
This paper is included in the 
Proceedings of the 21st USENIX Symposium on 

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the 
21st USENIX Symposium on Networked 

Systems Design and Implementation 
is sponsored by

MobileConfig: Remote Configuration Management 
for Mobile Apps at Hyperscale

Matt Guo, Meta Platforms; Soteris Demetriou, Imperial College London;  
Joey Yang, Michael Leighton, Diedi Hu, Tong Bao, Amit Adhikari,  

Thawan Kooburat, Annie Kim, and Chunqiang Tang, Meta Platforms

https://www.usenix.org/conference/nsdi24/presentation/guo



MobileConfig: Remote Configuration Management for Mobile Apps at Hyperscale

Matt Guo1, Soteris Demetriou2, Joey Yang1, Michael Leighton1, Diedi Hu1, Tong Bao1,

Amit Adhikari1, Thawan Kooburat1, Annie Kim1, and Chunqiang Tang1

1 Meta Platforms
2 Imperial College London

Abstract

While software configuration management is a ubiquitous

practice in the industry and has been extensively studied,

prior research has focused solely on desktop or server

applications. This paper presents MobileConfig, perhaps the

world’s largest configuration management system for mobile

apps. It has been in production since 2015 and manages apps

running on billions of devices, including Facebook, Instagram,

Messenger, and AR/VR/glasses apps. Every day, Meta’s

developers make a staggering number of live configuration

changes, often in the thousands, to remotely control mobile

apps, driving them to change runtime behaviors without

requiring app code updates. These configuration changes

serve diverse purposes such as A/B testing, feature rollout,

and app personalization. We discuss how MobileConfig

addresses several challenges unique to mobile environments,

including (1) the lack of data consistency models that can

simultaneously ensure both fast app startup and configuration

data freshness; (2) the risk of misconfiguration impacting

billions of app users; and (3) the proliferation of mobile

client SDKs needed to support diverse mobile platforms,

programming languages, and configuration use cases.

1 Introduction

At Meta, we develop tens of mobile apps used by billions of

people. Each year, more than 1,000 developers contribute to

the codebase of our most popular app. Each week, the app

is updated with over 300 code changes, and a new version is

released to the app store. This fast-paced development and

release of the app, especially when it is collectively done by a

large number of developers, pose significant challenges to the

reliability of the app. Unlike server-side software, where bug

fixes can be deployed instantly under our control, mobile apps

lack a transparent method to upgrade from a buggy version to

a newer one without user involvement.

Contributions: Chunqiang and Thawan initiated the MobileConfig project in

2014. In terms of paper writing, Chunqiang and Soteris drafted the paper and

contributed equally. In terms of coding, Thawan led the project’s development

from 2014 to 2017, succeeded by Matt until 2023. All other co-authors also

made major contributions to the project’s development.

We work around the constraint of having no control over

app upgrades by providing the ability to remotely modify an

app’s configuration (config for short) and trigger it to change

behaviors without a code upgrade. Consider the example of

an experimental app feature. Initially, it is gated by a remote

config that is enabled for only 0.01% of users. If a bug is

detected, the feature can be instantly disabled via a remote

config change without user involvement, ensuring that the bug

will not be exposed to any user. Besides feature gating, remote

configs enable rich functions (§2.1), such as A/B testing [20–

22, 39] and personalized user experiences.

Remote configs are extensively used in all our apps, as

evidenced by the fact that the frequency of config commits

is about 15 times that of code commits. In this paper, we

present MobileConfig, our configuration management system

for mobile apps, and share our experience in addressing sev-

eral challenges unique to mobile environments.

Slow app startup. When a developer modifies the value of

a remote config on the server side, she typically wants app

devices to fetch and apply the new config value soon. For

instance, if the config is used to run an A/B test, the developer

can obtain useful A/B test results only after a sufficient num-

ber of devices have applied the new value. For this reason,

Google’s Firebase RemoteConfig [16], one of the most widely

used mobile configuration systems, suggests that,

“If you are loading values for an A/B testing experiment,

this strategy (of showing a loading screen to block the

app startup until it finishes fetching all the latest configs

from the server side) is very strongly recommended [17].”

Unfortunately, this simple strategy of blocking app startup

increases startup time, an important app quality metric [4, 11,

19, 27, 30, 37, 41]. Our evaluation shows that this approach

would unacceptably add 2,499 ms to the startup time of our

largest app. To put this into perspective, our app performance

team often invests months in optimizing an app to reduce

its startup time by just tens of milliseconds, and the effort

is considered worthwhile as it impacts the engagement of

billions of users.

Slow startup plays an outsized role in users’ negative per-

ception of an app and discourages users from opening the app,

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1867



especially for short interactions such as typing a brief mes-

sage on a social-network app. In the industry, AppDynamics

reported that 60% of users abandon an app after their first

usage if they encounter performance problems [5]. At Meta,

based on extensive user studies, the product teams set the

priority that “startup is the single most important factor for

app performance, and anything not absolutely necessary will

be ruthlessly removed from the startup path.”

At startup, an app wants the latest configs, but fetching

them from the server delays startup. This tension has not been

addressed by existing data consistency models, as they do

not take advantage of the unique characteristics of configs,

specifically the timing and granularity of config consumption.

To resolve this tension, we propose progressive consistency.

Our key insight is that, out of our app’s as many as 4,300

configs, only a small fraction is accessed during the app’s

early startup phase. App startup can proceed by consuming

those configs’ locally cached values, even if they are stale.

In parallel, the app asynchronously fetches updates for all

configs from the server. Once the updates arrive, it switches

to using the new values for the vast majority of configs that

have not yet been accessed. Our production data shows that

progressive consistency achieves 99.7% config data freshness

across billions of devices without slowing down app startups.

Despite mixed consumption of old and new configs, pro-

gressive consistency ensures app correctness by guaranteeing

repeatable reads [7], monotonic reads [40], and intra-config

consistency. Note that, due to the nature of config usage, it

is unnecessary to enforce cross-config consistency (§3.3). To

mitigate the downside of consuming some stale configs, Mo-

bileConfig offers an emergency-push mechanism that can

swiftly purge harmful stale configs from app devices. Finally,

it can cap config staleness below an app-specified threshold.

Config error prevention. Every day, our app developers

make thousands of live config changes in production, with

each change carrying the risk of causing app malfunctions.

Moreover, recovering from a config error on mobile devices

is much harder than that on servers because unlike servers,

we have no access to users’ mobile devices to directly rectify

the error. MobileConfig uses a defense-in-depth approach to

prevent config errors. This includes enforcing compile-time

validation, conducting multi-stage canary tests [15], and con-

tinuously comparing configs on billions of devices with their

values on the server to catch inconsistency.

One surprising finding is that traditional small-scale canary

tests are ineffective for mobile apps. This differs from not only

the general industry practice [12] but also our own experience

in datacenter environments where small-scale canary tests

are effective. We find that one cause of this difference is the

heterogeneity of mobile environments, including many wild

device types and legacy OS versions. As a result, many bugs

appear only on a small fraction of user devices, making them

hard to detect through small-scale canary tests. Another cause

is that, out of a large app’s many features, only a small fraction

of users may use a specific feature during the canary time

window and trigger the bug. Because of these difficulties,

MobileConfig uses unconventionally large canary tests.

Proliferation of mobile SDK. MobileConfig supports apps

on various platforms (Android, iOS, Windows, Linux, Ma-

cOS, and custom OSes for AR/VR/glasses/display) and multi-

ple programming languages (Java, Objective-C, Kotlin, Swift,

C++, JavaScript, and ReactNative). The expansion of plat-

forms and languages would naturally lead to an increase in

the number of mobile Software Development Kits (SDKs).

Moreover, historically, different config use cases such as A/B

testing and personalization were supported by separate SDKs

and backend systems, leading to further SDK proliferation.

Two key insights help eliminate SDK proliferation. First,

to support diverse config use cases at the scale of billions of

devices, it is far easier to implement sophisticated capabilities

and deploy code changes on the server side than on the mo-

bile client side. On the client side, we simplify the SDK by

offering a uniform config API and data schema, agnostic of

various config use cases. On the server side, we use a trans-

lation layer to dynamically map mobile config parameters to

various backends that support different use cases. By intro-

ducing this one level of remapping on the server side, a single

client SDK can seamlessly work with various backends.

Second, to support diverse platforms and languages, we

use a proper mix of cross-platform C++ code and platform-

specific code. While C++ is known for cross-platform devel-

opment, we have discovered that the overhead of using Java

Native Interface (JNI) to bridge C++ is too high for latency-

sensitive config-read operations. Consequently, on Android,

we employ native Java code for these operations, while em-

ploying cross-platform C++ code for all other operations.

Contributions. We summarize our contributions below.

• To our knowledge, this is the first systematic study on con-

figuration management for mobile apps. We compare de-

sign alternatives and identify pitfalls in some widely used

mobile config systems. We also report lessons learned from

operating MobileConfig on billions of devices in the wild.

• We demonstrate the practicality of employing remote con-

figs to push the limits of agile app development—our de-

velopers make thousands of live config changes daily. We

hope that our experience will inspire others.

• We propose progressive consistency to meet mobile apps’

requirements for both fast app startup and fresh config data.

This is not possible with existing consistency models.

• We prevent config errors using a defense-in-depth approach.

In particular, we demonstrate that traditional small-scale

canary tests are ineffective for mobile apps.

• We avoid SDK proliferation by using cross-platform code

and server-side config parameter remapping.

1868    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



2 Config Usage

In this section, we use production data and examples to

demonstrate the usage of configs and the challenges that Mo-

bileConfig needs to address. Figure 1 shows an example of

how an app uses MobileConfig. In this example, ButtonCfg is

a config, and ButtonCfg.color is a parameter. The new code

path for the experimental “Button” feature is gated behind the

ButtonCfg.isEnabled parameter, which is personalized and

can return different values for different users.

class ButtonCfg {bool isEnabled; String color; int size;}

class MusicCfg {int volume; String list; bool shuffle;}

if(MobileConfig.getBool(ButtonCfg.isEnabled /* Personalized */)){

// New code path for the experimental "Button" feature.

color = MobileConfig.getString(ButtonCfg.color);

...

} else {

// Old code path without the experimental "Button" feature.

...

}

Figure 1: An app uses a simple API to access remote configs.

2.1 Config Use Cases

Remote configs enable many powerful use cases, as illustrated

in the examples below.

• Developers can update a config to incrementally enable an

experimental app feature, starting with our employees and

gradually expanding to the general population.

• Developers can use a config to set up an A/B test on differ-

ent users to assess the impact of a new product feature on

key business metrics.

• Configs can be used along with machine learning (ML) to

personalize user experience. For example, when a user lo-

gin fails, if ML predicts that the user is unlikely to succeed

with password retries, it sends a one-time passcode via SMS

to the user. We use a config to store the ML-personalized

per-user login retry setting.

• Some parameters that control an app’s behavior, such as

the amount of data to prefetch from the server, depend on

the execution context, such as battery level and network

performance. We apply contextual Bayesian optimization

to tune these parameters and manage them via a config.

• When datacenters face capacity shortages, specific config

changes can be promptly distributed to mobile devices to

disable less-essential app features, accordingly alleviating

the load they impose on datacenter backend services [25].

Backend
Feature

Rollout

A/B

Testing

Mutable

Parameters

700+ Custom

Functions
Dev

Parameters% 26.0% 40.8% 23.0% 2.7% 7.4%

Table 1: Breakdown of config parameters by backends.

To support diverse use cases, many different config backend

systems have been developed, as summarized in Table 1. The

feature rollout backend allows hundreds of teams to indepen-

dently enable or disable different features for users without

interfering with one another. The A/B testing backend enables

developers to study the effectiveness of product features via

A/B testing [21]. With the mutable parameters backend, in-

stead of hardcoding constants in code, developers can set them

as parameters that can be updated remotely without upgrad-

ing the installed app. The custom-function framework allows

developers to easily introduce a new config backend. More

than 700 custom backends have been implemented, mostly

for personalization and ML model automation. Finally, the

Dev backend is for local testing only.

Historically, the team that developed a new config backend

for a new config use case must also develop a corresponding

mobile SDK. Now, different config backends are all supported

by a single mobile SDK provided by MobileConfig. This

SDK exposes a uniform config API and data schema that are

agnostic to different config backends and use cases. On the

server side, we use a translation layer to dynamically map

mobile config parameters to different backends (§4.1.2).

2.2 Statistics of Mobile Environments

Next, we report some statistics to motivate the problem.

Very old app versions. Users’ infrequent app updates neces-

sitate the reliance on remote configs to change app behavior.

Table 2 shows the cumulative age distribution of our largest

Android app. The (56, 14%) column means that 14% of the

app’s installations were released in the past 56 days. Notably,

some extremely old app versions remain in active use. For

instance, 1% of the app’s installations are older than 987 days,

with the oldest one dating back almost 7 years (2,499 days).

App age (days) 49 56 63 70 77 217 504 987 2,499

Cumulative distribution 1% 14% 34% 56% 73% 90% 95% 99% 100%

Table 2: Very old versions of our Android app are still in use.

Very old OS versions. Our apps run on thousands of differ-

ent Android device types, with OS versions spanning over a

decade (Table 3). This complex environment makes it hard to

prevent config errors just by development-time testing. Hence,

MobileConfig relies on large-scale multi-stage canary tests in

live production as the last line of defense (§5).

Android Version 4 5 6 7 8 9 10 11 12

Release year 2011 2014 2015 2016 2017 2018 2019 2020 2021

Percent of devices 0.1% 1.2% 2.3% 2.8% 9% 12% 26% 38% 8%

Table 3: Very old versions of Android are still in active use.

Low-end mobile devices. The majority of our app users are

on low-end devices. We categorized the Android devices on

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1869



which our apps run based on the year-class metric, which cor-

responds to the year when the device would have been consid-

ered as a flagship device. For example, Samsung Galaxy S6

was released in 2015 as a flagship smartphone. If a low-end

device was released in 2023 but its performance is comparable

to Galaxy S6, it would be classified as the 2015 class. Table 4

shows that 75% of the devices are comparable to 2015 or older

flagship devices. The combination of low-end devices and

many configs require us to heavily optimize MobileConfig

for performance and efficiency (§6).

Year Class 2010 2011 2012 2013 2014 2015 2016-2023

Percentage 0.04% 0.32% 3.53% 18% 20% 33% 25%

Table 4: Breakdown of Android devices by Year Class.

Many configs. We measured the number of config parameters

in our most popular apps, MM and V H (Table 5). They are

available on both Android (MMa, V Ha) and iOS (MMi, V Hi).

The largest app uses more than 4,300 configs and 26,000

parameters. The existence of a large number of independent

configs has made progressive consistency possible.

App Name MMa MMi V Ha V Hi

# Configs 4,344 3,546 3,178 3,050

# Parameters 26,770 18,057 8,563 7,828

Table 5: Config usage for our most popular apps.

Frequent config changes. Configs are updated frequently by

many authors. The configs of our largest app are edited by

more than 3,000 different authors over the app’s lifetime. On

an average workday, our developers make more than 2,700

config parameter value changes in production, and introduce

more than 110 config schema changes. MobileConfig relies

on defense in depth to mitigate the risk of config errors intro-

duced by frequent config changes (§5).

Many languages. To show the usage of languages in our apps,

we counted the number of static call sites in each language’s

source code that read remote configs (Table 6). As expected,

Java for Android and Objective-C for iOS are most popular,

but call sites in other languages still account for 37%. To sup-

port multiple languages and OSes while avoiding the devel-

opment costs of multiple client SDKs, we have implemented

MobileConfig’s core functions in a portable cross-platform

C++ runtime and exposed them to different languages through

language-specific bindings (§4.1.1).

Language Java Objective-C Java Script Kotlin React Native Swift C++

Call site% 35% 28% 18% 11% 6% 0.6% 0.6%

Table 6: Usage of MobileConfig by different languages.

Parameter types. Table 7 shows the breakdown of config

parameter types for MMa and MMi. As Boolean dominates,

MobileConfig implements special optimizations for it (§6.3).

Boolean Integer String Double Other

MMa 69% 23% 4.9% 2.4% 1.3%

MMi 66% 22% 4.8% 5.1% 1.5%

Table 7: Breakdown of config parameter types.

3 Agile Development with MobileConfig

This section describes how developers use MobileConfig in an

agile development process and how it ensures app correctness

while enabling both fast app startup and fresh configs.

3.1 Agile Development Process

To illustrate how MobileConfig enables agile development,

we describe the workflow of a developer named Alice working

on the experimental “Button” feature shown in Figure 1.

After sufficient local testing, Alice includes the code for

the Button feature in the app’s new release and uploads it

to the app store. Although some users quickly install the

new release, the new feature is not yet exposed to anyone, as

ButtonCfg.isEnabled is still set to false for all users.

Alice initiates testing for the new feature, initially enabling

ButtonCfg.isEnabled for only 0.01% of users. Uncertain

about the ideal ButtonCfg.color and ButtonCfg.size values

for the best user experience, she sets up an A/B test and di-

vides the test population into multiple groups, each receiving

distinct parameter values. By comparing metrics, like user

engagement, across the test groups, Alice identifies optimal

parameter values. Importantly, the entire A/B test process

is driven by Alice making config changes on the server side

using a web interface. These config changes are automatically

fetched by mobile devices, determining which users will par-

ticipate in the A/B test and what parameter values they will

get for ButtonCfg. As Alice makes remote config changes, it

does not require participating users to upgrade their installed

app or perform any manual operations.

If the app crashes on an old Android version when using the

new feature, Alice remotely disables ButtonCfg.isEnabled

for those users, without requiring an app upgrade. After fixing

the bug, she releases a new version of the app to the app

store. While still keeping ButtonCfg.isEnabled disabled for

the affected users on the old version, Alice enables it for a

subset of users on the new version to continue testing.

After months of A/B testing and numerous releases, Alice

determines that the new feature consistently harms business

metrics rather than enhancing them. She abandons the feature,

removing the experimental code and releasing a new version

to the app store. Notably, the majority of users were never

exposed to the feature from its introduction to its removal.

3.2 Stale Configs Hinder Agile Development

While remote configs are supposed to enable agile develop-

ment, straightforward solutions are ineffective. To highlight

the challenges, we analyze the three solutions provided by

Google’s Firebase [16], which are summarized in Table 8.

1870    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Fast

app

startup

Repeatable

reads

Intra-config

consistency

Fresh

configs in

normal state

Bound

staleness

if required

Purge

misconfig

quickly

Firebase (1) ✗ ✓ ✓ ✓ ✓ ✗

Firebase (2) ✓ ✗ ✗ Vast majority ✗ ✗

Firebase (3) ✓ ✓ ✓ ✗ ✗ ✗

MobileConfig ✓ ✓ ✓ Vast majority ✓ ✓

Table 8: Comparison of config frameworks. Firebase [16]

supports three config consistency models [17].

In the table, Firebase (1) is Firebase’s default approach as

described in §1, which blocks app startup to fetch configs.

This approach would unacceptably increase our largest app’s

startup time by 2,499 ms.

Firebase (2) uses cached configs to boot the app while

asynchronously fetching the latest configs from the server.

Once the new configs arrive, the app immediately switches

to using them, without ensuring repeatable reads [7] or intra-

config consistency. This approach is unacceptable as altering

an app’s configs during its live execution can result in user-

visible anomalies, such as a sudden change in a button’s color.

Firebase (3) also uses cached configs to boot the app and

asynchronously fetches the latest configs from the server.

However, when the new configs arrive, the app saves them

to storage and will not utilize them until the next cold start

of the app. This approach increases the staleness of configs

and slows down the agile development process described

in §3.1. Suppose Alice updates an A/B test parameter in

the morning with the intention of collecting and analyzing

the testing results in the afternoon; she faces a challenge.

Despite many user devices fetching the updated parameter

in the morning, they will not apply it until the next cold app

restart, which may not occur soon. Even if the user switches

out of the app, it may remain paused in the background for

hours or even days without termination, preventing the new

parameter from taking effect when the app is brought to the

foreground again. Consequently, Alice cannot gather enough

A/B test results in the afternoon or even the following day,

significantly hindering agile development.

At Meta, for mobile apps, config commits occur about 15

times more frequently than code commits. This indicates a

highly iterative development process where developers invest

a significant portion of their time making config changes,

collecting and analyzing test results to inform their next steps.

Delays in collecting test results caused by stale configs would

thus greatly hinder developer productivity.

Rather than delaying the use of new configs until the next

cold restart, a potential improvement for Firebase (3) is to

apply new configs when the user switches to other apps and

puts the app in the background. However, this may still lead

to user-visible anomalies. For instance, if a user is midway

through reading a news article in the app and switches to other

apps, altering the app’s configs in the background could lead

to the article’s text appearing in a different color upon the

user’s return, as the color is controlled by a config.

Between Firebase (1)’s drawback of slow app startup and

Firebase (3)’s drawback of config staleness, Firebase consid-

ers the latter to be a bigger problem and hence “very strongly

recommends” Firebase (1) for apps using A/B testing [17].

In the literature, while the importance of fast app startup is

widely recognized [4, 19, 27, 30, 37, 41], the importance of

config freshness is often overlooked. Firebase’s recognition

of this issue based on its experiences with mobile developers

is commendable.

3.3 Progressive Consistency

To enable agile development, progressive consistency solves

both the problems of slow app startup and stale configs. Dur-

ing an app’s startup, it uses cached configs to unblock the app

while asynchronously fetching updates for all configs from

the server. Once the updates arrive, the app switches to using

the new values for the configs that it has not read yet but will

stick to the old values for the configs that it has already read.

Our production data shows that progressive consistency

achieves 99.7% config data freshness across billions of de-

vices without slowing down app startup. A key reason for the

high config freshness is that most configs are not accessed

during an app’s early startup phase. To aggressively minimize

startup time, any code that is not absolutely necessary during

startup, such as the initialization of app features that will not

be shown on the first user interaction screen, is postponed to

later stages. Since the vast majority of app features will not

be initialized on the startup path, the configs used by those

features will not be accessed during startup either.

Below, we describe how progressive consistency ensures

app correctness and discuss the ease of use of its API.

App correctness. Despite mixed consumption of old and new

configs, progressive consistency ensures app correctness by

guaranteeing intra-config consistency, monotonic reads [40]

across app restarts, and repeatable reads [7] within a user ses-

sion. A session is the time duration between two cold restarts

of the app, or it ends early if the user explicitly logs out of the

app. A key difference between MobileConfig and Firebase (2),

as summarized in Table 8, lies in MobileConfig’s support for

intra-config consistency and repeatable reads. If the app con-

sumes a parameter value during a session, subsequent reads

of that parameter will retrieve the same value, even if it has

already been updated on the server. This prevents unexpected

app behavior, such as sudden UI button color changes due

to parameter updates. Moreover, MobileConfig guarantees

intra-config consistency—if the app reads two parameters of

the same config in one user session, such as ButtonCfg.color

and ButtonCfg.size, those parameters’ values always come

from a single atomic update on the server side.

MobileConfig does not guarantee cross-config consistency

as configs are intended to be independent, serving different

code modules. If dependencies arise among configs, they

should be merged into a single config. While merging could

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1871



theoretically result in an excessively large config, this has

never occurred in the nine years of MobileConfig’s production

usage. On average, a config contains only 4.3 parameters.

Although we have a design for MobileConfig to support cross-

config consistency by maintaining metadata about matching

versions of interdependent configs, it remains unimplemented

due to the absence of a genuine need for such complexity.

Moreover, the lack of support for cross-config consistency

is not merely a workaround to expedite startup in mobile en-

vironments but extends to datacenter (DC) environments as

well, where startup time is not an important consideration. In

contrast to MobileConfig’s progressive consistency, our DC

configuration management system, Configerator [38], adopts

Firebase (1)’s approach, blocking a DC application’s startup

to fetch configs synchronously, as startup time is less impor-

tant in DCs. However, Configerator still does not guarantee

cross-config consistency. It may push real-time updates for dif-

ferent configs to a DC application’s running instances in differ-

ent orders, as configs are independent. Finally, despite config

errors being a primary cause of production outages [38], we

do not recall that either Configerator or MobileConfig, with 12

and 9 years of production usage respectively, has experienced

outages due to the lack of cross-config consistency.

API simplicity. While implementing progressive consis-

tency, ensuring advanced features do not complicate the de-

veloper API is a challenge. A transaction-like API to en-

sure config consistency seems straightforward but could hin-

der usability and adoption. Instead, MobileConfig offers a

straightforward API to apps (see Figure 1) while handling

advanced features internally. For example, when the app calls

MobileConfig.getString(ButtonCfg.color), MobileConfig

must detect if ButtonCfg.isEnabled was already read and re-

turn the corresponding version of ButtonCfg.color for intra-

config consistency. This streamlined API has successfully

facilitated the migration of about a dozen legacy config frame-

works at Meta to MobileConfig.

4 MobileConfig Design

In this section, we describe the design of MobileConfig and

compare it to Firebase [16] and Configerator [38].

4.1 MobileConfig Architecture

MobileConfig’s architecture is depicted in Figure 2, which en-

compasses the client library and the server-side components.

4.1.1 Client-side Library

MobileConfig’s client-side runtime library (runtime for short)

needs to support various platforms and languages. To avoid

the development costs of multiple client SDKs, the runtime is

implemented in portable cross-platform C++. The API layer

exposes the C++ runtime to multiple languages.

The Java API uses JNI to bridge to C++, incurring higher

RN 

Manager

Java RN Obj-C

Android 

App

ReactNative 

App
iOS App

Storage LoggingNetworkStorage Files

(ctables)

Parameter to 

backend map

Feature 

Rollout

A/B 

Testing

Mutable 

Parameters

…

CLIENT

SERVER
Emergency

Push

Java 

Manager

MOBILE

APPS

MINI

MANAGERS

API

LIBRARY

FUNCTIONS

CONFIG

BACKENDS

Consistency

Logging
Canary

Translation

Service

Figure 2: MobileConfig high-level architecture.

overhead. Due to the aggressive optimizations described in

§6.2, the C++ API only needs two memory accesses to read a

parameter value, which makes the JNI overhead prohibitively

high in comparison, especially because config reads can be on

the critical path of app execution. Reimplementing the entire

runtime in Java would alleviate the problem but at the expense

of additional development costs. To strike a balance between

code reuse and performance, MobileConfig introduces a Mini

Manager that implements a minimal read path in Java to

efficiently read cached configs. This read path is on the critical

path of app performance. All other functions that are not on

the critical path, such as fetching configs from the server and

updating the cache, are bridged through JNI to C++.

The support for other languages is simpler. The Objective-

C API natively interfaces with C++. As ReactNative can

cross-compile JavaScript to either Java or Objective-C, Mo-

bileConfig offers a JavaScript API that bridges JavaScript

functions to either Java or Objective-C functions.

The runtime provides networking, storage, exposure log-

ging and other functions. For networking, it efficiently syn-

chronizes config values between client and server (§6.3). For

storage, it stores configs in a highly optimized read-only bi-

nary format for fast access (§6.2). For exposure logging, the

events of an app’s exposure to config parameter values are

logged, queued locally, and at opportune moments sent to the

server in batches. Finally, the runtime supports operations

related to config testing, debugging, canary, monitoring, and

quick rectification of erroneous configs (§5).

4.1.2 Server-side Components

On the server side, different backend services support diverse

config use cases, such as A/B testing and feature rollout. The

translation service consults the parameter-to-backend map

stored in a key-value store to map each config parameter

requested by the client to its corresponding backend. This

server-side translation drastically simplifies the client runtime,

as the client can use a uniform config API and data schema

that are agnostic to different config backends and use cases.

1872    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



The translation service provides an extension point that al-

lows developers to easily add a new custom-function backend,

by implementing the following interface: “generateParam-

Value (requestContext, userID).” Based on the userID and

requestContext, a custom backend can personalize parameter

values. More than 700 custom backends have been imple-

mented, mostly for different kinds of personalization.

MobileConfig also encompasses tools for detecting, pre-

venting and rectifying config errors. Consistency logging sam-

ples client and server parameter values to detect config di-

vergence. To prevent config errors, MobileConfig performs

multi-stage canary tests when rolling out a config parameter

change. Finally, MobileConfig’s emergency push mechanism

can quickly push a corrected config to billions of devices.

4.1.3 Client-server Protocol

Push vs. pull is an important design decision in the client-

server protocol. With a push model, the server immediately

pushes new data to clients. With a pull model, the client

periodically pulls new data from the server in batches.

Table 9 compares push and pull for different systems. Con-

figerator [38], our configuration system for datacenter appli-

cations, uses a push model (column 2 in Table 9). Our mobile

messaging app uses a push model to deliver chat messages

(column 3 in Table 9). No known system uses a push model

for mobile configs (column 4 in Table 9). Firebase Remote-

Config [16] uses a pull model for mobile configs (column

5 in Table 9). MobileConfig (column 6 in Table 9) uses a

pull model complemented by emergency push, which only

happens several times per year to rectify severe config errors.

In datacenter environments, many config use cases require

instant delivery for real-time automation, like global load

balancing [32]. In contrast, mobile config use cases rarely

need instant updates of configs because apps often do not

consume them immediately. Apps may not be running or

prefer to stick with the old config until the next restart to

prevent abrupt user experience changes, such as UI alterations.

To minimize resource consumption, we opt for a pull model.

However, in emergency situations such as rectifying config

errors, it is necessary to push a config update to mobile de-

vices quickly and restart the app to consume it. Hence, we

complement our pull model with occasional emergency push.

4.2 Support for Progressive Consistency

In this section, we present how progressive consistency works

during the app lifecycle, and describe the implementation of

repeatable reads and intra-config consistency.

4.2.1 Config Consistency during App Lifecycle

When a user installs a new app and logs in for the first time,

MobileConfig blocks app startup to fetch the latest config val-

ues from the server. This is done to ensure a better user expe-

rience than using up to 26,000 unoptimized default parameter

Config

Mgmt in

Datacenters

(push)

Mobile

Messaging

App

(push)

Config mgmt in mobile environ.

Push

(no real use)

Pull

(Firebase)

Pull +

Emergency Push

(MobileConfig)

# Endpoints millions billions billions

Endpoint availability high low low

Message fanout millions <100 billions

Message rate high low medium

Push notif. reliability high medium medium

Hardware resources abundant scarce scarce

Outcome: infra cost

relative to requirements
low low high ✗ low low

Reliability
Requirement high medium high

Outcome high medium medium ✗ high high

Delivery

Speed

Requirement fast fast usually slow but fast in emergency

Outcome fast fast fast

always

slow

✗

usually slow

but fast in

emergency

Table 9: Comparison of push vs. pull.

values. It is important to note that this blocking does not occur

on subsequent app restarts. Moreover, MobileConfig can use

partial fetch (§6.3) to retrieve only the essential configs and

reduce blocking time. If the initial synchronous config fetch

fails or times out (e.g., due to no network connectivity), the

app proceeds with startup using the default parameter values

statically compiled into the app’s executable.

During the app’s steady-state execution, whenever it enters

the foreground, it checks whether H hours have passed since

the previous config fetch. If so, it asynchronously fetches

configs from the server, and caches configs on disk. We em-

pirically found that H=4 hours strike a good balance between

resource consumption and config freshness.

When the app cold-starts next time, it mmap() cached

binary-format configs into memory, and can immediately

read individual config parameters without loading or pars-

ing configs (§6.2). While the app boots normally with cached

configs, it immediately issues an asynchronous config-fetch

request to the server. Suppose the response comes back with

new config values in S seconds (e.g., S=2). The app’s future

reads to configs that are not read yet will consume the newly

fetched config values. Overall, during the first S seconds of

app startup, it consumes cached configs; after that, it con-

sumes newly fetched configs. This approach strikes a balance

between app start time and config freshness.

To bound config staleness, an app can block its startup to

fetch configs if and only if the cached configs are fetched

more than T hours ago, where T is configurable per app. If

T =48 hours, a person who uses the app daily would never

experience the blocking. If T =0, the app always blocks on

startup, which is the Firebase-recommended approach. By

default, our apps use T =∞ (i.e., never block) because 1) it

already provides our apps with the latest version of the vast

majority of configs, and 2) our apps can quickly recover from

harmful stale configs via emergency push, and hence there is

no need to be overly conservative.

After an app executable upgrade (not config update), the

app consumes cached configs just like a normal cold start.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1873



Some new config parameters might be added to the app’s new

version and hence do not exist in the local cache. The app

can boot using those parameters’ default values until the first

asynchronous config fetch finishes. Alternatively, the app can

block on a partial fetch (§6.3) to retrieve a minimal subset of

those missing parameters that are important to the app startup.

4.2.2 Repeatable Reads and Intra-config Consistency

Progressive consistency guarantees that 1) during a user ses-

sion, an app’s multiple reads to the same parameter always

return the same value, and 2) parameters in the same config

are consistent with each other when consumed by the app.

Once every H hours, the MobileConfig runtime fetches

the latest config values from the server, and saves configs in

a so-called ctable file, resulting in a sequence of ctables

over time: 0.ctable, 1.ctable, 2.ctable, and so on. Old

versions are garbage collected when they are no longer used.

On app startup, suppose 0.ctable exists and it contains the

configs in Figure 1. When the app reads ButtonCfg.color,

the runtime will retrieve it from 0.ctable. Later, after

the runtime fetches new configs and creates a new ver-

sion, 1.ctable, the app reads ButtonCfg.color again and

the runtime will still retrieve it from 0.ctable (instead of

1.ctable) in order to ensure repeatable reads. Later, when

the app reads parameter ButtonCfg.size, the runtime will

also retrieve it from 0.ctable in order to ensure that the app

reads ButtonCfg’s parameters from the same version.

Later, the app reads MusicCfg.volume and the runtime

will retrieve it from 1.ctable since that is the latest cached

version. Note that the app reads ButtonCfg and MusicCfg

from different versions of ctables. Treating each config

independently allows the app to consume each config’s latest

cached version on its first access to the config.

5 Config Reliability

Multiple factors make it challenging to prevent config errors

at scale. First, at Meta, hundreds of developers modify one

app’s code concurrently and release a new version every week.

Second, they also make config changes in live production

thousands of times per day. Finally, our apps run on billions

of devices in the wild—various OSes and unmaintained old

versions, plus thousands of wild Android device types. Hence,

we have to rely on defense in depth for reliability.

MobileConfig automatically runs multi-stage canary tests

on config changes. As soon as a config change is code-

reviewed and accepted, MobileConfig tests the change in

production by randomly selecting 0.5% of users as the canary

group and another 0.5% as the control group. The canary test

spans 30 minutes, during which the MobileConfig runtime

uses exposure logging to report the app’s consumption of the

new parameter values. Once the canary time expires, our tool

checks whether the canary parameters are associated with

regressions in key metrics. If so, the change is reverted.

After the first-stage canary, MobileConfig initiates a more

thorough second-stage canary to catch harder-to-detect config

errors. It partitions the entire population into a 50% canary

group and a 50% control group. This longer, four-hour canary

primarily monitors key metrics such as app crashes.

The second-stage canary (50% of users) is much larger than

the common practice [12]. For datacenter applications, we

also do not run canary tests at this large scale. However, the

mobile environment is diverse, with various device types and

older OS versions. Consequently, bugs may only manifest on

a small subset of devices, making them hard to detect in small-

scale canary tests. Moreover, in a large app, only a fraction, or

even a very small fraction, of users may use a specific feature

during the canary window, potentially triggering a bug. Due

to these challenges, MobileConfig employs unusually large

and unusually long canary tests in the second stage.

While more intermediate stages could be added to Mobile-

Config’s multi-stage canary, doing so would further extend

the rollout time for config changes, already at 4.5 hours, sig-

nificantly longer than in datacenter environments. Given the

noisy mobile environments, it requires a longer canary time

compared to datacenter environments. To reduce the rollout

time, we opt for the minimum of two stages. The first stage

promptly identifies obvious problems within a small user pop-

ulation, preventing widespread impact, while the second stage,

with a large population, catches difficult-to-detect issues, serv-

ing as a robust last line of defense.

Emergency push. Severe config errors have to be fixed

quickly by emergency push, as the normal process of up-

dating a config can take a long time to reach most devices and

even longer for apps to restart and consume the new config.

Emergency push works as follows. When a severe config

error is either detected by multi-stage canary or manually

reported, the developer can start an emergency push by speci-

fying the target devices to be notified, e.g., based on device

model, app version, country, user’s spoken language, etc. The

server maintains for each config an emergency version number

(EVN), which is incremented whenever an emergency push

happens to the config. The config’s name and latest EVN are

pushed to the target devices via our own implementation of

an MQTT-based push notification mechanism.

The device compares the received EVN with its local EVN.

If the former is higher, the device requests the latest parame-

ter values and an action from the server. The action options

are: do nothing (new values take effect after next app restart),

force refresh (the next parameter read will consume the new

value), background restart (the app will restart when switched

to background), and foreground restart (the app restarts im-

mediately, even if in foreground). Foreground restart is the

most disruptive to users and is reserved for severe issues.

Config consistency checking. MobileConfig continuously

monitors config consistency between clients and the server.

The MobileConfig runtime periodically captures snapshots

1874    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



of a device’s local configs and transmits them to the server.

The server retrieves parameter values from config backends,

compares them to the client-reported values, and logs results

in a database. Numerous health monitoring tools scan the

database to detect issues promptly.

6 Performance Optimizations

In this section, we elaborate on several optimizations that

allow MobileConfig to operate at scale efficiently.

6.1 Optimizing Strongly Typed Parameters

MobileConfig uses a strongly typed config API to prevent

type errors. Given a config schema, our tool generates strongly

typed parameter definitions for multiple languages. Apps use

the strongly typed API to access parameters, for example,

MobileConfig.getString(ButtonCfg.color). By contrast, apps

using Firebase [16] access parameters through untyped string

identifiers, which can result in runtime type errors.

Unfortunately, the benefits of strong types come with a

high cost. The symbols of thousands of Java config classes

and parameters would inflate an Android app’s binary size

and slow down app startup. To mitigate this, our compilation

tool transparently replaces all Java config class and parameter

symbols with encoded integer IDs, which serve as indices to

efficiently locate parameter values in ctable files at runtime.

6.2 Optimizing Config Storage

Config storage also affects the app startup time. Our evalu-

ation shows that using Firebase [16]’s approach of storing

configs in JSON files on Android would unacceptably prolong

our largest app’s cold start time by 558ms. Hence we heavily

optimize config storage for high performance.

Config storage format. To enable fast config reads, Mobile-

Config uses flatbuffers [18] to encode hierarchical config data

into an efficient byte-array representation. For each param-

eter type, it creates a byte array that contains two sections:

1) the values of parameters of the given type, and 2) metadata

for each parameter, e.g., a loggingEnabled field indicating

whether an exposure event should be logged. The per data-

type byte arrays are then concatenated, with header and tail

sections added. The header contains the offsets of the per-type

subarrays. The tail contains the LoggingIDs for each param-

eter. Finally, the entire byte array is persisted on disk as the

so-called ctable file.

Fast parameter read. On app startup, the MobileConfig run-

time mmap() the ctable file so that the app can immediately

read specific parameters without loading all configs into mem-

ory or parsing configs. On a parameter read operation, the

runtime extracts from the encoded 64-bit parameter ID the

following metadata: the config’s rank among all configs, the

parameter’s rank, and the parameter’s type. Then it uses them

as indices to efficiently locate the parameter’s value, metadata,

and LoggingID in the ctable file.

6.3 Optimizing Client-Server Protocol

A straightforward implementation of the protocol described

in §4.1.3 would be inefficient. This section describes the

optimizations we have made to the baseline protocol.

Partial fetch. Usually, an app asynchronously fetches configs

from the server without blocking app startup. However, there

are two exceptions: the first login after app installation and

the first startup after an app upgrade (§4.2.1). One important

insight is that even if occasional synchronous config fetches

are necessary, it is unnecessary to fetch all config in a single

batch because most configs are not used in the first few sec-

onds of app startup. Hence, it is likely that an asynchronous

fetch can finish before those parameters are used.

To minimize the delay, MobileConfig uses partial fetch,

which only retrieves the minimum subset of configs needed in

the early phase of app startup. These parameters are identified

through tests in our lab environment by tracing the parameters

read during app startup until it is ready for user interaction.

Config schema hash. Apps of different versions use different

config schemas and the server does not know the exact list

of configs and parameters that a client wants to fetch. Since

each app version is associated with a fixed set of configs and

parameters, the server only needs to know the client’s app

version. At compilation time, our tool generates a SHA-256

hash of the list of configs and parameters, and stores it along

with the app binary. At runtime, the client sends to the server

the SHA-256 hash, and the server consults a key-value store

to map the hash back to a list of configs and parameters.

Parameter value hash. Sometimes the server may wastefully

send a parameter’s latest value to the client while the client’s

cached version is already up-to-date. To avoid this overhead,

the client partitions its configs into sets, and produces a hash

for parameter values in each set. The client includes these

hashes in its request to the server, which are used by the server

to identify and skip unchanged config sets.

Boolean encoding. Most parameters are booleans (Table 7).

We reduce the server response size by using two bits to repre-

sent a boolean (null/valid and true/false) and then concatenat-

ing all boolean bits into an efficient byte array.

7 Evaluation

Unless otherwise noted, all experiments described in this

section are conducted in production at hyperscale.

7.1 Usage and Adoption

MobileConfig has been in production since 2015 and has

become the only mobile config solution at Meta after consoli-

dating about a dozen different legacy solutions. Currently, it

manages tens of apps running on billions of devices. Table 10

summarizes the usage statistics for several apps.

The largest app, MMa, uses more than 26,000 config pa-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1875



App MMa MMa,L MMi V Ha V Hi T Ha T Hi BAa BAi WPa WPi

# Configs 4344 46 3546 3178 3050 2780 1177 4680 3254 4381 2864

# Parameters 26770 362 18057 8563 7828 17662 4793 28189 17223 27192 15885

# Projects 5797 92 2437 1607 1642 4650 645 6727 2644 6596 2385

# Teams 754 19 607 336 315 532 185 725 539 718 505

Config fetches

per week (billion)
64 8 26 52 38 34 46 0.15 0.2 0.02 0.02

Table 10: Config usage statistics. Projects are makefile-like compilation targets. The subscripts a and i mean Android and iOS,

respectively, e.g., MMa and MMi. The business apps (BA and WP) have less users than the other consumer apps.

rameters and is jointly developed by more than 700 teams.

The smallest app, MMa,L, is a lightweight version of the MM

app, optimized for minimal resource consumption on low-end

Android devices. MMa,L uses 362 config parameters, which

is about two orders of magnitude smaller than that of MMa.

Overall, Table 10 shows that MobileConfig is capable of

supporting both small and large apps. Moreover, the large

number of teams and projects in Table 10 highlights that the

agile development process (§3.1) enabled by remote configs

can scale to many people jointly working on one large app.

7.2 Impact on App Startup Time

Both our apps and MobileConfig are aggressively optimized

for fast startup because it directly impacts user engagement.

7.2.1 Consistency Model’s Impact on App Startup Time

Figure 3 shows the average config-fetch time measured in pro-

duction for different apps. Blocking app startup while fetching

configs, as Firebase does [17], would significantly prolong

the startup times of our apps by anywhere from 1091ms to

2866ms, causing a detrimental impact on user engagement.

To put this into perspective, our app performance team often

invests months in optimizing an app to reduce its start time by

just tens of milliseconds. The config-fetch time is longer than

the network round-trip time because it includes time for the

config backends to generate personalized values for as many

as 27,000 config parameters. Overall, the long config-fetch

times emphasize the importance of progressive consistency’s

approach of using cached configs to unblock app startup.

MobileConfig performs synchronous config fetches in two

cases: the first login after app installation and the initial startup

following an app upgrade. In these cases, it employs partial

fetch (§6.3) to retrieve only the most important configs. For

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12

Apps

C
o

n
fi

g
 F

e
tc

h
 T

im
e

 (
m

s)

Figure 3: Config-fetch time for different apps.

our popular app, MMa, compared to a full fetch, partial fetch

reduces fetch time from 2,499ms to 1,571ms and decreases

transferred data from 401KB to 31KB. The smaller reduction

in fetch time is due to the non-linear relationship between

config size and config-fetch time. The fetch time includes

computation time for the config backends to generate person-

alized values for many parameters in parallel, which does not

decrease linearly as the config data size reduces.

7.2.2 Config Storage’s Impact on App Startup Time

On app startup, the MobileConfig runtime directly mmap()

a binary-format ctable file into memory and immediately

read individual config parameters, without the delay of pars-

ing configs or loading all configs into memory. By contrast,

Firebase [16] on Android stores configs in JSON files. To do a

direct comparison, we modified our V Ha app to use a similar

approach to store configs in JSON, and we call it V Ha, json. On

startup, both V Ha and V Ha, json use cached configs, and hence

the impact of config fetch is excluded from the comparison.

We measured app startup time in production. On average,

V Ha boots 558ms faster than V Ha, json. This significant win

underscores the importance of optimizing storage format and

access method. Unlike V Ha, json, which parses the JSON file

to extract all parameters before accessing even a single one,

MobileConfig utilizes mmap() to access configs in an opti-

mized binary format. This enables it to selectively page in

the specific page containing the needed parameter and read it

directly, without being concerned about other parameters.

Figure 4: Config freshness for the MMa and MMi apps.

1876    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



7.3 Config Data Freshness

Progressive consistency not only enables fast app startup but

also provides apps with highly fresh configs. We use Mo-

bileConfig’s config consistency checker (§5) to measure con-

fig freshness in production. Config read freshness measures

whether a parameter value consumed by an app is identical

to the parameter’s value on the server side. Config storage

freshness measures whether a parameter’s value stored in a

device’s cache is identical to the parameter’s value on the

server side. Read freshness and storage freshness may diverge

because even if a client has fetched and stored a parameter’s

latest value in cache, the app may keep using an older cached

version in order to guarantee repeatable reads.

Figure 4 shows config freshness reported by billions of

devices for our biggest app MM. The P50 values of config

read freshness are 99.70% and 99.84% for MMa and MMi, re-

spectively. These demonstrate that progressive consistency is

able to provide apps with highly fresh configs while enabling

fast app startup.

The config storage freshness is close to 100% but never

reaches 100% due to how it is calculated. A config storage

sample is taken at time T0 right after a MobileConfig client

fetches configs from the server. Later, the sample is compared

with the config data on the server side at time T1. Between

T0 and T1, some parameter values might have changed on the

server side, causing the sample to be considered “not fresh.”

7.4 Emergency Push

Emergency push (§5) accelerates the process of purging harm-

ful stale config data from app devices to rectify config er-

rors. We designed an experiment to measure in production

how quickly an update on a specific parameter is dissem-

inated and consumed by app devices. We compare differ-

ent setups: 1) baseline—no use of emergency push, 2) EP

w/o restart—emergency push without app restart, 3) EP w/

restart—emergency push plus forced app foreground restart.

The results are shown in Figure 5. The x-axis is the time

since the parameter value is updated. The freshness coverage

metric on the y axis measures the percentage of parameter

reads that return the new parameter value out of all app de-

vices’ reads to the parameter. The app is set up to read the

specific parameter immediately after it boots. Freshness cov-

erage is calculated in a 30-minute moving time window.

By design, “EP w/ restart” guarantees near 100% freshness

coverage. If a device’s app is running at time 0 when the

parameter value is updated, soon the app will receive the new

parameter value via emergency push and then immediately

restart to consume it. If the app is not running at time 0, when

it is opened later, it will boot with the cached old parameter

value, but will quickly receive the asynchronously fetched

new configs and notice that an emergency push has happened.

It will immediately restart the app to consume the new param-

eter value. If we exclude the old parameter value temporarily

consumed by the app during the very short period of time

between the app’s first startup and its immediate restart, by

design “EP w/ restart” guarantees near 100% freshness cov-

erage. This is shown as the top curve in Figure 5. Note that in

this experiment, the top curve is inferred instead of measured

in production because we cannot afford to force-restart the

app in production just for an experiment, which would cause

a disruptive experience to many real users. Local tests on our

devices confirm that “EP w/ restart” indeed restarts the app

in seconds to consume the new parameter value.

The “baseline” curve in Figure 5 shows that without emer-

gency push, it takes a long time for freshness coverage to

reach a high value. Specifically, after 4 hours, the coverage

reaches 26%; after 24 hours, it reaches 85%. The long tail is

caused by users who do not use the app for a long time.

“EP w/o restart” improves freshness coverage. Specifically,

after 4 hours, the coverage reaches 40% (vs. 26% in “base-

line”); after 24 hours, it reaches 92% (vs. 85% in “baseline”).

However, the wide gap in freshness coverage between “EP

w/o restart” and the ideal setup of “EP w/ restart” shows that

it is insufficient to just quickly push the new parameter value

to devices because the app will not consume it until the app’s

next restart. Therefore, forced app restart, though disruptive,

is a necessary step to quickly purge stale configs.

In production, EP is used approximately once per quarter

to rectify config errors and almost all those cases use “EP w/

restart.” In addition, “EP w/o restart” is frequently used for

Defcon drills [25], as explained in §8.1, for disaster readiness

drills rather than handling real production outages.

7.5 Multi-stage Canary Tests

Multi-stage canary tests help catch code or config bugs early.

Over a one-month period, MobileConfig conducted 81,014

canaries and caught 15 bugs, all in the second-stage canary.

All these bugs slipped through the small-scale first-stage ca-

nary, because the regression in app health metrics was too

subtle to be reliably detected in very noisy mobile environ-

ments. This highlights the difficulty of config error prevention

in mobile environments. Despite a large body of research on

config error prevention [9, 14, 24, 29, 44, 46, 47, 49], we found

that large-scale canary tests in production are still the most

robust and widely applicable method.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24

F
re

sh
n

e
ss

 c
o

v
e

ra
g

e

Time since the parameter was changed (hours)

(Inferred) Emergency push with forced app restart

Emergency push 

without app 

restart Baseline without 

emergency push

Figure 5: Impact of emergency push on freshness coverage.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1877



App All OFF QH OFF VH OFF BE OFF VH+BE OFF All ON (production version) Boolean

Count

(%)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Request

(KB)

Response

(KB)

Total savings

(%)

MM_a 148 880 181 6.4 0.85 698 33 802 0.85 880 33 5.7 96 70

WP_a 145 808 175 6.3 0.82 642 31 738 0.82 808 31 6.7 96 69

MM_i 102 473 125 3.4 0.74 354 24 533 0.75 476 24 3.9 95 66

WP_i 84 374 101 1.5 0.64 287 19 417 0.64 374 19 4.7 95 65

Table 11: Impact of client-server protocol optimizations: Value Hashing (VH), Boolean Encodings (BE) and Query Hashing (QH).

We describe two prevented bugs below to give some in-

tuition on why the second-stage canary caught the bugs but

not the first-stage canary. In the first example, a developer

used remote config to drive an A/B test that targeted a very

small population P of Android users. Because MobileCon-

fig’s first-stage canary only samples 0.5% of those P users,

i.e., an even smaller population, it did not catch any problem.

The second-stage canary was conducted on 100x more users

and identified about 3,000 app crashes that only happened to

users exposed to the A/B test. It turned out that a bad config

parameter value used for one of the A/B test groups caused

IndexOutOfBoundsException. The spike and recovery of

the app crash is shown in Figure 6.

0

500

1000

1500

3/19 3/20 3/21 3/22 3/23 3/24 3/25

A
p

p
 C

ra
sh

e
s

Figure 6: A canary test caught app crashes.

In the second example, a developer set up an A/B test to en-

able a new code path in an Android app, which increased mem-

ory consumption. Because the increase in memory consump-

tion was quite moderate, it caused out-of-memory crashes on

only a small fraction of very low-end devices with limited

memory. The second-stage canary caught this subtle problem

and prevented a silent regression in memory consumption.

7.6 Client-server Protocol Optimization

§6.3 describes MobileConfig’s various network optimizations:

query hashing (QH), value hashing (VH), and boolean encod-

ing (BE). To evaluate their effectiveness, we measured the

request and response size when fetching all configs for several

apps under different settings. The results are summarized in

Table 11, where “All ON” means enabling all optimizations,

which is the setting used in production. Other settings mean

disabling certain optimizations from the production baseline.

These experiments are performed in a local testbed because

disabling optimizations in production would cause a poor

experience to real users.

Compared with “All OFF”, “All ON” reduces the total size

of request and response by ≈96%. Value hashing and boolean

encoding reduce the response size by about two orders of

magnitude, while query hashing reduces the request size by

≈80%. The effectiveness of these optimizations is an impor-

tant reason why we prefer the simple soft-state client-server

protocol over a more complex hard-state protocol.

8 Operational Experiences

We use several production incidents to highlight the chal-

lenges and then share the lessons learned.

8.1 Production Incidents

Incident 1: lack of emergency push (EP). In 2016, a devel-

oper mistakenly changed the config parameter that controls

the maximum number of comments to fetch in the MM app

from 25 to 0, causing users to see no comments. The param-

eter value was quickly fixed on the server side, but as EP

was not implemented in MobileConfig at the time, we had to

painfully wait for over a day for most devices to gradually

restart the app and apply the corrected parameter value. This

incident expedited our development of EP.

Incident 2: EP malfunction. Early on, we observed that

some devices had corrupted storage, leading to incorrect ap-

pearances of many config files. Initially, each use of EP fixed

a single broken config parameter, and it was never the case

that many configs needed simultaneous correction through

EP. Given this, we adjusted the MobileConfig runtime to treat

the situation of too many EP-delivered configs on storage as a

sign of storage corruption, causing it to revert to default values

for all configs. This precaution served us well for years until

we began conducting large-scale Defcon drills [25]. These

drills involved using EP to instruct apps to rapidly disable

less-essential features to reduce the load on backend systems.

In 2021, as Defcon drills expanded to disable more app fea-

tures simultaneously, the number of configs pushed out by EP

exceeded a threshold, triggering the MobileConfig runtime to

mistakenly conclude that the storage was corrupted on many

devices and fall back to default values for all configs. This

incident demonstrates that as the operating environment shifts

over time, an initial defensive mechanism can unexpectedly

transform into a destructive force. Therefore, a robust solution

needs to stand the test of time.

Incident 3: mishandling of file names. We once noticed

network connection anomalies from about 0.1% of users due

1878    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



to MobileConfig randomly flipping some config parameters.

As the problem was not reproducible in our lab, initially, we

made no progress after 27 days of laborious investigation.

Eventually, a breakthrough occurred when the problem mani-

fested on an employee’s device, allowing us to directly attach

a debugger. It turned out that when the app starts, if the latest

config file’s sequence number happens to end with 0, such as

10.ctable or 20.ctable, the MobileConfig runtime code,

“if (latestConfigFile.endsWith(“0.ctable”)),” mistakenly treated

it as 0.ctable. The fix was simple—just changing the code

to “if (latestConfigFile.endsWith(“/0.ctable”))”—yet the in-

vestigation process was extremely difficult. This incident

underscores the difficulty of developing low-level mobile sys-

tems like MobileConfig, exacerbated by the lack of direct

access to user devices.

Incident 4: configs on VR devices. On our VR products,

since we own the operating system, we run the MobileConfig

runtime in a daemon to manage configs for all apps, which is

more efficient than each app managing its own configs. When

an app starts, it subscribes to the daemon for certain configs.

While the solution overall worked well, it was reported that

the daemon occasionally returned incorrect parameter values.

As the problem was not reproducible in our lab, much of the

investigation involved reading source code, changing code

through trial and error, and waiting for logging data from user

devices for confirmation. The whole process lasted 60 days.

Eventually, it was discovered that when two apps concurrently

subscribe to two sets of overlapping configs, the ordering of

configs on storage depends on the timing of the subscrip-

tion calls. This ordering issue was overlooked in some cases,

resulting in retrieving wrong parameter values. This inci-

dent, once again, underscores the difficulties of developing

low-level mobile systems.

8.2 Lessons Learned

We draw several lessons from our experience above.

• Following from Incident 1, we recommend every config

framework to support emergency push. Although it is not

supported by existing solutions in the public domain [1, 16,

28, 42] and the dozen legacy config frameworks predating

MobileConfig at Meta, we found it important for enabling

a safe and agile development process.

• Incidents 2, 3, and 4 all demonstrate the difficulty of devel-

oping a robust and feature-rich mobile config framework.

Therefore, it should be done only once and then reused

across all platforms, programming languages, and config

use cases. This principle drives our design of the single,

universal SDK, as opposed to Firebase’s approach of using

different implementations for different platforms.

• Incidents 3 and 4 also demonstrate that debugging sub-

tle issues in the wild for low-level mobile systems like

MobileConfig is very difficult due to a lack of access to

user devices. Over time, we have enhanced consistency

checking to detect various issues early (§5) and also upload

snapshots of devices’ config files to help us more easily

reproduce problems.

• Finally, as shown in §7.5, traditional small-scale canary

tests fall short for mobile apps due to noisy mobile envi-

ronments. Consequently, MobileConfig employs unusually

large and unusually long canary tests.

9 Related Work

Configuration management for mobile apps. Out of the

few existing mobile config systems [1, 16, 28, 42], Google’s

Firebase RemoteConfig [16] is the closest to MobileConfig.

A detailed comparison is shown in Table 8.

Configuration management for datacenter applications.

Past studies on configuration management [10, 33–36, 38,

45, 50] have been mostly focused on datacenter applications.

Configerator [38] is a representative system in the industry

and a comparison is shown in Table 9.

Configuration error prevention. A large body of work stud-

ies misconfiguration [6, 9, 14, 24, 29, 43, 44, 46, 47, 49]. Like

Configerator [38], MobileConfig primarily uses large-scale

canary tests in production to prevent misconfiguration due to

its robustness in complex environments, but MobileConfig

has to address additional challenges in mobile environments

such as ineffectiveness of small-scale canaries.

Consistency models. Out of many consistency models [2, 3,

23, 26, 31, 48], TACT [48] is most related to MobileConfig’s

progressive consistency. Both MobileConfig and TACT allow

consumption of stale data and can bound the level of staleness.

Config consumption on mobile devices can be viewed as read-

only transactions, but neither related database work [8, 13]

nor config consumption in datacenters [38] is optimized for

accessing up-to-date data without blocking on remote reads.

10 Conclusion

We presented MobileConfig, a configuration management

framework that manages tens of mobile apps on billions of

devices. Its progressive consistency balances fast app startup

with fresh config data. To prevent config errors, it uses a

defense-in-depth approach that employs multi-stage canary

tests at scale, compile-time validation, and config consistency

checking. Its novel use of cross-platform code and server-side

config parameter remapping prevents the proliferation of mo-

bile SDKs while supporting diverse platforms, programming

languages, and config use cases. Additionally, we reported

our lessons learned from operating MobileConfig at hyper-

scale. Finally, we hope that our experience—for example, our

developers making thousands of config changes daily in live

production—will inspire others to also employ remote configs

to push the limits of agile app development.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1879



References

[1] Adobe Target: A/B Test, Personalize & Automate, 2024.

https://business.adobe.com/products/target

/adobe-target.html.

[2] Sarita V Adve and Kourosh Gharachorloo. Shared Mem-

ory Consistency Models: A Tutorial. IEEE Computer,

29(12):66–76, 1996.

[3] Atul Adya. Weak consistency: a generalized theory and

optimistic implementations for distributed transactions.

PhD thesis, Massachusetts Institute of Technology, Dept.

of Electrical Engineering and Computer Science, 1999.

[4] App startup time, 2024. https://developer.androi

d.com/topic/performance/vitals/launch-time.

[5] AppDynamics. Mobile app performance explained,

2014. https://www.appdynamics.com/media/

uploaded-files/mobileapp.pdf.

[6] Mona Attariyan and Jason Flinn. Automating configu-

ration troubleshooting with dynamic information flow

analysis. In Proceedings of the Ninth USENIX Sympo-

sium on Operating Systems Design and Implementation,

2010.

[7] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,

Elizabeth O’Neil, and Patrick O’Neil. A critique of

ANSI SQL isolation levels. ACM SIGMOD Record,

24(2):1–10, 1995.

[8] Arvola Chan and Robert Gray. Implementing distributed

read-only transactions. IEEE Transactions on Software

Engineering, (2):205–212, 1985.

[9] Runxiang Cheng, Lingming Zhang, Darko Marinov, and

Tianyin Xu. Test-case prioritization for configuration

testing. In Proceedings of the 30th ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis,

pages 452–465, 2021.

[10] Azure App Config, 2024. https://docs.microsoft

.com/en-us/azure/azure-app-configuration/o

verview.

[11] Colin Contreary. Why should you care about your mo-

bile app’s startup time?, 2023. https://blog.embra

ce.io/why-should-you-care-about-your-mobil

e-apps-startup-time/.

[12] Feature toggle, 2024. https://en.wikipedia.org/w

iki/Feature_toggle.

[13] Hector Garcia-Molina and Gio Wiederhold. Read-only

transactions in a distributed database. ACM Trans-

actions on Database Systems (TODS), 7(2):209–234,

1982.

[14] Peng Huang, William J Bolosky, Abhishek Singh, and

Yuanyuan Zhou. ConfValley: A systematic configura-

tion validation framework for cloud services. In Pro-

ceedings of the 10th European Conference on Computer

Systems, page 19, 2015.

[15] Jez Humble and David Farley. Continuous delivery:

reliable software releases through build, test, and de-

ployment automation. Pearson Education, 2010.

[16] Google Inc. Firebase Remote Config, 2024. https:

//firebase.google.com/docs/remote-config.

[17] Google Inc. Firebase Remote Config Loading Strategies,

2024. https://firebase.google.com/docs/remot

e-config/loading.

[18] Google Inc. Flatbuffers, 2024. https://google.git

hub.io/flatbuffers/.

[19] Tyler Kieft. Building a better Instagram app for Android,

2014. https://instagram-engineering.com/bui

lding-a-better-instagram-app-for-android-c

08f973662b.

[20] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker,

Ya Xu, and Nils Pohlmann. Online controlled experi-

ments at large scale. In Proceedings of the 19th ACM

SIGKDD international conference on knowledge discov-

ery and data mining, pages 1168–1176, 2013.

[21] Ron Kohavi, Diane Tang, and Ya Xu. Trustworthy online

controlled experiments: A practical guide to A/B testing.

Cambridge University Press, 2020.

[22] Ronny Kohavi, Thomas Crook, Roger Longbotham,

Brian Frasca, Randy Henne, Juan Lavista Ferres, and

Tamir Melamed. Online experimentation at Microsoft.

Data Mining Case Studies, 11(2009):39, 2009.

[23] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,

and David G Andersen. Don’t settle for eventual: Scal-

able causal consistency for wide-area storage with cops.

In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, pages 401–416, 2011.

[24] Ratul Mahajan, David Wetherall, and Tom Anderson.

Understanding BGP misconfiguration. In Proceedings

of the ACM SIGCOMM 2002 Conference on Applica-

tions, Technologies, Architectures, and Protocols for

Computer Communication, pages 3–16, 2002.

[25] Justin J Meza, Thote Gowda, Ahmed Eid, Tomiwa

Ijaware, Dmitry Chernyshev, Yi Yu, Md Nazim Uddin,

Rohan Das, Chad Nachiappan, Sari Tran, et al. Defcon:

Preventing Overload with Graceful Feature Degrada-

tion. In Proceedings of the 17th USENIX Symposium on

Operating Systems Design and Implementation, pages

607–622, 2023.

1880    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://business.adobe.com/products/target/adobe-target.html
https://business.adobe.com/products/target/adobe-target.html
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://www.appdynamics.com/media/uploaded-files/mobileapp.pdf
https://www.appdynamics.com/media/uploaded-files/mobileapp.pdf
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://blog.embrace.io/why-should-you-care-about-your-mobile-apps-startup-time/
https://blog.embrace.io/why-should-you-care-about-your-mobile-apps-startup-time/
https://blog.embrace.io/why-should-you-care-about-your-mobile-apps-startup-time/
https://en.wikipedia.org/wiki/Feature_toggle
https://en.wikipedia.org/wiki/Feature_toggle
https://firebase.google.com/docs/remote-config
https://firebase.google.com/docs/remote-config
https://firebase.google.com/docs/remote-config/loading
https://firebase.google.com/docs/remote-config/loading
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://instagram-engineering.com/building-a-better-instagram-app-for-android-c08f973662b
https://instagram-engineering.com/building-a-better-instagram-app-for-android-c08f973662b
https://instagram-engineering.com/building-a-better-instagram-app-for-android-c08f973662b


[26] Athicha Muthitacharoen, Benjie Chen, and David

Mazieres. A low-bandwidth network file system. In

Proceedings of the eighteenth ACM symposium on Op-

erating systems principles, pages 174–187, 2001.

[27] Mike Nakhimovich. Improving Startup Time in the

NYTimes Android App, 2016. https://archive.ny

times.com/open.blogs.nytimes.com/2016/02/1

1/improving-startup-time-in-the-nytimes-a

ndroid-app/.

[28] Optimizely, 2024. https://www.optimizely.com/.

[29] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel

Massey, Andreas Terzis, and Lixia Zhang. Impact of

configuration errors on DNS robustness. In Proceed-

ings of the ACM SIGCOMM 2004 Conference on Appli-

cations, Technologies, Architectures, and Protocols for

Computer Communication, pages 319–330, 2004.

[30] Anshu Rustagi. How We Improved Our Android App

“Cold Start” Time by 28%, 2018. https://redfin.e

ngineering/how-we-improved-our-android-app

-cold-start-time-by-28-a722e231314a.

[31] Yasushi Saito and Marc Shapiro. Optimistic replication.

ACM Computing Surveys (CSUR), 37(1):42–81, 2005.

[32] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max

Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios

Skarlatos, Hitesh Khandelwal, and Chunqiang Tang.

ServiceRouter: a Scalable and Minimal Cost Service

Mesh. In Proceedings of the 17th USENIX Sympo-

sium on Operating Systems Design and Implementation,

2023.

[33] Gerald Schermann, Jürgen Cito, and Philipp Leitner.

Continuous experimentation: challenges, implementa-

tion techniques, and current research. IEEE Software,

35(2):26–31, 2018.

[34] Gerald Schermann, Dominik Schöni, Philipp Leitner,

and Harald C Gall. Bifrost: Supporting continuous de-

ployment with automated enactment of multi-phase live

testing strategies. In Proceedings of the 17th Interna-

tional Middleware Conference, pages 1–14, 2016.

[35] Rian Shambaugh, Aaron Weiss, and Arjun Guha. Re-

hearsal: A configuration verification tool for puppet. In

Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

pages 416–430, 2016.

[36] Alex Sherman, Philip A Lisiecki, Andy Berkheimer,

and Joel Wein. ACMS: The Akamai Configuration

Management System. In Proceedings of the Second

USENIX Symposium on Networked Systems Design and

Implementation, pages 245–258, 2005.

[37] Snap Inc. Measuring ‘Time to Camera ready’, 2021.

https://eng.snap.com/time_to_camera_ready.

[38] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holistic

Configuration Management at Facebook. In Proceed-

ings of the 25th Symposium on Operating Systems

Principles, 2015.

[39] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and

Mike Meyer. Overlapping experiment infrastructure:

More, better, faster experimentation. In Proceedings

of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 17–26,

2010.

[40] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J

Spreitzer, Marvin M Theimer, and Brent B Welch. Ses-

sion guarantees for weakly consistent replicated data. In

Proceedings of 3rd International Conference on Parallel

and Distributed Information Systems, pages 140–149.

IEEE, 1994.

[41] Natansh Verma. Optimizing Facebook for iOS start time,

2015. https://engineering.fb.com/2015/11/20/

ios/optimizing-facebook-for-ios-start-tim

e/.

[42] VWO, 2024. https://vwo.com/.

[43] Helen J Wang, John C Platt, Yu Chen, Ruyun Zhang,

and Yi-Min Wang. Automatic Misconfiguration Trou-

bleshooting with PeerPressure. In Proceedings of the

Sixth Symposium on Operating Systems Design and Im-

plementation, pages 245–257, 2004.

[44] Avishai Wool. A quantitative study of firewall configu-

ration errors. IEEE Computer, 37(6):62–67, 2004.

[45] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,

Shan Lu, Long Jin, and Shankar Pasupathy. Early detec-

tion of configuration errors to reduce failure damage. In

Proceedings of the 12th USENIX Symposium on Operat-

ing Systems Design and Implementation, pages 619–634,

2016.

[46] Tianyin Xu and Yuanyuan Zhou. Systems Approaches

to Tackling Configuration Errors: A Survey. ACM Com-

puting Surveys, 47(4):70, 2015.

[47] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,

Lakshmi N Bairavasundaram, and Shankar Pasupathy.

An empirical study on configuration errors in commer-

cial and open source systems. In Proceedings of the

23rd ACM Symposium on Operating Systems Principles,

pages 159–172, 2011.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1881

https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://archive.nytimes.com/open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://www.optimizely.com/
https://redfin.engineering/how-we-improved-our-android-app-cold-start-time-by-28-a722e231314a
https://redfin.engineering/how-we-improved-our-android-app-cold-start-time-by-28-a722e231314a
https://redfin.engineering/how-we-improved-our-android-app-cold-start-time-by-28-a722e231314a
https://eng.snap.com/time_to_camera_ready
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time/
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time/
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time/
https://vwo.com/


[48] Haifeng Yu. Design and evaluation of a continuous con-

sistency model for replicated services. In Proceedings

of the Fourth Symposium on Operating Systems Design

and Implementation, 2000.

[49] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xi-

aolan Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and

Yuanyuan Zhou. EnCore: Exploiting system environ-

ment and correlation information for misconfiguration

detection. In Proceedings of the 19th Architectural

Support for Programming Languages and Operating

Systems, pages 687–700, 2014.

[50] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang

Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and

Yingchun Yang. BestConfig: Tapping the Performance

Potential of Systems via Automatic Configuration Tun-

ing. In Proceedings of the 2017 Symposium on Cloud

Computing, pages 338–350, 2017.

1882    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	Config Usage
	Config Use Cases
	Statistics of Mobile Environments

	Agile Development with MobileConfig
	Agile Development Process
	Stale Configs Hinder Agile Development
	Progressive Consistency

	MobileConfig Design
	MobileConfig Architecture
	Client-side Library
	Server-side Components
	Client-server Protocol

	Support for Progressive Consistency
	Config Consistency during App Lifecycle
	Repeatable Reads and Intra-config Consistency


	Config Reliability
	Performance Optimizations
	Optimizing Strongly Typed Parameters
	Optimizing Config Storage
	Optimizing Client-Server Protocol

	Evaluation
	Usage and Adoption
	Impact on App Startup Time
	Consistency Model's Impact on App Startup Time
	Config Storage's Impact on App Startup Time

	Config Data Freshness
	Emergency Push
	Multi-stage Canary Tests
	Client-server Protocol Optimization

	Operational Experiences
	Production Incidents
	Lessons Learned

	Related Work
	Conclusion

