the RS4024 has a 10ns processing
delay; (4) the host-side software takes ∼150ns.

DMA-induced PCIe. When PCIe transfers are triggered
via DMA, we should include the DMA engine execution
cost, including preparing the command, submitting it to the
command queue, and catching the completion signal. We
examine the hardware module within the accelerator and find
out this overhead is around 418.0 ns regardless of local or
remote. For example, a 64B PCIe write issued via the DMA
engine would take 946.0 ns and 1421.4 ns to complete in the
local and remote cases, respectively.

MMIO & H2D & D2H. The latency of an MMIO read
depends on the number of generated cache lines. As shown
in Figure 3-a, a local 64B PCIe read takes 766.0 ns, while
the remote one consumes 1751.0 ns, because one PCIe round
trip (two-way) is required. When crossing the CPU socket,
we observe there is an additional 67.0 ns and 52.0 ns for the
local and remote scenario, contributing 833.0 ns and 1803.0
ns, respectively. When the MMIO read size is 1KB, yielding
16 cache lines, a local PCIe latency rises to 11.9 us, while the
remote one increases to 27.8 us.

Both device→host and host→device trigger the same
amount of PCIe transactions (Figures 2-a/b). However, in
the D2H case, as we overlap the data write and completion
acknowledgment, it takes less time to finish. Figures 3-b/c
report our results. For example, a 64B D2H data movement
consumes 1.3 us, while the H2D takes 2.0 us. When the data
size is less than 4KB, routable PCIe adds 69.3% and 91.5%

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 301

 0

 5

 10

 15

 20

 25

 30

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

L
a

te
n

c
y
 (

u
s
)

Data Movement Size (B)

Cross-Read
Within-Read

Cross-Write
Within-Write

Figure 4: D2D latency when communica-
tion within or across a PCIe switch.

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32 64 128 256 512 10242048

B
a

n
d

w
id

th
 (

G
B

/s
)

Data Transfer Size (KB)

Local-H2D
Remote-H2D

Local-D2H
Remote-D2H

Figure 5: H2D&D2H bandwidth varying
the data transfer size.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 10242048

B
a

n
d

w
id

th
 (

G
B

/s
)

Data Transfer Size (KB)

Cross-Read
Within-Read

Cross-Write
Within-Write

Figure 6: D2D bandwidth when communi-
cating within or across a PCIe switch.

latency penalties to the D2H and H2D cases due to 3 one-way
PCIe. With larger data movement sizes, such overheads di-
minish considerably. For instance, when performing a 64KB
data transfer over the routable PCIe fabric, the D2H/H2D
path takes 8.0/11.1 us, adding 17.9%/48.7% (6.8/7.5 us) com-
pared to the local scenario. This emphasizes the importance
of batching when building systems over the routable PCIe
fabric. Further, NUMA still hurts latency a little bit. On av-
erage across all cases, it brings in 10.7%/7.0% overheads for
the local H2D/D2H data transfers and adds 7.5%/11.2% more
latencies for the remote ones.

D2D. We focus on two types of device-device communi-
cation: one is crossing the external PCIe switch; the other is
within the PCIe subtree, not across the switch. Clearly, travers-
ing the switch is not free. When the data transfer size is less
than 1KB, as shown in Figure 4, crossing the switch incurs
2.2% and 11.0% more latencies for the read and write scenar-
ios, respectively. As the data movement size increases beyond
1KB, we find that the overhead increases significantly. For
example, a 64KB data transfer over D2D read/write within the
subtree consumes 10.0/10.8 us, but takes 29.6/18.6 us when
passing the switch, resulting in 194.4%/72.6% overheads.

Takeaways. Communicating over the routable PCIe fabric
(via the switch and adapters) is not as performant as the local
case. A one-way PCIe transfer takes 868.6 ns (compared with
379.0 ns in the local case). When using DMA engines for
data movements, one should also consider the engine execu-
tion cost (which is 418.0 ns in our case). Large data transfer
(beyond 4KB) can amortize the routable PCIe-induced la-
tency overheads for H2D and D2H scenarios, suggesting the
effectiveness of batching. However, for D2D communication,
traversing the external PCIe switch is costly, especially for
4+KB data sizes. This indicates that when building D2D com-
munication subsystems, one should consider not only their
positions over the fabric, but also the data transfer granularity.

4.3 Bandwidth

H2D&D2H. We gradually increase the data transfer size
and measure the communication bandwidth (Figure 5). Within
a server host, H2D and D2H max out their bandwidth with
at least 1MB data granularity, achieving 12.2 GB/s and 12.3
GB/s. However, when communicating across the routable
PCIe fabric, H2D and D2H drops to 8.4 GB/s and 11.3 GB/s,
contributing to 30.4% and 6.9% degradation. We carefully
examine each communication entity across the path and find

out that the maximum payload size (MPS) and the number
of concurrent PCIe transactions are the same in both local
and remote cases. This indicates the bandwidth drop mainly
comes from the fact the PCIe transaction rate of the external
switch is slightly lower than an internal PCIe switch on the
server board. The H2D and D2H have different performance
degradation because the adapters and switch of our compos-
able testbed use different DMA engines for upstream and
downstream links, respectively.

D2D. Next, we present the device→device communication
bandwidth. As shown in Figure 6, within a PCIe subtree
(not across the remote switch), a read/write D2D transfer
achieves 9.8/8.0 GB/s. However, surprisingly, when travers-
ing the switch, the maximum achieved bandwidth is only
2.3/4.3 GB/s! The 4.2/1.8× bandwidth degradation cannot be
simply attributed to the additional switching hop across the
path (§4.2). By dissecting the data path (Figure 2), we find
out that another limitation–root complex contention, happen-
ing because all the PCIe transactions (including launching,
preparing, and running the command) pass the root of a PCIe
bus tree–throttles the number of concurrent cross-switch D2D
transfers. However, in the within case, step 3 (Figure 2-c) and
steps 3/5 (Figure 2-d) are executed locally within the subtree.

Takeaways. The forwarding rate of an external PCIe switch
operates slower than a server internal PCIe switch, yielding
30.4% and 6.9% bandwidth degradation for H2D and D2H
scenarios. Device-to-device communications not only traverse
the external PCIe switch but might also cause root complex
contention (when devices are located in a local-remote hybrid
scenario), jeopardizing the maximum achieved bandwidth.

4.4 Latency v.s. Throughput

We examine the latency-throughput relation for each data
movement direction. We gradually inject more background
traffic (generated via large PCIe transactions) and measure the
average latency of 64B PCIe requests. As shown in Figures 7
and 8, the latency starts to rise when approaching the maxi-
mum bandwidth because credit starvation happens, causing
request stalls. However, we find that it takes more time for a
routable PCIe fabric to replenish credits. For example, when
achieving 80–90% of the maximum bandwidth, the local H2D
and D2H experience 20.2% and 28.7% higher latencies, while
the remote ones see 55.3% and 28.1%, respectively. Similarly,
within a PCIe subtree, there is an 18.3%/3.9% higher laten-
cies for the D2D read/write case, while the cross fabric case

302 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

L
a

te
n

c
y
 (

u
s
)

Bandwidth (GB/s)

Local-H2D
Remote-H2D

Local-D2H
Remote-D2H

Figure 7: Latency v.s. throughput for lo-
cal/remote H2D and D2H cases.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 2 4 6 8 10

L
a

te
n

c
y
 (

u
s
)

Bandwidth (GB/s)

Cross-Read
Within-Read

Cross-Write
Within-Write

Figure 8: Latency v.s. throughput for
within/cross D2D read/write cases.

 0

 20

 40

 60

 80

 100

 120

LH2D RH2D LD2H RD2H

In
c
re

a
s
e

d
 L

a
t.

 (
%

)

Request Granularity (B)

64B
256B

1KB
4KB

32KB
64KB

Figure 9: Tail-over-Avg latency increases
for local/remote H2D and D2H cases.

 0

 2

 4

 6

 8

 10

 12

64 128 256 512 1K 2K 4K 8K 16K 32K

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Request Size of Flow2 (B)

Local-Flow1
Local-Flow2

Remote-Flow1
Remote-Flow2

(a) Host→Device.

 0

 2

 4

 6

 8

 10

 12

64 128 256 512 1K 2K 4K 8K 16K 32K
B

a
n

d
w

id
th

 (
G

B
/s

)

PCIe Request Size of Flow2 (B)

Local-Flow1
Local-Flow2

Remote-Flow1
Remote-Flow2

(b) Device→Host.

 0

 2

 4

 6

 8

 10

64 128 256 512 1K 2K 4K 8K 16K 32K

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Request Size of Flow2 (B)

Cross-Flow1
Cross-Flow2

Within-Flow1
Within-Flow2

(c) Device→Device Read.

Figure 10: Bandwidth partition between two concurrent flows of Host→Device, Device→Host, and Host→Device communications.

experiences 41.1%/6.7% more. Since the (routable) PCIe
fabric applies a hop-by-hop credit-based flow control, the
more intermediate entities along the path, the more credit
interactions one would observe. When bandwidth is (close
to) oversubscribed, a longer communication path needs more
credit coordination to deliver a transaction.

Tail latency. Next, we interleave 16 concurrent
homogeneous-sized PCIe flows and sweep the request
size of each flow from 64B to 64KB. For each data movement
direction, when the number of available credits runs out
at the link layer, a PCIe transaction would be queued up,
increasing the service latency. Hence, we measure the
average/P99 latency and use the Taillat

Avglat
metric to estimate the

credit capacity. As shown in the Figure 9, we find that the
credit capacity is not consistent for different directions. For
example, the H2D experiences the largest ratio under 16 4KB
requests, generating up to 512 concurrent transactions, while
the D2H direction can sustain 4096 ones (i.e., 16 32KB).
This is the same for both local and remote cases, indicating
that the routable PCIe fabric has provisioned enough credits
(or communication resources) than endpoints. Similarly, D2D
reads/writes support 128 and 512 concurrency when staying
within and across the fabric, respectively.

Takeaways. Similar to most communication fabrics, one
would experience latency rises under high bandwidth utiliza-
tion. However, the issue stems from the credit-based flow
control in the data link layer. It generally takes more time
for a routable PCIe fabric to replenish credits because there
are more intermediate identities along the path, requiring
more credit coordination. The fabric is provisioned with more
credits than endpoints, leaving itself from becoming a com-
munication bottleneck from the data link layer perspective.

4.5 Bandwidth Partition

We explore how bandwidth is partitioned across concurrent
PCIe flows. Our experiments are configured as follows. For
each data movement direction, we consolidate two PCIe flows

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12L
a

te
n

c
y
 o

f
F

lo
w

2
 (

u
s
)

Bandwidth of Flow1 (GB/s)

Local
Remote

(a) Device→Host.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12L
a

te
n

c
y
 o

f
F

lo
w

2
 (

u
s
)

Bandwidth of Flow1 (GB/s)

Within
Cross

(b) Device→Device.
Figure 11: Path asymmetry demonstration of Device→Host and
Device→Device communications.

that continuously issue one outstanding PCIe request: Flow1
sends a 4KB request; Flow2 increases its transaction size from
64B to 32KB. We find that when concurrent PCIe flows share
the same communication path, bandwidth partition among
these flows is roughly proportional to the ratio of their out-
standing bytes. Take the H2D case as an example (Figure 10-
a). When a 4KB flow contends with a 128B one, Flow1 and
Flow2 achieve 9.5 GB/s and 0.39 GB/s, respectively, resulting
in a 32.8 partition ratio. When two 4KB flows interleave, both
sustain at 5.5 GB/s. The remote H2D scenario shows simi-
lar results. This observation also holds for the device→host
data movement. For example, a 4KB flow achieves 4.3/3.9
GB/s in the local/remote D2H case (Figure 10-b), one-third
of the total bandwidth, when intermixing with the 8KB flow.
When moving data between two devices, such a bandwidth
partition rule still holds. As shown in Figure 10-c, Flow1 only
consumes 0.5 GB/s and 1.9 GB/s in the D2D read case when
across or within the external PCIe switch, ∼22.0% of the total
bandwidth, where Flow2 issues a 16KB request.

Takeaways. Between two endpoints, the bandwidth parti-
tion among concurrent PCIe flows mainly depends on the
ratio of their outstanding bytes. The defacto transaction layer
imposes no fair bandwidth enforcement. The routable PCIe
fabric extends the basic scheme of a local PCIe network.

4.6 Asymmetric Communication Path

PCIe is a full-duplex bidirectional network. This section ex-
plores whether flows with opposite directions interfere with

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 303

CPU RC

Host Adapter 1

Server 1

(a). Interleaved paths over the routable PCIe fabric (c). A generic port architecture

Endpoint
Adapter 1

Remote Chassis 1
FPGA 1
FPGA 2

Endpoint
Adapter 2

Remote Chassis 2
FPGA 3
FPGA 4

PCIe Sw
itchCPU RC

Host Adapter 2

Server 2

F1

F2

SerDes (Retim
er)

Lane1

Downstream

Lanen

RR
Aribter

Upstream

Credit Engine

RR
Aribter

Lane1

Lanen

F3

F4

CPU RC

Host Adapter 1

Server 1

Endpoint
Adapter 1

Remote Chassis 1
FPGA 1
FPGA 2

Endpoint
Adapter 2

Remote Chassis 2
FPGA 3
FPGA 4

PC
Ie Sw

itchCPU RC

Host Adapter 2

Server 2

F1
F2

F3
(b). Orthogonal paths over the routable PCIe fabric

F4

Figure 12: We consider a small deployment with two host servers and two remote chassis, connected via an external PCIe switch. (a)
and (b) present in-fabric traffic sharing scenarios. (c) shows the generic architecture of a communication port. RC=Root Complex.

each other. We place a latency-sensitive flow (Flow2) from A
to B and a throughput-oriented flow (Flow1) in the reverse di-
rection B→A over one physical communication path, and then
analyze how latency varies with the throughput. Figure 11 re-
ports our results. Take the device→host as an example. When
maxing out the bandwidth, Flow2’s latency only increases
from 1.6 us to 1.8 us in the local case, while the remote one
stays around 2.2–2.3 us. Similarly, in terms of device-device
communications, within a PCIe subtree, Flow2’s latency sus-
tains at 3.1 us regardless of how much traffic is injected on the
reversed side; across the PCIe switch, Flow2’s latency varies
between 3.0 us and 3.1 us. Hence, there exists little interfer-
ence among concurrent flows under opposite directions.

Takeaways. Akin to the local PCIe network, routable
PCIe incurs no communication interference among concur-
rent reverse PCIe flows over one physical path, no matter
whether transmitting data is in any of the following directions:
host→device, device→host, and device→device.

5 In-Fabric Traffic Orchestration
§4 focuses on understanding different aspects of a single
communication path. This section analyzes how multiple
paths interact over the routable PCIe fabric, especially at the
host adapter, external PCIe switch, and endpoint adapter.

5.1 Max-Min Fair Bandwidth Allocation

Across the fabric, PCIe flows from different communication
paths contend for the bandwidth resource of any intermediate
transmit points. As shown in Figure 12-a, we configure three
path interleaving scenarios that share the host adapter (F1 v.s.
F2), switch (F1 v.s. F3), and endpoint adapter (F2 v.s. F4),
respectively. In each experiment, we fix the packet size of one
flow, gradually increase the packet size of another flow, and
explore how bandwidth is partitioned.

Our results show that each communication entity (e.g., an
adapter or a switch) realizes an approximate max-min band-
width allocation scheme. Specifically, when N flows from
different paths/lanes share an upstream/downstream port with
the following demands BWF1 ,BWF2 , ...,BWFn , if the aggre-
gated bandwidth is less than the link capacity, each flow can
achieve its desired rate; if the bandwidth is oversubscribed,
each flow Fi will receive its max-min share.

For example, as shown in Figure 13-a, when a 256B flow
is interleaved with a 4KB one at the downstream path of a

host adapter, both max out their bandwidth, resulting in 10.7
GB/s, less than the link capacity. However, in terms of the
1KB and 4KB mixed case, they achieve 7.5 GB/s and 8.5
GB/s when running in a standalone mode, but receive an
equal bandwidth share (i.e., 5.6 GB/s). The upstream one
presents similar results (Figure 13-d). Regarding the PCIe
switch (Figures 13-b/e), when a 64B flow (Flow1) shares
with the other one, it can always achieve 0.5/1.3 GB/s along
the downstream/upstream path. When Flow1’s packet size
rises to 1KB, Flow1 sustains at 7.5 GB/s if the packet size of
Flow 2 is less than 512B, and drops to 5.6 GB/s, which is the
same as Flow2 if the packet size exceeds 1KB. The endpoint
adapter behaves similarly. Take the 4KB+X upstream con-
tention as an example (Figures 13-f). Since two flows traverse
different communications (one is host→device and the other
is device→device), Flow1 and Flow2 achieve 12.6 GB/s and
8.2 GB/s at most if deployed exclusively. When interleaving,
Flow2 is able to max out, but Flow1 is limited to 11.3 GB/s
due to the link capacity. We also notice that the bandwidth
partition at the upstream and downstream points is not always
symmetric (Figure 13-c). We believe this is mainly due to
the implementation differences across our communication
primitives (e.g., the completion delivery step in Figure 2).

We then drill down to the underlying mechanism to explore
how such cross-lane (link) max-min fairness is realized. By
walking through the hardware details of the adapter/switch,
we find that they all employ a generic port architecture (Fig-
ure 12-c), which includes: (a) a SerDes module for data con-
version, (b) a upstream and downstream pipeline for packet
transmission, and (c) a credit engine to realize the link layer
protocol. Some might also include a PCIe retimer to retrans-
mit signals. The reason why max-min fairness across lanes is
guaranteed is due to the compounding effect between the
credit engine and round-robin arbiter within the pipeline.
Specifically, the credit-based flow control enforces an even
credit distribution scheme across active lanes, whereas the ar-
biter inside the pipeline schedules each fixed-size PCIe flit in
a round-robin fashion. Note that a flit is the basic transmission
unit over the PCIe, which is 64B in our case. Therefore, each
communication port realizes a credit-by-credit (or flit-by-flit)
round-robin scheduling across all active lanes, resulting in an
approximate max-min bandwidth allocation. Even though this
is in contrast to the classic bit-by-bit round-robin (BR) [25]
or deficit round-robin (DRR) [53] algorithm, given most PCIe

304 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(256B+X)
Flow2(256B+X)

Flow1(1KB+X)
Flow2(1KB+X)

(a) Host adapter downstream.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(1KB+X)
Flow2(1KB+X)

(b) PCIe Switch downstream.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(4KB+X)
Flow2(4KB+X)

(c) Endpoint adapter downstream.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(256B+X)
Flow2(256B+X)

Flow1(256KB+X)
Flow2(256KB+X)

(d) Host adapter upstream.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(1KB+X)
Flow2(1KB+X)

(e) PCIe Switch upstream.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Packet Size of Flow2 (B)

Flow1(64B+X)
Flow2(64B+X)

Flow1(4KB+X)
Flow2(4KB+X)

(f) Endpoint adapter upstream.

Figure 13: We report the bandwidth of two PCIe flows contending the upstream/downstream point of the host adapter, PCIe switch,
and endpoint adapter, where Flow1 is fixed-size and Flow2 varies from 64B to 4KB. The number of outstanding PCIe transitions is 1.

 0

 1

 2

 3

 4

 5

10 30 50 70 90 100

L
a

te
n

c
y
 (

u
s
)

BW Utilization of Flow2 (%)

Upstream-P50
Upstream-P90
Upstream-P99

Downstream-P50
Downstream-P90
Downstream-P99

(a) Host adapter.

 0

 1

 2

 3

 4

 5

10 30 50 70 90 100

L
a

te
n

c
y
 (

u
s
)

Bandwidth Utilization of Flow2 (%)

Upstream-P50
Upstream-P90
Upstream-P99

Downstream-P50
Downstream-P90
Downstream-P99

(b) PCIe Switch.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10 30 50 70 90 100

L
a

te
n

c
y
 (

u
s
)

Bandwidth Utilization of Flow2 (%)

Upstream-P50
Upstream-P90
Upstream-P99

Downstream-P50
Downstream-P90
Downstream-P99

(c) Endpoint adapter.

Figure 14: We report the P50, P90, and P99 latency of Flow1 when varying the bandwidth of Flow2, where two PCIe flows contend the
host adapter, PCIe switch, and endpoint adapter, respectively. We consider the upstream and downstream of each scenario.

flows in our context contain a sequence of flits, max-min
bandwidth partition is achieved.

Takeaways. In a routable PCIe fabric, any communication
port (within a switch or adapter) realizes a credit-by-credit
round-robin scheduling across different active lanes, resulting
in a max-min bandwidth partition. This not only helps us to
simplify the performance reasoning under traffic congestion
but also assists us in deriving a predictable flow scheduler.

5.2 Fast End-to-End BW Synchronization

In a shared networking fabric, the link available bandwidth
fluctuates considerably with the application behaviors and the
underlying topological changes. Such vagaries would cause
either traffic congestion (e.g., in-network queue build-up and
transmission delay increase) or bandwidth underutilization.
In an Ethernet fabric, the congestion control mechanism at the
end host will adjust the traffic sending rate accordingly based
on stipulated congestion signals. Since the routable PCIe has
no such layer, in this section, we’d like to explore how PCIe
flow bandwidth is adjusted based on the traffic condition.

We configure three experimental scenarios, where each has
two PCIe flows sharing an intermediate communication point
from different paths. The first flow is fixed and consumes more
than half of the link bandwidth capacity. We then gradually
increase the bandwidth utilization of the second flow and mea-
sure the P50, P90, and P99 latency of each PCIe transaction of
Flow1. We find that the routable PCIe fabric has little queue-
ing effect and the bandwidth demand can quickly propagate

from the bottleneck point to upstream entities along the path.
Ash shown in Figure 14-a/b, when contending the host adapter
or PCIe switch, we observe up to 3.5%/2.3% or 2.6%/2.1%
P99 latency increase at the upstream/downstream port. This is
mainly because the flow at a congested upstream/downstream
port would receive fewer credits than it requires, where such
information will be back-propagated to the upstreamed ports
until the source host. Since the adapter and switch within
the fabric preserve little buffering, the end host could then
adjust the flow rate based on how fast the PCIe transactions
are delivered to the destination. However, the end host adapter
(Figure 14-c) behaves differently, where contention at the up-
stream/downstream path can use drastic P99 latency increase,
more than 10us. This is because our device engine (Figure 1)
doesn’t implement an auto-pacing module as the host and uses
a large command queue inside, yielding significant queueing.

Takeaways. The routable PCIe fabric provides ultra-low
latency communication between two endpoints and preserves
little buffering at both adapters and switches. The bandwidth
availability will be piggybacked over credits, which can be
quickly back-propagated from the congestion point to up-
stream entities until the source node. One can use this as a
congestion signal when coordinating concurrent flows.

5.3 Interference-free Orthogonal Paths

Last, we explore how orthogonal communication paths inter-
act with each other over the PCIe fabric since they stay under
the same PCIe root complex. As shown in Figure 12-b, we

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 305

 0

 5

 10

 15

 20

 0 2 4 6 8 10F
lo

w
2

 P
9

9
 L

a
t.

 (
u

s
)

Bandwidth of Flow1 (GB/s)

F1+F3
F2+F4

F1+F4

(a) Downstream.

 0

 5

 10

 15

 20

 0 2 4 6 8 10F
lo

w
2

 P
9

9
 L

a
t.

 (
u

s
)

Bandwidth of Flow1 (GB/s)

F1+F3
F2+F4

F1+F4

(b) Upstream.

Figure 15: Performance interference among orthogonal paths.

enable concurrent data movements across these orthogonal
paths (e.g., F1 v.s. F3, F2 v.s. F4, F1 v.s. F4) and explore how
latency and bandwidth are affected. Specifically, we increase
the bandwidth of PCIe flow1 by increasing the number of out-
standing requests and measure the transaction latency of flow2
(which is a 64B flow). As shown in Figures 15, unsurprisingly,
orthogonal paths across both upstream and downstream links
are completely independent and interference-free.

Takeaways. Orthogonal data paths over the routable PCIe
fabric can be viewed as physically isolated communication do-
mains, imposing little performance interference. When reason-
ing about the fabric performance or designing flow schedulers,
one can apply a divide-and-conquer strategy and categorize
flows into different isolated domains.

6 Performance Model of the Routable PCIe
Fabric: An Optimization Guide

Based on gathered characterization insights, we formalize the
data movement problem over a routable PCIe fabric, develop
an algorithm to predict the PCIe flow transmission perfor-
mance, and validate its accuracy in real settings.

6.1 Problem Formalization

We describe a routable PCIe fabric as a directed tree G =
{N,E}, where the host root complex is the root, PCIe end-
points are leaves, and internal/external PCIe switches are
branches. Each edge represents a PCIe upstream or down-
stream link with capacity. The fabric holds a set of active
flows F = { fi}, where each is described by fi = (Bin

i ,src,dst).
Bin

i is the bandwidth of a flow when running exclusively over
the fabric (i.e., standalone BW). src and dst are the source
and destination nodes of a PCIe transfer, which can be a host
or PCIe endpoint. We assume there is a unique path between
two nodes, which is widely applicable to the PCIe subsystem.

We aim to estimate how much bandwidth a flow is allocated
when deploying all the flows concurrently over the routable
PCIe fabric. To achieve this, we encode the above characteri-
zation insights as the following traffic orchestration rules:

• Rule 1: Maximum bandwidth bound. The aggre-
gated bandwidth of co-located flows over an up-
stream/downstream link should be no larger than the link
bandwidth capacity (§4.3);

• Rule 2: Bandwidth partition of a single link. Over one
PCIe link, the bandwidth partition among concurrent PCIe
flows depends on the ratio of their outstanding bytes (§4.5).

Algorithm 1 Bandwidth Constraints on an Edge
Input: Edge Capacity C, flows F = { fi} and their unconstrained bandwidths {Bu

i }
Output: The bandwidth constraints of flows {Bc

i }
1: if ∑Bu

i ≤C then
2: Bc

i = Bu
i , for each fi; ▷ not oversubscribed

3: else
4: n = F.size(); C′ =C;
5: while True do
6: m = 0;
7: for each fi in F do
8: if Bu

i ≤C′/n then ▷ less than equal share
9: Bc

i = Bu
i ; C =C−Bu

i ; ▷ not constrained
10: F.remove(fi); m = m+1;
11: n = n−m; C′ =C;
12: if m == 0 then ▷ all flows exceed equal share
13: break; ▷ must break if oversubscribed
14: for each fi in F do
15: Bc

i =C′/n; ▷ equal share on remaining capacity

Besides, there exists no interference between the upstream
and downstream direction (§4.6);

• Rule 3: Approximate max-min fair bandwidth alloca-
tion. Each communication entity guarantees the max-min
fairness across active lanes/links due to the credit-by-credit
round-robin scheduling discipline (§5.1). A PCIe flow can
max out its bandwidth when the link is under-utilized and
drops to a fair share when oversubscription happens;

• Rule 4: Isolated communication domains. There exists
no interference among orthogonal paths (§5.3). One can ap-
ply it to categorize flows in the first place and then conduct
performance analysis hierarchically.

6.2 Edge Constraints Relaxing Algorithm

We propose a new algorithm (called Edge Constraints Relax-
ing) to solve the problem. The key idea is to apply iterative
reduction by gradually constraining flow bandwidth based on
the capacity of oversubscribed links. Given the fabric topol-
ogy and deployed flows as inputs, based on the encoded rules,
our algorithm first finds all the oversubscribed edges and their
bandwidth constraints, and then updates each flow with its
most conservative constraints. Such iterative relaxing allows
all flows to converge to one allocation in finite steps where no
oversubscribed edge exists. The algorithm requires us to main-
tain two tables: oversubscribed edges and flow constraints.

Next, we’ll describe the algorithm in detail. To begin with,
we first initialize all flows with their standalone bandwidths
(ALG2 L1). For the oversubscribed edges table, each link is
associated with its housed flows (ALG2 L2–L6). Next, for
each round, the algorithm traverses each edge and determines
if it is under oversubscription or not by comparing the link
bandwidth capacity and the aggregated target bandwidth of
its housed flows. For all oversubscribed ones, we use the
Algorithm 1 based on Rule 3 to compute the constrained
bandwidth of each flow, which is then stored in the flow con-
straints table (ALG2 L10–L12). After all edges are traversed
in this round, flows that have constraints are updated accord-
ingly. The largest constraint of a flow is chosen as its next
bandwidth (ALG2 L17). Flows not being captured means
they are able to achieve their bandwidth in the current round,

306 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 16: The workflow of the proposed algorithm (§6.3). (a) shows algorithm inputs, including the topology graph and flows. (b) and
(c) depict the flow constraints table and oversubscribed edges table for each execution round. The units of all numbers are GB/s.

Algorithm 2 Edge Constraints Relaxing
Input: Edges E = {ei} and their capacities {Bei}, flows F = { fi} and their standalone

bandwidths {Bin
i }.

Output: Bandwidth allocation of flows {Bout
i }

1: Bi = Bin
i , for each fi in F; ▷ initialize

2: for each ei in E do
3: if ei has flows then
4: EdgeTable.add(ei); ▷ initialize Edge Table
5: for each fi in ei do
6: ei.flow_list.add(fi);
7: while EdgeTable.empty() == False do
8: for each ei in E do
9: if ∑ f j∈ei

f j >Cei then ▷ an oversubscribed edge
10: {Bc

j}= Algorithm1(Cei ,{B j}), f j ∈ ei;
11: for each f j ∈ ei do
12: f j .constraints.add(Bc

j);

13: else ▷ not oversubscribed, delete;
14: EdgeTable.delete(ei)
15: for each fi in F do
16: if fi.constraints.empty() == False then
17: Bi = fi.constraints.max(); ▷ flow update
18: Bout

i = Bi ▷ loop finishes, output bandwidth

which are the final outputs and will not be updated in later
phases. The insight of choosing the most conservative band-
width constraint is that it can guarantee the flow bandwidth
will always be at least its fair share. At the end of the current
round, we remove all edges that are no longer oversubscribed
from the edge table and use the new bandwidth (ALG2 L14)
for the next round to continue the iteration. When there are
no more oversubscribed edges, the bandwidths of each flow
are the final allocated results (ALG2-L18).

The algorithm is guaranteed to converge because there are
only finite edges generating fixed constraints in the system. At
any round, every constrained flow will be reduced, indicating
that at least one constraint will be eradicated from the list.
Thus, the algorithm must converge in finite rounds. Since the
number of edges a flow traverses is the maximum number
of constraints, the number of steps to converge is bounded
by twice the height of the tree. Our algorithm has a O(N)
complexity where N is the number of input flows.

6.3 A Walkthrough Example

We now use an example to show how the proposed algorithm
works. Figure 16-a shows a PCIe tree topology based on
our testbed. Specifically, node H represents the host adapter,
node S refers to the external PCIe switch, and nodes M/N are
endpoint adapters. Nodes A/B are two FPGAs in chassis 1

and C/D are the other two in chassis 2. The flows and their
standalone bandwidths are listed in the right table.

At the beginning, we initialize the flows with standalone
bandwidth and fill the flow list in the edge table. Then, we
calculate the aggregated bandwidth of each edge and compare
it with the link capacity to determine oversubscribed ones.
For example, edge HS is an oversubscribed one because its
capacity is 12, while the two housed flows f1 and f3 require
8 and 9 transmission bandwidths (8+9 > 12), respectively.
Applying the Algorithm 1 to HS, we will obtain a constraint
{6,6}, which is inserted into f1 and f3’s constraints in the table
(Figure 16-b). In the first round, the algorithm decides that
edges HS, SN, and ND are oversubscribed ones. As shown in
Figure 16-b, HS and SN put 6,6 to the f1’s constraints entry,
SN and ND insert 6,5 to the f2’s constraints, and HS writes 6
to f3’s constraints. After finding all constraints, we now use
these constrained bandwidths to reduce flows. We update the
f1’s bandwidth to 6 as its largest constraint is 6. The same
logic is applied to f2 and f3. Since f4 has no constraints,
as discussed above, it means that f4 can take the original
bandwidth as the final one with no bandwidth reduction.

In the second round, only those oversubscribed edges are
left in the edge table (Figure 16-c). After the first round, HS
and SN are no longer oversubscribed links, except ND. We
will then repeat the same procedure to update the flow. The
entire process is completed at the end of the second round as
all links are not oversubscribed (i.e., the edge table becomes
empty). So our final estimated results are: f1, f2, f3, and f4
will achieve 6, 5, 6, 4, respectively.

6.4 Validation and Discussion

We designed three experiments to validate the accuracy of
our proposed algorithms. Each experiment targets different
oversubscribed links. We use rPCIeBench to figure out the
standalone bandwidth of each flow and the link capacity (Ta-
ble 2-a). Tables 2-b/c/d present the comparison of each exper-
imental scenario (i.e., measured v.s. estimated).

The oversubscribed edge of the first validation experiment
is HS, where two downstream PCIe flows from the host fully
utilize the bandwidth between the host and switch. The two
flows should receive an equal bandwidth share. As shown
in Table 2-b, H→C and H→A achieve 5.77 GB/s and 5.43

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 307

Edge Capacity
HS / SH 11.55 / 12.25
SM, SN 15.56
MS, NS 15.46

MA,MB,NC,ND 8.74
AM,BM,CN,DN 11.70

(a) Measured edge capacities.

Flow Sta. Est. Mea.
H->C 8.51 5.78 5.77
H->A 7.21 5.78 5.43
C->B 1.76 1.76 1.70
B->D 7.19 7.19 6.93
A->H 2.54 2.54 2.52

(b) HS is oversubscribed.

Flow Sta. Est. Mea.
H->C 8.56 8.37 7.82
H->A 0.53 0.53 0.47
C->B 1.76 1.76 1.63
B->D 7.19 7.19 7.00
A->H 2.54 2.54 2.53

(c) SN is oversubscribed.

Flow Sta. Est. Mea.
H->C 0.55 0.55 0.49
H->D 8.58 4.37 3.58
C->B 1.76 1.76 1.75
B->D 7.19 4.37 3.59
A->H 2.54 2.54 2.54

(d) ND is oversubscribed.

Table 2: Measured bandwidth v.s. estimated bandwidth for three validation experiments. Sta. refers to the standalone bandwidth
measured via rPCIeBench. Est. means the estimated bandwidth using our Algorithm 2. Mea. shows the actual measured bandwidth
when all flows are deployed. The unit of all numbers is GB/s.

GB/s, respectively, close to our estimation. SN link is not over-
subscribed after H→C is constrained. The average error of
our estimation is 2.94%. In the second validation experiment,
the oversubscribed edge is SN. Our algorithm suggests that
H→C should be reduced for fairness, same as the measured
result (Table 2-c). Yet all other flows are affected a little bit.
Our modeling indicates that most PCIe flows in this setting
have no interactions with each other. But still, the algorithm
identifies the most constrained flow (H→C) and delivers a
5.15% estimation error. In the last validation experiment, the
oversubscribed point is at edge ND. The computed allocation
suggests an equal bandwidth share should happen on the end-
point link while other flows are left unchanged. The actual
bandwidth (Table 2-d) is almost the same except the overall
link capacity on ND decreases. We suspect this is mainly
due to the MMIO contention impact, which bounds the maxi-
mum PCIe bandwidth [50]. Because of this, our algorithm is
able to predict the right trends, but the estimation error rate is
increased to 11.32% due to decreased link capacity.

7 Related Work
PCIe Characterization. People have studied extensively
on understanding PCIe for different contexts. Kalia et al. [35]
explored the interaction between PCIe and RDMA primitives,
providing a low-level evaluation and system design guide-
lines to optimize RDMA-based systems. Researchers [50]
proposed a theoretical model of PCIe and developed the
pcie-bench to systematically measure the host PCIe sub-
strate. NetTLP [37] enhances the observability of PCIe trans-
actions by separating the PCIe transaction layer into a soft-
ware layer and connecting it to the hardware root complex.
Wei et al. [56] characterized an off-path SmartNIC when run-
ning distributed applications and unearthed the peculiarities
of the SmartNIC PCIe subsystem. Unlike these studies that
predominantly consider intra-host PCIe, we focus on under-
standing the performance implications of routable PCIe when
holding composable infrastructures.

System Benchmarking. Our study benefits from prior pio-
neering efforts in developing benchmarking systems for dif-
ferent computing domains, such as single-/multi-core proces-
sors [21, 33], domain-specific accelerators [32, 41, 52], cloud
applications [26, 36], microservices/serverless functions [28,
54], interconnects [35,50], storage systems [22,31,43,48,49],
and programmable networking devices [27, 30, 44, 46, 51, 56,

58, 59]. We follow similar design principles when building
the rPCIeBench framework: hardware/software open-source
across the system stack, end-to-end visibility, elastic modu-
larity for upgrading/replacing sub-components, and parame-
terized deployments with reconfigurability.

Memory Fabrics. The past few years have seen rising in-
terest from industry [3–8, 14, 19, 20] and academia [29, 34,
42, 45, 47, 55, 57] in developing this new cluster interconnect.
Memory fabrics (such as CXL [8] and CCIX [7]), provid-
ing the load/store interface, allow tight integration of cross-
server computational resources, yielding next-generation sys-
tem composability. However, under the hood, the memory
load/store instructions are carried over a PCIe-like substrate.
Therefore, our experimental methodology, performance anal-
yses, and findings would be generally applicable.

Discussion. Compared with an intra-server PCIe switch,
the external PCIe one offers higher scalability, allows elas-
tic resource management, and can assign remote endpoint
PCIe devices to different server hosts. However, its routing
table is still constructed during the bus enumeration phase
when booting the server host. Our characterization results
and findings (such as max-min bandwidth fairness and fast
bandwidth synchronization) are applicable to other routable
PCIe testbeds, not only GigaIO Fabrex. Future PCIe Gen5/6
devices would see a latency and throughput improvement.

8 Conclusion
This paper presents rPCIeBench, a software-hardware co-
designed benchmarking framework to characterize the perfor-
mance of routable PCIe, the underlying cluster interconnect
for building emerging composable infrastructures. Using rP-
CIeBench, we first examine the performance of one routable
PCIe path and then dissect the in-fabric traffic orchestration
behaviors. Based on the gathered insights, we develop an
edge-constrained relaxing algorithm to accurately predict the
communication performance of each PCIe flow over a shared
routable PCIe fabric.

Acknowledgement
We would like to thank the anonymous reviewers and our
shepherd, Anuj Kalia, for their comments and feedback. This
work is supported in part by NSF grants CNS-2106199 and
CNS-2212192 and Intel CAD SRS award.

308 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] A new twist on PCI-Express switching for the datacen-

ter. https://www.nextplatform.com/2019/10/
02/a-new-twist-on-pci-express-switching-f
or-the-datacenter/, 2019.

[2] Pushing PCI-Express fabrics up to the next level.
https://www.nextplatform.com/2020/03/27/pu
shing-pci-express-fabrics-up-to-the-next-l
evel/, 2020.

[3] Micron Compute Express Link™ (CXL™) memory
expansion for the next-generation data center. https:
//www.micron.com/solutions/server/cxl, 2022.

[4] Samsung Electronics Introduces Industry’s First 512GB
CXL Memory Module. https://news.samsung
.com/global/samsung-electronics-introduce
s-industrys-first-512gb-cxl-memory-module,
2022.

[5] SK hynix Develops DDR5 DRAM CXLTM Mem-
ory to Expand the CXL Memory Ecosystem.
https://news.skhynix.com/sk-hynix-develop
s-ddr5-dram-cxltm-memory-to-expand-the-cxl
-memory-ecosystem/, 2022.

[6] The XMM CXL E3.S from SMART Modular Tech-
nologies. https://www.smartm.com/product/xmm
-cxl-e3s, 2022.

[7] CCIX Specifications. https://www.ccixconsorti
um.com/library/specification/, 2023.

[8] CXL Specifications. https://www.computeexpre
sslink.org/download-the-specification, 2023.

[9] Enfabrica’s Accelerated Compute Fabric.
https://blog.enfabrica.net/press-relea
se-enfabrica-raises-125-million-series-b-t
o-fuel-ramp-of-ai-infrastructure-networkin
g-a8a0b21653d2, 2023.

[10] GigaIO’s FabreX System. https://gigaio.com/p
roducts/fabrex-system-overview/, 2023.

[11] GroqRack Compute Cluster. https://groq.com/w
p-content/uploads/2022/10/GroqRackâĎć-Com
pute-Cluster-Product-Brief-v1.0.pdf, 2023.

[12] H3’s Falcon System. https://www.h3platform.co
m/solution/composable-ai, 2023.

[13] Liqid’s SmartStack System. https://www.liqid.co
m/products/gpu-on-demand, 2023.

[14] Omega Fabric from IntelliProp. https://www.inte
lliprop.com/products-page, 2023.

[15] OProfile: a Statistical Profiler for Linux Systems.
https://man7.org/linux/man-pages/man1/opro
file.1.html, 2023.

[16] PCIe Specifications. https://pcisig.com/speci
fications/pciexpress/, 2023.

[17] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Mai
n_Page, 2023.

[18] Small Form Factor (SFF) Specifications.
https://www.snia.org/technology-communi
ties/sff/specifications, 2023.

[19] The Intel® Agilex™ 7 FPGA I-Series Development Kit.
https://www.intel.com/content/www/us/en/pr

oducts/details/fpga/development-kits/agil
ex/i-series/dev-agi027.html, 2023.

[20] The Leo Memory Accelerator Platform from Astera
Labs. https://www.asteralabs.com/products/
cxl-memory-platform/, 2023.

[21] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC benchmark suite: Characteri-
zation and architectural implications. In Proceedings of
the 17th international conference on Parallel architec-
tures and compilation techniques, pages 72–81, 2008.

[22] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing (SoCC’10), pages
143–154, 2010.

[23] F. J. Corbató and V. A. Vyssotsky. Introduction and
Overview of the Multics System. In Proceedings of the
November 30–December 1, 1965, Fall Joint Computer
Conference, Part I, page 185–196, 1965.

[24] Robert C Daley and Jack B Dennis. Virtual memory,
processes, and sharing in Multics. Communications of
the ACM, 11(5):306–312, 1968.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In Sympo-
sium Proceedings on Communications Architectures &
Protocols, page 1–12, 1989.

[26] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the Clouds: A Study
of Emerging Scale-out Workloads on Modern Hard-
ware. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’12), page
37–48, 2012.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 309

https://www.nextplatform.com/2019/10/02/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://www.nextplatform.com/2019/10/02/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://www.nextplatform.com/2019/10/02/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.micron.com/solutions/server/cxl
https://www.micron.com/solutions/server/cxl
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://www.smartm.com/product/xmm-cxl-e3s
https://www.smartm.com/product/xmm-cxl-e3s
https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/library/specification/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://gigaio.com/products/fabrex-system-overview/
https://gigaio.com/products/fabrex-system-overview/
https://groq.com/wp-content/uploads/2022/10/GroqRack™-Compute-Cluster-Product-Brief-v1.0.pdf
https://groq.com/wp-content/uploads/2022/10/GroqRack™-Compute-Cluster-Product-Brief-v1.0.pdf
https://groq.com/wp-content/uploads/2022/10/GroqRack™-Compute-Cluster-Product-Brief-v1.0.pdf
https://www.h3platform.com/solution/composable-ai
https://www.h3platform.com/solution/composable-ai
https://www.liqid.com/products/gpu-on-demand
https://www.liqid.com/products/gpu-on-demand
https://www.intelliprop.com/products-page
https://www.intelliprop.com/products-page
https://man7.org/linux/man-pages/man1/oprofile.1.html
https://man7.org/linux/man-pages/man1/oprofile.1.html
https://man7.org/linux/man-pages/man1/oprofile.1.html
https://pcisig.com/specifications/pciexpress/
https://pcisig.com/specifications/pciexpress/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.snia.org/technology-communities/sff/specifications
https://www.snia.org/technology-communities/sff/specifications
https://www.snia.org/technology-communities/sff/specifications
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/i-series/dev-agi027.html
https://www.asteralabs.com/products/cxl-memory-platform/
https://www.asteralabs.com/products/cxl-memory-platform/

[27] Alex Forencich, Alex C Snoeren, George Porter, and
George Papen. Corundum: An open-source 100-gbps
nic. In 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pages 38–46, 2020.

[28] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’19), page 3–18, 2019.

[29] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and
Myoungsoo Jung. Direct Access, High-Performance
Memory Disaggregation with DirectCXL. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294, 2022.

[30] Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim,
Michael Swift, Aditya Akella, and Ming Liu. Log-
NIC: A High-Level Performance Model for SmartNICs.
In Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’23),
pages 916–929, 2023.

[31] Zerui Guo, Hua Zhang, Chenxingyu Zhao, Yuebin Bai,
Michael Swift, and Ming Liu. LEED: A Low-Power,
Fast Persistent Key-Value Store on SmartNIC JBOFs. In
Proceedings of the ACM SIGCOMM 2023 Conference
(SIGCOMM’23), pages 1012–1027, 2023.

[32] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G
Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, et al. Sirius: An open end-to-end voice and vision
personal assistant and its implications for future ware-
house scale computers. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
223–238, 2015.

[33] J.L. Henning. SPEC CPU2000: measuring CPU perfor-
mance in the New Millennium. Computer, 33(7):28–35,
2000.

[34] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Se-
ungjun Lee, Miryeong Kwon, and Myoungsoo Jung.
CXL-ANNS: Software-Hardware Collaborative Mem-
ory Disaggregation and Computation for Billion-
Scale Approximate Nearest Neighbor Search. In

2023 USENIX Annual Technical Conference (USENIX
ATC’23), pages 585–600, 2023.

[35] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA Sys-
tems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, 2016.

[36] Harshad Kasture and Daniel Sanchez. Tailbench:
a benchmark suite and evaluation methodology for
latency-critical applications. In 2016 IEEE International
Symposium on Workload Characterization (IISWC),
pages 1–10, 2016.

[37] Yohei Kuga, Ryo Nakamura, Takeshi Matsuya, and Yuji
Sekiya. NetTLP: A Development Platform for PCIe
devices in Software Interacting with Hardware . In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’20), pages 141–155, 2020.

[38] HT Kung, Trevor Blackwell, and Alan Chapman. Credit-
based flow control for ATM networks: Credit update
protocol, adaptive credit allocation and statistical mul-
tiplexing. In Proceedings of the conference on Com-
munications architectures, protocols and applications
(SIGCOMM’94), pages 101–114, 1994.

[39] HT Kung and Koling Chang. Receiver-oriented adaptive
buffer allocation in credit-based flow control for ATM
networks. In Proceedings of INFOCOM’95, volume 1,
pages 239–252, 1995.

[40] HT Kung and Robert Morris. Credit-based flow control
for ATM networks. IEEE Network, 9(2):40–48, 1995.

[41] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu,
Nathan Tallent, and Kevin Barker. Tartan: Evaluating
modern gpu interconnect via a multi-gpu benchmark
suite. In 2018 IEEE International Symposium on Work-
load Characterization (IISWC), pages 191–202, 2018.

[42] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
CXL-Based Memory Pooling Systems for Cloud Plat-
forms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 574–
587, 2023.

[43] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The CASE of FEMU: Cheap, Accurate, Scal-
able and Extensible Flash Emulator. In 16th USENIX
Conference on File and Storage Technologies (FAST’18),
pages 83–90, 2018.

310 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Ming Liu. Building Distributed Systems Using Pro-
grammable Networks. University of Washington, 2020.

[45] Ming Liu. Fabric-Centric Computing. In Proceedings of
the 19th Workshop on Hot Topics in Operating Systems
(HotOS’23), page 118–126, 2023.

[46] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM’19), pages 318–333. 2019.

[47] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. TPP: Transparent Page Place-
ment for CXL-Enabled Tiered-Memory. In Proceedings
of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 3, pages 742–755, 2023.

[48] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: enabling multi-tenant storage disaggre-
gation on SmartNIC JBOFs. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference (SIGCOMM’21),
pages 106–122, 2021.

[49] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. {eZNS}: An elastic zoned namespace
for commodity {ZNS}{SSDs}. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’23), pages 461–477, 2023.

[50] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327–341, 2018.

[51] Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen.
Clara: Performance clarity for SmartNIC offloading. In
Proceedings of the 19th ACM Workshop on Hot Topics
in Networks (HotNets’20), pages 16–22, 2020.

[52] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-
Yeon Wei, and David Brooks. MachSuite: Benchmarks
for accelerator design and customized architectures. In
2014 IEEE International Symposium on Workload Char-
acterization (IISWC), pages 110–119, 2014.

[53] M. Shreedhar and George Varghese. Efficient Fair
Queueing Using Deficit Round Robin. In Proceedings
of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
page 231–242, 1995.

[54] Akshitha Sriraman and Thomas F Wenisch. µ suite:
a benchmark suite for microservices. In 2018 IEEE
International Symposium on Workload Characterization
(IISWC), pages 1–12, 2018.

[55] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom
Jeong, Ren Wang, and Nam Sung Kim. Demystifying
cxl memory with genuine cxl-ready systems and devices,
2023.

[56] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing Off-path SmartNIC
for Accelerating Distributed Systems. In 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 23), pages 987–1004, 2023.

[57] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung
Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee,
Sungjin Lee, and Bryan S. Kim. Overcoming the Mem-
ory Wall with CXL-Enabled SSDs. In 2023 USENIX
Annual Technical Conference (USENIX ATC’23), pages
601–617, 2023.

[58] Noa Zilberman, Yury Audzevich, G. Adam Covington,
and Andrew W. Moore. NetFPGA SUME: Toward 100
Gbps as Research Commodity. IEEE Micro, 34(5):32–
41, 2014.

[59] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou,
Neelakandan Manihatty-Bojan, Jingyun Zhang, and An-
drew Moore. NetFPGA: Rapid prototyping of network-
ing devices in open source. ACM SIGCOMM Computer
Communication Review, 45(4):363–364, 2015.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 311

Words/Burst Channel (#) Throughput (GB/s) Latency (ns)
1 (32B) 1 6.8 326.3
2 (64B) 1 13.4 330.3
4 (128) 1 13.7 649.5

8 (256B) 1 13.7 1301.9
16 (512B) 1 13.0 1677.9
1 (32B) 32 216.2 326.4
2 (64B) 32 427.4 330.5
4 (128) 32 438.2 648.7

1 (256B) 32 439.5 1297.6
1 (512B) 32 416.1 1671.5

Table 3: Throughput and latency of HBM data read when vary-
ing the number of channels.

Granularity BRAM Latency (ns) HBM Latency (ns)
8B 627 762
16B 632 763
32B 640 768
64B 644 766

128B 1264 1551
256B 2511 3091
512B 4993 6055
1KB 9992 11961

Table 4: MMIO read latency comparing between BRAM and
HBM when varying the request size.

A HBM Performance Characterization
We characterized the latency and throughput of the enclosed
HBM of U55C. Table 3 presents our results.

B BlockRAM MMIO Performance
We compared the MMIO latency between BlockRAM
(BRAM) and HBM. In this experiment, we configure the
BlockRAM as the target device. Table 4 presents our results.

312 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background
	PCIe Non-Transparent Bridge and Routable PCIe
	Composable Infrastructures

	rPCIeBench Framework
	Design Principles
	Overview
	System APIs
	Software Components
	Command Data Path
	Workflow

	Basic Performance of Routable PCIe
	Experimental Methodology
	Latency
	Bandwidth
	Latency v.s. Throughput
	Bandwidth Partition
	Asymmetric Communication Path

	In-Fabric Traffic Orchestration
	Max-Min Fair Bandwidth Allocation
	Fast End-to-End BW Synchronization
	Interference-free Orthogonal Paths

	Performance Model of the Routable PCIe Fabric: An Optimization Guide
	Problem Formalization
	Edge Constraints Relaxing Algorithm
	A Walkthrough Example
	Validation and Discussion

	Related Work
	Conclusion
	HBM Performance Characterization
	BlockRAM MMIO Performance

