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Abstract
Alibaba Cloud designs and deploys P4-capable gateway to

accelerate the processing of the diverse business traffics in
the edge cloud. Since the programmable ASIC in the gateway
only accepts a monolithic, pipelined P4 program, the dozens
network function chains for different business traffics have
to be composed into one. This is non-trivial due to the con-
tention between the complexity of network function chains
and the limited resource in the programmable ASIC. In this
paper, we present Sirius, a system that automates network
function chain composition process. Sirius synthesizes tables
to identify which business traffic the input packet belongs to,
pipelines loops in the merged network function graph via re-
circulations, and partitions the graph between programmable
ASIC and CPU when the required memory consumption ex-
ceeds the ASIC’s capability. So far, Sirius has automated
network function arrangement in hundreds of gateways, and
has effectively decreased our programmers’ workload by three
orders of magnitude, from weeks to minutes.

1 Introduction

As a cloud provider, Alibaba operates hundreds of edge clouds
to deliver fast services (e.g., game and video) to global end
users. To maintain reasonable costs, each of these small-scale
edge clouds contains a pair of gateways, a few switches, and
tens of light-weight servers with tight space constraints and
CPU compute limitations. Our typical edge cloud topology
is shown in Figure 1(a). Depending on the services deployed,
the edge cloud can serve more than 10 types of business
traffics (load balancer, proxy, Virtual Private Cloud (VPC),
etc.) Illustrated in Figure 1(b), each business traffic requires its
own network function processing chain, different directions
of the same business traffic may traverse network functions
in different orders. As services today constantly evolve, it has
become increasingly difficult for these resource-limited edge
clouds to handle the ever-growing traffic and CPU overhead.

Recent advances in programmable switch ASICs have en-
abled us to offload network functions from edge cloud servers
to the programmable switch ASICs. We designed and built
our own P4-capable edge gateway. Shown in Figure 1(c),
the gateway is equipped with a programmable switch ASIC
and server-grade CPU with dozens of cores, connected via
a pair of non-programmable NICs with hundreds of gigabits
throughput. The gateway sits on the border of the edge cloud
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between the ISP and edge cloud switches. Deploying network
function chains onto the P4-capable gateway significantly
reduces the usage of constrained server CPU resources and
improves the performance of our edge clouds.

Despite the P4-capable gateway’s performance and flexi-
bility, we face a tough programming challenge. Recent com-
piler works such as Lyra [5], Cetus [13] allow programmers
to develop one network function chain fast and resource-
optimized. However, programmers struggle with compos-
ing all network function chains into the gateway while
satisfying the throughput requirement. More specifically,
since the programmable ASIC is performant but limited in re-
sources, the programmers have to merge all network function
chains into a graph by reusing overlapping network func-
tions, and maximize the network functions assigned to the
programmable ASIC to process hundreds of gigabits of traffic
flowing through the gateway. Network function chain compo-
sition involves three major challenges:

Identification. When a packet arrives, the first step is to iden-
tify which business traffic it belongs to and which network
functions to execute. While there are many potential ways of
identifying a packet, the solution should be generic and can
be implemented with reasonable resource overhead.

Pipelining. In real-world applications, it is inevitable that dif-
ferent business traffics execute network functions in different
orders. Given the ASIC’s pipeline architecture, it is infeasible
to compose these different processing chains directly. Such
ordering conflicts can be resolved by inserting recirculations
but with substantial human efforts.

Partitioning. Even after resolving ordering conflicts, the com-
posed program containing all required network functions may
not fit on the programmable ASIC due to its resource con-
straints. Thus, some components in the composed program
have to be moved to the gateway’s CPU, at the expense of
lower performance and degraded traffic throughput. Such
partitioning between programmable ASIC and the CPU is
non-trivial because it requires careful balancing between the
deployment capability and the overall throughput.

State of the art. To the best of our knowledge, no prior com-
piler work [3, 5–7, 9, 10, 12, 13, 19, 20, 23–25, 27] targeted
the above-mentioned network function chain composition
problem. µP4 [21] and P4 Weaver [4] enables modular P4
programming and composes multiple P4 modules into a di-
rected acyclic graph (DAG) without reusing any common
code block across modules. P4Visor [28], HyperV [26], De-
javu [25], and HyPer4 [8] merge multiple P4 programs into
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Figure 1: Our edge cloud’s topology, business traffic examples, and architecture of our P4-capable gateway.

one but do not handle ordering conflicts, or partition the pro-
gram across ASIC and CPU. These approaches incur high
memory overhead and cannot handle production-scale com-
plexity with tens of business traffics and hundreds of match
action tables.

Our system: Sirius. In this paper, we present Sirius, a sys-
tem that automates network function chain composition in
Alibaba’s edge clouds. Sirius takes the following inputs: (1)
P4 programs that define the network function chains for each
business traffic, (2) a traffic identification database that de-
scribes flow characteristics for sets of business traffics, and
(3) edge cloud topology and the throughput requirement for
each traffic. Sirius then returns a composed P4 program that
can handle all the above traffics and can deploy on the pro-
grammable ASIC. It also outputs the list of modules that
must be moved to the CPU, so that our developers can later
implement them as C++ programs.

Overall, this paper makes the following contributions:

• A synthesis algorithm that generates a memory-efficient P4
traffic identification table, along with corresponding guard
conditions to identify each business traffic (§4).
• A pipelining algorithm that finds all possible candidates for

resolving ordering conflicts in composing business traffic
processing chains (§5).
• A new resource encoding paradigm and iterative searching

approach to find the best pipelining and partitioning plan
to minimize CPU load. (§6)

We have been using Sirius in production for one year, and
it has automated the arrangement of network functions for
hundreds of gateways in our global edge clouds. Sirius has
effectively decreased our network function arrangement work-
load by three orders of magnitude (from weeks to minutes).
In §7, we share our experience in using Sirius, representa-
tive cases solved by Sirius, and lessons we learned. We also
evaluate Sirius’s performance in §8.

2 Background

Edge clouds are deployed closer to end users and deliver
dozens of services (e.g., IoT, cloud gaming, CDN, and storage)
with lower latency. Gateways on the edge cloud host network
functions to process all services’ business traffic at hundreds
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Figure 2: The length and resource consumption of overlapping
tables of each network function chain.

of gigabits per second, such as balancing e-payment load,
translating network address for VPC, collecting statistics for
QoS and billing, etc. Traditionally, the network functions are
implemented as software programs running on the CPU. As
the scale of the edge cloud and the complexity of deployed
services grow, the CPU-based solution struggles to keep up.
We spent hundreds of CPU cores on an edge cloud site only
processing the traffic traversing through, resulting in huge
overhead both in cost and space. Therefore, we built our own
P4-capable gateway and accelerated our network functions via
the programmable ASIC. Depending on the services deployed,
the gateway serves traffic at hundreds of gigabits to multi-
terabits per second.

Developing atop the P4-capable gateway is challenging
due to the scale and complexity of our network functions. To
quantify the complexity, we examined four P4 programs for
different edge cloud sites and summarized the line of codes
and resource consumption in Table 1. We can see that all four
programs occupy all 12 stages of the programmable ASIC,
and all have high Packet Header Vector (PHV) usage. The
largest program has 248 tables and consumes all four pipelines
in the gateway’s ASIC.

We experience such complexity and scale because each
P4 program is composed of tens of network function chains
processing different business traffic. We further dive into
the ‘Medium 1’ program, which is composed of 10 network
function chains. We examined the length of each network
function chain and the result is recorded in Figure 2. The
length varies from 9 to 26, which means some chain occupies
at least 26 stages in the programmable ASIC. We also observe
a huge amount of table overlapping between the chains. We
recorded the SRAM and TCAM memory size of the tables
shared with other chains and the result is shown in Figure 2.
Each chain at least reuses 1MB of SRAM memory and 180KB

478    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Scale LoC # of Table # of Pipe. PHV (%) SRAM (%) TCAM (%) Stage
Small 4155 81 2 81.1%/68.8% 78.0%/98.8% 28.1%/10.1% 12/12

Medium 1 11870 197 2 88.9%/87.0% 51.7%/49.3% 64.6%/25.3% 12/12
Medium 2 9996 156 2 69.1%/85.4% 34.9%/47.2% 27.8%/29.2% 12/12

Large 16190 248 4 85.9%/97.3%/59.4%/87.4% 39.5%/67.2%/86.8%/66.9% 26.4%/33.0%/17.0%/35.4% 12/12/12/12
Table 1: The resource usages of four P4 programs at different scales.

of TCAM memory. If we choose not to reuse the tables and
duplicate them, the overall memory consumption explodes by
3.56X in SRAM and 4.93X in TCAM, which way exceeds
the ASIC’s capability. Thus, it is necessary for us to compose
network function processing chains that overlap with each
other.

To the best of our knowledge, no prior work can handle
the complex challenges we face. We believe the fundamental
reason is that current abstractions either assume there exists
only one huge network function chain (P4) or multiple chains
are independent of each other (Lyra [5]). Such assumptions
do not hold in our edge cloud scenario, as explained above.

Now we use the example network function chain shown in
Figure 1(b) to illustrate the network function chain composi-
tion process and the challenges. The three network function
chains create a simple edge cloud instance that allows bidirec-
tional communication between private and public networks.
SNAT-IN and SNAT-OUT chains process traffic going in and
out of the edge cloud respectively, and VPC-VPC chain pro-
cess traffic flowing between private networks. The expected
throughput is 300 Gbps for all business traffics.

It is impossible to compose the three chains by directly
merging their network functions into a single P4 program.
As illustrated in Figure 3(a), each chain defines a mandatory
ordering among its network functions. The orderings imposed
by different chains conflict with each other, resulting in the
two loops (highlighted in red) in the graph. In particular,
SNAT-IN and SNAT-OUT traffic flow in reverse directions,
thus, the two network function chains execute modules in
reversed orders as well. Such conflicts are inconsistent with
the pipelined architecture of the programmable ASIC. To
successfully compose the three chains onto our P4-capable
gateway, the following three challenges must be addressed.
Challenge 1: Pipelining network functions. Ordering con-
flicts commonly exist when composing diverse network func-
tion chains. We employ the recirculation feature to resolve
these conflicts. Recirculation allows a packet to go through
the programmable ASIC one more time, at the cost of re-
ducing the overall processing throughput. For example, Fig-
ure 3(b) shows a pipelining plan that follows the order of
the SNAT-OUT chain. This allows SNAT-OUT traffic to be
processed in one pass, while introducing two recirculations
for SNAT-IN traffic (i.e., a packet visits checker and acl in
round 0, session in recirculation round 1, and VxLAN and
switch in recirculation round 2). As a result, SNAT-IN traffic’s
maximum throughput is reduced to 1/2 of the recirculation
channel’s bandwidth since every packet goes through the re-
circulation channel twice. Assuming that the recirculation
channel has 400 Gbps bandwidth, this pipelining plan vio-

lates the throughput requirement (i.e., 300 Gbps). Instead, a
feasible pipelining plan is shown in Figure 3(c), where both
SNAT-IN and SNAT-OUT traffics recirculate only once and
guarantees 400 Gbps maximum bandwidth. Note that this
is not the only feasible pipelining plan, swapping VxLAN.p4
and session.p4 in Figure 3(b) also satisfies the throughput
requirement.
Challenge 2: Identifying business traffics. Despite the fact
that all network functions are present in the composed pro-
grammable ASIC, different business traffics visit different
network functions defined by their processing chains. This
requires us to identify which business traffic an input packet
belongs to and only execute relevant P4 modules. Figure 3(d)
shows a naive solution that inserts different identification ta-
bles before each module. For example, the two identification
tables marked in red ignore VPC-VPC traffic according to the
network function chain. The rest of the identification tables
marked in blue allow all traffic to go through but also ensure
that the table only executes at the correct recirculation round.
However, this solution incurs high memory overhead and may
lead to a longer execution chain of P4 tables. According to
findings in Cetus [13], this approach does not scale.
Challenge 3: Partitioning network functions. In many
cases, the composed P4 program simply requires too much
memory resource and does not fit on the programmable ASIC.
We have to partition the program and move some tables to
the CPU. This requires careful balancing between resource
consumption on the programmable ASIC and the throughput
degradation caused by moving to the CPU. Furthermore, since
the CPU sits on the recirculation path, a careless partitioning
plan can introduce additional recirculations. For example, if
we assign switch.p4 to the CPU based on the pipelining plan
in Figure 3(c), all three business traffics have to recirculate
once more time to be forwarded out of the gateway. A better
plan is to assign session.p4 to the CPU since it already sits
on the recirculation path, which we will detail in §6.1.

The network function composition problem causes signifi-
cant overhead during gateway development. It often takes
weeks for our programmers to find an arrangement plan,
which is subject to change when the network function imple-
mentation or the gateway configuration (e.g., set of supported
business traffics) changes. Thus, it is necessary to build a sys-
tem to automate the network function composition process.

3 Sirius Overview

Figure 4 presents Sirius’s architecture. Sirius offers our pro-
grammers a set of high-level interfaces to automatically ad-
dress the network function composition problem. The inter-
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faces require the following input: (1) P4 programs that specify
all the individual network functions and how these network
functions are chained for diverse business traffics, (2) a traffic
identification database, which contains flow characteristics
rules (flow predicates) that distinguish sets of business traffics,
(3) edge cloud topology and throughput requirements, which
specify the throughput needs of different business traffics.

As shown in Figure 5, given a set of original P4 code for
each network function chain (Figure 5(a)), Sirius follows three
phases to produce the final composed P4 program that can
compile and deploy to a programmable ASIC.

In the first phase, Sirius leverages the input traffic identifica-
tion database to generate a traffic identification table that tags
each packet according to a selected set of flow predicates. In
addition, it generates guard conditions that utilize these tags
to distinguish each business traffic (Figure 5(b)), such that a
network function is only visited by traffic chains it belongs to.
To accommodate memory constraints on the programmable
ASIC, we describe in §4 our algorithm for synthesizing a
memory-efficient traffic identification table.

In the second phase, Sirius generates solutions for resolving
network function ordering conflicts among different process-
ing chains. This is a unique challenge for composing network
function chains onto a programmable ASIC, which follows
a pipelined architecture. Sirius resolves such conflicts by in-
serting recirculations after certain network functions. To find
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Figure 4: Sirius’s system architecture overview.

pipelining plan candidates (i.e., candidate recirculation points)
with a satisfied number of recirculations efficiently, Sirius
models this pipelining process as a feedback arc set problem
and introduces an algorithm as explained in §5. Figure 5(c)
illustrates the deployment of a candidate solution, where the
guard condition before network functions are extended with
predicates on the recirculation count.

In the third phase, if no pipelining candidate can fit within
the switch resource, Sirius searches for P4 tables to assign to
the CPU. We propose a novel logical stage encoding paradigm
to transform this search into a satisfiability problem, and em-
ploy an iterative strategy to generate the optimal partitioning
between the programmable ASIC and the CPU (§6). As il-
lustrated in Figure 5(d), a solution may involve moving the
session module to the CPU and adjusting recirculation desti-
nations accordingly.

In this way, Sirius generates a composed P4 program
that accommodates all original network function processing
chains and can compile to the programmable ASIC.

4 Traffic Identification

The composition of multiple traffic processing chains requires
the integrated program to distinguish business traffics from
each other and add corresponding guard conditions at the entry
of each module. This ensures a packet only visits modules that
belong to its processing chain. Because the programmable
switch has limited resources, it is necessary to reduce the
memory usage overhead of traffic identification and to fit as
much business traffic processing logic as possible.

In this section, we first show the input to Sirius, i.e., the
traffic identification database that records how header fields
and metadata identify different business traffics (§4.1). Then,
we introduce the insight that Sirius uses to synthesize the
traffic identification table and add guard conditions on the
programmable switch (§4.2).

4.1 Traffic Identification Database

Each business traffic has its unique flow characteristics. For
example, VPC-VPC traffic travels within the internal network,
and thus its source and destination IP are both in the internal
IP range, while for SNAT-IN traffic, its source IP belongs to
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control chain1{
  …...
  checker.apply();
  vxlan.apply();
  switch.apply();
  …...
}

control chain2{
  …...
}

control chain3{
  …...
}

control chain1{
  …...
  if (guard1){
    checker.apply();
  }
  
  if (guard1){
    vxlan.apply();
  }
  
  if (guard1){
    switch.apply();
  }
  …...
}

…...

control merged{
  id_table.apply();
  …...
  if (guard1 ||
     (guard2 && recirc == 0) ||  
     (guard3 && recirc == 0)){
    checker.apply();
  }
  
  if (guard1 ||
     (guard2 && recirc == 0) ||  
     (guard3 && recirc == 1)){
    vxlan.apply();
  }

  /* acl, session, switch */
  …...

  update_recirc.apply();
}

(a) (b) (c) (d)

control partitioned{
  /* checker */
  …...

  if (guard1 ||
     (guard2 && recirc == 0) ||  
     (guard3 && recirc == 1)){
    vxlan.apply();
    if (guard2){
      output_port = to_cpu;
    }
  }

  /* acl, switch */
  …...

  update_recirc.apply();
}

Figure 5: Changes on the P4 implementation after each phase. (a) depicts the original P4 code for each network function
processing chain. (b) depicts chain 1 (VPC-VPC) after going through the traffic identification phase, where guard1 denotes the
synthesized guard condition for it. (c) depicts the merged P4 code after going through the pipelining phase, assuming the pipeling
solution shown in Figure 2(d). Here, recirc is a variable recording the number of recirculations experienced by a packet. (d)
depicts the P4 code after going through the partitioning phase. Here, traffics belonging to chain 2 will be directed to the CPU
after the vxlan module, which implements the solution in Figure 7(b).

Rule ID Flow Predicate Business Traffics Entries
Rule 1 src_ip ∈ Public IP SNAT-IN 100
Rule 2 src_ip ∈ VPC IP VPC-VPC ∪ SNAT-OUT 10
Rule 3 dst_ip ∈ Public IP SNAT-OUT 100
Rule 4 dst_ip ∈ VPC IP VPC-VPC ∪ SNAT-IN 10
Rule 5 phy_port ∈ Internal Port VPC-VPC ∪ SNAT-OUT 48

Rule 6
(src_ip, dst_ip) ∈

VPC IP PAIR VPC-VPC 50

Table 2: Our example’s traffic identification DB.

the public IP range. Sirius relies on the traffic identification
database to maintain this information.

Sirius’s traffic identification database adopts a flow-
predicate-centric approach, i.e., the primary key of the
database is the membership relation of header fields (such
as the source IP field) or metadata (such as the physical port
ID on the switch) that distinguishes a subset of the business
traffics (being a necessary and sufficient condition). An exam-
ple traffic identification database is shown in Table 2. Rule
2 means if a traffic’s source IP belongs to the VPC IP set,
then it is either VPC-VPC or SNAT-OUT traffic, and vice
versa. Besides the basic flow predicate and the corresponding
business traffic set, the database also provides the number of
entries in each rule. Three factors together decide the memory
consumption of each rule. For example, Rule 6 occupies 10×
more memory than Rule 2 in Table 2 because Rule 6 checks
both source and destination IP and has 5× more entries1.

We rely on the composition of flow predicates to distinguish
each business traffic. For example, (Rule 2 AND Rule 4)

1Rule 6’s size is smaller than 90 (i.e., 10 × (10 - 1)) because some source
and destination IP pairs are not possible in reality.

separates VPC-VPC traffic from the rest, and (Rule 4 AND
(NOT Rule 1)) also achieves the same goal. The reason for
such a design is twofold. On the one hand, it is not always
feasible in practice to find a single predicate to identify each
business traffic. On the other hand, although Rule 6 uniquely
defines VPC-VPC traffic, it requires more memory resources
than composing Rules 2 and 4.

Implementation: parallel matching on all predicates We
use parallel matching to implement the above flow predi-
cate composition in a generic way. As illustrated in Figure 6,
when a packet arrives at the programmable switch, we match
it against all flow predicates in parallel and store the results
in corresponding flags. Upon subsequent network functions,
guard conditions are generated by composing these predi-
cates, e.g., hdr.p2 && hdr.p4 denotes (Rule 2 AND Rule
4), which uniquely identifies VPC-VPC traffic.

4.2 Synthesis of Traffic Identification Tables
As discussed above, we draw flow predicates from a
developer-provided traffic identification database (e.g., Ta-
ble 2) and use their logical compositions to identify each
business traffic. This section describes how we choose the set
of flow predicates (i.e., rules) that is both complete (able to
distinguish each business traffic) and memory efficient when
implemented on the programmable switch2.

2We ignore other types of resources (especially PHV) because (1) ac-
cording to our experience, memory is the major bottleneck, and (2) it is
challenging to quantify other resources’ overhead and hard to choose one
solution over another.
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rule4.p4

rule2.p4
VxLAN.p4 acl.p4 session.p4

Programmable ASIC

Two flags are
updated in parallel:

bit<1 > hdr.p2;
bit<2> hdr.p4;

VPC-VPC traffic visits
VxLan:

If (hdr.p2 && hdr.p4){
  vxlan.apply();
}

VPC-VPC traffic skips other
modules:

If (!(hdr.p2 && hdr.p4)){
  …...
}

Figure 6: Implementation of flow predicates: rule 2 and rule 4

Our synthesis algorithm takes the traffic identification
database as input and returns a set of rules as output that
is complete and incurs minimum resource usage. The pseudo-
code is listed in Algorithm 1. First, the algorithm iterates
through each rule and builds a search tree from all the rules
behind, where each node in the tree represents a subset of the
rules in the database, and each branch adds one more rule to
the subset (Line 3-4). There are |R | trees in total. Next, we
iterate through all nodes in the search tree and find a node
that represents the minimum valid set of rules (Line 5-15).

Because the resource consumption increases monotonically
as rules are added, we apply three more optimizations to
prune the search tree. Before searching, we sort the rules in
the database by memory size and traverse them in ascending
order (Line 2). Within a tree, we sort the nodes in the tree by
their resource consumption in ascending order (Line 4) and
stop searching when we find the first valid set (Line 19-22).
Between trees, we stop searching the current tree when the
current set has higher resource consumption than the global
best solution (Line 16-18).

Example. Assume the business traffics shown in Figure 1
and the traffic identification database shown in Table 2. When
searching directly without the optimizations, we need to check
the search tree of each rule. For example, in the first round,
we check the search tree of {Rule 1} and obtain three traffic
identification tables: {Rule 1,Rule 3}with (100×32+100×
32) bits, i.e., 800 bytes of memory usage, {Rule 1,Rule 4}
with (100× 32+ 10× 32) bits, i.e., 440 bytes of memory
usage, and {Rule 1,Rule 6} with (100× 32+ 50× 64) bits,
i.e., 800 bytes of memory usage. After we check all search
trees in all rounds, we choose {Rule 2,Rule 4} with 80 bytes
of memory usage generated in the second round. With the
optimizations, we directly check the search tree of {Rule 2}
and obtain {Rule 2,Rule 4}, since {Rule 2} has the smallest
memory usage and {Rule 2,Rule 4} has the smallest resource
consumption in the tree.

5 Finding Pipelining Candidates

A unique challenge in composing multiple network func-
tion processing chains is the inevitable ordering conflicts

Algorithm 1: Traffic identification table synthesis
Input: T : Business traffic.
Input: R : Rules in traffic separation DB.
Output: F : Rules to synthesize traffic identification tables.

1 F ← R
2 R ← SizeSortAscending(R )
3 foreach ri ∈ R do
4 C ← SizeSortAscending(Combinations({ri,ri+1, · · · ,r|R |}))
5 foreach R ′ ∈ C do
6 X ←{{t, t ∈ T }}
7 S ← /0

8 terminate← False
9 foreach rk ∈ R ′ do

10 foreach x j ∈ X do
11 tmp1← x j ∩ rk.action
12 tmp2← x j− tmp1
13 if ((tmp1 ∪ tmp2)−X ) ̸= /0 then
14 X ← tmp1 ∪ tmp2
15 S .append(rk)

16 if RuleSize(S)≥ RuleSize(F ) then
17 terminate← True
18 break

19 if AllElementSizeOne(X ) then
20 F ← S
21 terminate← True
22 break

23 if terminate then break

24 return F

A

// All existing processing loops
L = { [B, C, B], [B, C, D, B] } 

// Key-Value Table  V 
Execution Sequence Loops

B → C { [B,C,B] , 
[B,C,D,B] }

C → B { [B,C,B] }

D → B { [B,C,D,B] }

A → C { }

… ... … ...(a) An example merged network 
function graph (b) Vector and Key-Value Table

B

C D

Figure 7: An example for our insight and modeling.

between individual network functions. Manifested as loops
in the merged network function graph, these ordering con-
flicts commonly exist because business traffic going in and
out of the gateway usually visits network functions in oppo-
site directions. A network function graph with loops cannot
be deployed on the programmable ASIC directly due to the
ASIC’s pipelined architecture. Sirius solves this problem by
inserting recirculations in the merged network function graph.
In this section, we first explain that the problem resembles
a feedback arc set problem (§5.1), and next, we show how
Sirius solves the problem and finds all pipelining candidates
(§5.2).

5.1 Modeling Pipelining Process

It is impossible to deploy a set of network functions contain-
ing ordering conflicts (i.e., loops in the merged graph) on
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the programmable ASIC directly. We address this issue by
inserting recirculations at the end of certain network func-
tions, which effectively breaks the immediate ordering (i.e.,
removes the edges) after these network functions. Until there
is no longer ordering conflict (i.e., the merged graph becomes
acyclic), this set of network functions becomes deployable on
the programmable ASIC. Figure 5(c) illustrates that multiple
processing chains can be merged into a single P4 program
after resolving all ordering conflicts.

We use Figure 7(a) to explain this process. In Figure 7(a),
there are four network functions A-D, and each directed edge
represents an immediate ordering between two network func-
tions, such as B→C, required by the network function pro-
cessing chain it belongs to. There are two processing loops,
B ⇄ C and B→ C → D→ B. If we remove the ordering
B→C, the two processing loops disappear. Removing D→ B
only removes one processing loop B→C→ D→ B.

This tells us that we can leverage the recirculation feature (a
commonly used feature in P4 for processing a packet multiple
times) to “remove” a network function ordering, which even-
tually removes processing loops. At the same time, we should
use recirculations as little as possible to avoid throughput
drop. Therefore, our goal is to remove all processing loops
with minimal recirculations, making the network function
graph a directed acyclic graph.

This resembles the feedback arc set problem [2], which
removes edges from a directed graph until it becomes acyclic.
However, the main difference is that the original problem for-
mulation focuses on minimizing the number of edges removed
or by minimizing a certain weight. As a comparison, we ulti-
mately focus on the traffic throughput, which is determined
by a lot more factors, including the number of edges removed
on each processing chain (i.e., the number of recirculations).

5.2 Generating Pipelining Candidates

There are multiple pipelining candidates (i.e., set of edges
to remove) for the same merged graph. For example, both
{B→ C} and {C→ B, D→ B} are valid solutions for Fig-
ure 7(a). However, it is hard to tell which one is better without
going through the partitioning phase. In order to reduce the
number of candidates entering the partition phase, Sirius em-
ploys the following two pruning strategies during the search.
(1) The search backtracks if the current solution violates the
throughput requirement, since inserting more recirculations
would only result in lower throughput. (2) The search back-
tracks when a valid solution is found, such that unnecessary
recirculations are prevented.

To generate the above sets of candidates, Sirius first com-
putes a set L, which contains all processing loops, and a key-
value table V . Figure 7(b) illustrates an example for L and V .
In V , each key (say ki) represents an execution sequence, and
the corresponding value records all the processing loops that
disappear once ki is removed. It then searches for all sets of

edges that collectively remove all loops in the graph, i.e., for
any set of edges K ,

⋃
k∈K V [k] must equals L.

Sirius introduces a dynamic programming approach to ex-
plore the search space and applies heuristics based on the
throughput specifications. The algorithm works as follows:

• (1) Remove the keys with an empty value from the key-
value table V , and sort the keys based on the number of
elements in the mapped values in descending order. For
example, execution sequence {B→C} has two elements.
• (2) In the ranked V , traverse each key ki and add it to K ,

which denotes that the edge ki is removed.

• (2.1) Then (still for ki), iterate each network function
chain and compute the expected throughput given the cur-
rent K . When a chain contains n keys in K , the chain’s
throughput is reduced to T/n, where T is the recircula-
tion channel’s throughput. If the expected throughput is
violated, remove key ki from K , and jump to (3).

• (3) Select key ki+1 from the remaining elements in the
ranked V , continue step (2) until the values of K covers L,
then K is a solution (i.e., a pipelining candidate). Continue
the iteration until all solutions are found.

6 Partitioning

Given a set of pipelining plan candidates that have resolved
all ordering conflicts and also satisfied the throughput re-
quirements considering all inserted recirculations (generated
from §5), we now need to compile and fit them into the pro-
grammable ASIC. Based on our one-year experience, none of
the merged P4 code (e.g., Figure 5(c)) can directly compile to
the programmable ASIC due to its limited resources. Sirius
thus proposes a partitioning approach that tries to move some
tables or an entire network function to the CPU so that the
resulting P4 code can be successfully compiled.

Similar to Lyra [5] and Cetus [13], our partitioning ap-
proach leverages the SMT solver to search for a satisfied
result (i.e., tables or network functions to move to the CPU);
however, our scenario needs to take into account many dif-
ferent factors such as the recirculation feature and the CPU.
Existing SMT solver-based approaches do not address these
unique challenges.

In this section, we present a novel logical stage encoding
approach (§6.1) that transforms partitioning problems into
SMT problems. Then, we explain how we use iterative search-
ing to find the best partitioning plan that minimizes the load
on the CPU (§6.2).

6.1 Partitioning Encoding

Moving some tables or the entire network function to the CPU
may add additional recirculation to the input network function
chain, because a packet needs to first leave the programmable
ASIC, then enter the CPU, and finally enter the programmable
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checker.p4 VxLAN.p4 session.p4acl.p4

switch.p4 CPU

Programmable ASIC

checker.p4 VxLAN.p4

session.p4

acl.p4 switch.p4

CPU

VPC-VPC: 
checker → VxLAN → (Recirculation) → switch

SNAT-OUT: 
checker → VxLAN → session → (Recirculation) → acl → (Recirculation) → switch

SNAT-IN: 
checker → acl → session → (Recirculation) → VxLAN → (Recirculation) → switch

VPC-VPC: 
checker → VxLAN → switch

SNAT-OUT: 
checker → VxLAN → (Recirculation) → session → acl → switch

SNAT-IN: 
checker → acl → (Recirculation) → session → VxLAN → switch

Programmable ASIC

(a)

(b)

SNAT-OUT

SNAT-OUT

Figure 8: Recirculation situations resulting from two different
partitioning plans.

ASIC again in a recirculation. If a partitioning plan is not
well-chosen, the entire network function chain may include
additional recirculations (introduced by the CPU), violating
the throughput requirement. Figure 8 shows an example.

Suppose a programmable ASIC can only hold four net-
work functions in Figure 3(a), and we have a pipelining result
shown in Figure 3(c). Because the entire network function
chain shown in Figure 3(c) cannot be put in the programmable
ASIC, we need to move a network function to the CPU. Fig-
ure 8(a) shows a partitioning result that moves the switch.p4
to the CPU. In such a partitioning plan, unfortunately, VPC-
VPC, SNAT-OUT, and SNAT-IN have one, two, and two recir-
culations, respectively. Namely, this partitioning additionally
adds a recirculation to each of these three chains. As a result,
the throughput is significantly decreased. Figure 8(b) shows a
better partitioning plan that moves session.p4 to the CPU.
In this case, all three network function chains achieve the de-
sired throughput without any additional recirculation caused
by the CPU.

Encoding. It is common to address resource allocation prob-
lems by encoding relevant constraints as math formulas and
invoking SMT solvers to find a satisfying solution. However,
encoding the effect of moving P4 tables to the CPU is not
straightforward due to its intertwining with existing recircula-
tions generated in §5.

We propose a concept called logical stage to address this
challenge. While a physical stage describes where a P4 table
is actually deployed, the logical stage depicts its execution
sequence, i.e., physical stage + N × recirculation rounds,
where N denotes the number of physical stages in the switch.

12 stages

Ingress

CPU

Egress

Physical Stages:

Logical Stages
(with 1 recirculation)

Logical Stages
(with m recirculations) … ...

m - 1

12 stages

Ingress Egress Ingress Egress

12 stages12 stages CPU12 stages 12 stages 12 stages

Ingress Egress Ingress Egress

12 stages CPU12 stages 12 stages 12 stages

Ingress Egress

CPU 12 stages 12 stages

Figure 9: Physical stages and their logical stages.

As illustrated in Figure 9, Sirius duplicates m ingress and
egress pipelines to model the logical execution sequence that
spans m recirculation rounds. Further, Sirius inserts a new
CPU stage between each egress and ingress pipeline to model
the execution on the CPU.

The partitioning phase takes the merged P4 code (e.g.,
Figure 5(c)) as input and calculates the set of tables to move
to the CPU that enables the successful deployment of the
remaining P4 tables. We encode this phase as a satisfiability
problem as below.

Input: We use k to denote the total number of stages on
the target ASIC. For the particular pipelining candidate, we
use rc to denote the number of recirculations for chain c.

Output: For each table t, spt and sct represents its physical
and logical stage index, respectively.

Constraints:
• ASIC stage constraint: a table can either deploy at a phys-

ical stage or be moved to the CPU (the (k + 1)th stage).
Thus, 0≤ spt ≤ k must hold.
• A physical stage must correspond to a logical stage at a

particular recirculation round: (sct < k+1 =⇒ spt = sct)∧
(k+1≤ sct < 2k+2 =⇒ spt = sct−k−1)∧·· · must hold.
• Moving tables to the CPU does not result in more recir-

culations: for each table t belonging to chain c, 0≤ sct ≤
(rc +1)× (k+1) must hold.
• Ordering constraint: if a chain orders table t after t ′, sct >

sct ′ must hold.

In addition to the above partitioning constraints, we also
apply resource constraints defined in Lyra [5] and Cetus [13]
to determine whether the remaining tables can indeed deploy
to the programmable ASIC.

6.2 Finding the Partitioning Result
Given the above encoding, we invoke an SMT solver to search
for a partitioning result with the optimization goal of minimiz-
ing the CPU usage. The performance of a program running
on the CPU is affected by many factors and is hard to pre-
dict. Recent works such as Bolt [11] require packet traces to
predict performance at reasonable accuracy. Instead, Sirius
uses two heuristic metrics to achieve the goal: (1) minimizing
the number of tables assigned to the CPU3, and (2) when two

3We choose not to assign TCAM tables to the CPU since ternary match-
ing’s complexity is O(nlog3 2) [1] while LPM and exact match’s complexity
is only O(1) [18]
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plans assign the same number of tables, choose the one with
lower traffic volume.

In particular, Sirius adopts iterative searching and increases
the allowed number of tables to move to the CPU gradually
until a feasible plan is found by the SMT solver.

Iterative searching. The iterative searching reduces an op-
timization problem into a series of satisfiability problems,
which the SMT solver is good at. Atop the existing encoding,
for each table t, Sirius introduces one 0-1 variable it that de-
notes whether the table should be deployed on the CPU, which
must satisfy: (spt = k+1 =⇒ it = 1)∧(spt < k+1 =⇒ it =
0). Then the summation of all such variables I = ∑t it means
the total number of tables assigned to the CPU. Then, Sir-
ius limits the summation I == m starting from m == 0, and
checks whether there exists a partitioning plan Partm. If not,
this means no solution can be found when assigning m ta-
bles to the CPU, and then Sirius increases m by one and calls
the solver again. If Partm exists, Sirius records it as a candi-
date. In case multiple solutions exist, we remove Partm from
the solution set by negating it atop the encoded formula E,
and check whether E & ¬Partm is solvable. We continue the
above process until all candidates under m are found. Among
all the pipelining candidates that assign m tables to the CPU,
Sirius selects the result with minimal CPU usage.

7 Experience

This section shares the deployment experience of Sirius (§7.1),
real cases with Sirius (§7.2), and our lessons (§7.3).

7.1 Deployment Experience
We started to deploy the edge clouds in 2017. As the number
of business traffics and offloaded functions grew, it became
increasingly difficult to arrange network functions in our edge
clouds manually. We, therefore, started building Sirius in
2020. So far, Sirius has been used for one year. The network
functions arranged by Sirius have been used to carry O(10)
types of business traffics, including streaming, games, IoT
devices, and e-payments. With Sirius’s assistance, we have
built O(100) gateways for edge-cloud services, O(100) CDN
nodes, and nearly 100 nodes for security in the past year. The
peak throughput was higher than 10 Tbps across all edge-
cloud instances.

Performance of gateways arranged by Sirius. An important
metric for evaluating the effectiveness of Sirius is throughput,
namely, whether the throughput of network functions arranged
by Sirius meets our expectations. Figure 10 randomly selected
two gateways where we used Sirius to arrange network func-
tions automatically. These two gateways have been deployed
in two edge clouds, respectively, and are mainly used to carry
the streaming service. The throughput requirements for all
the traffics on these two gateways are 500 Gbps. Figure 10
shows the performance of the gateways within one week. We

(a) The performance of gateway in the edge cloud A.

(b) The performance of gateway in the edge cloud B.

Figure 10: One-week performance of two edge clouds (for
streaming service) where the network functions are arranged
by Sirius. In - Traffic going into the edge cloud. Out - Traffic
going out of the edge cloud.
can observe that the peak traffic within one week was 300-
400 Gbps, and the network functions arranged by Sirius can
handle the traffic with very stable performance.
Development workload saved by Sirius. In terms of de-
velopment efficiency, we combined Sirius with Lyra [5] to
directly generate the compilable P4 programs that meet our
specified throughput requirement. For the CPU-side code, our
programmers have internal scripts to automatically generate
C++ code. Before using Sirius, our gateway engineering team
(more than twenty persons) spent more than two weeks ana-
lyzing and discussing a network function arrangement plan.
After the initial network function arrangement version, it fur-
ther took more than two weeks for adaptation and resource
optimization. On the contrary, using Sirius, our programmers
only need to write simple, high-level P4 programs and specify
the throughput requirement. Sirius generates the expected re-
sults in an efficient and automatic way (within a few minutes).
In the past year, Sirius decreased our programmers’ workload
by three orders of magnitude (from weeks to minutes).

7.2 Real Cases Addressed by Sirius
We now describe three representative cases to show the prac-
ticality of Sirius in real world.
Merging and arranging network function chains for O(10)
business traffics. We now present a real network function
arrangement process produced by Sirius in Figure 11. In one
of our edge clouds, there are O(10) network function chains
(each for one sub-business traffic) needed to be offloaded onto
the single programmable gateway in this edge cloud. These
business traffics contain our mainstream services, including
games and streaming. These O(10) network function chains
are merged into a network function graph shown in Figure 11a.
This graph contained 127 processing loops. Figure 11a only
colors three of these loops.
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(a) Merging O(10) network function chains results in a network
function graph containing 127 processing loops. We only color
three of the processing loops in this figure.

(b) A pipelining plan output by Sirius. There are only two recircu-
lations in this result.

(c) The pipeline after the partitioning (this figure shows the part
offloaded onto the programmable ASIC).

Figure 11: A real network function arrangement in our pro-
duction. Over 10 network function chains types of traffics are
arranged into a single gateway. Each back node in the above
figures represents a snippet of P4 code containing around ten
tables. Each→ denotes the execution sequence.

Figure 11b shows a pipelining result output by Sirius. This
pipelining result only contains two recirculations in three sub-
chains. Our specified throughput for all business traffics is
0.5 Tbps, so this candidate meets the specifications. More im-
portantly, our programmers spent one week creating a traffic
identification table for forwarding different business traffics to
the corresponding network functions. This manually-written
table occupied 15.7% of SRAM memory and 38.1% of TCAM
memory of the entire data plane program. With Sirius, we got
this traffic identification table within a few minutes, and the
table only used 11.5% of SRAM memory and 42% of TCAM
memory of the manually-written one.

Figure 11c shows a partitioning result generated by Sirius.
Some of the programs in Figure 11b have been moved to the
CPU. Each node in the graph shown in Figure 11 represents a
snippet of code—containing around 10 match-action tables
if it is implemented in P4, and each arrow denotes the execu-
tion sequence. The entire network function arrangement
process, with Sirius, was finished within 10 minutes.

Safely and easily network function updating. Another ben-
efit Sirius offers is to ease our network function updating
across edge clouds. Different edge clouds serve different busi-
nesses; thus, the data plane programs running on different
edge clouds are diverse. However, before Sirius was deployed,
our programmers used to update network functions across

table snat_session {
key = {
#ifdef IPv4

hdr.ipv4.src_ip: lpm;
#endif
#ifdef IPv6

hdr.ipv6.src_ip: lpm;
#endif
...
}
size = SNAT_SESSION_NUM;

actions = {
#ifdef IPv4

snat_ipv4_rewrite;
#endif
#ifdef IPv6

snat_ipv6_rewrite;
#ifdef VXLAN

snat_vxlan_rewrite;
#endif
#endif

}}

Figure 12: Example code snippet using macro extensively.

edge clouds via macros in P4. On different gateways, our
programmers turned on different macros, and the compiler
can remove the rest code. The macro solution is, nevertheless,
hard to maintain and error-prone, because the P4 programs
end up with O(10) different macros and O(100) copies of
them spread across different files. Figure 12 shows a real ta-
ble definition in our edge cloud, which adds many macros to
change its key and actions based on the actual needs. We can
observe that multiple macros are chained and nested together.
A failure event that occurred two years ago in one of our
edge clouds was caused by incorrectly updating macros, since
our programmers made a mistake when they updated nested
macros. Sirius solves this problem. For different gateways, the
programmers only need to specify network function chains
in P4 and provide the correct traffic separation DB, freeing
them from the “tangled” macros.

Real partitioning case. Without Sirius, even though our
programmers generate a pipelining plan with the satisfied
number of recirculations, it is very hard to squeeze this sin-
gle pipeline into the programmable ASIC due to the limited
hardware resources. Thus, our programmers used to reduce
the size of some tables in some network functions that they
thought would experience low volume for a while to ensure
the tailored pipeline complies with the hardware constraints.
After a while, when the traffic volume went back up, they
moved them back and shrank some tables in another net-
work function. The above situations occurred on almost ev-
ery gateway before Sirius was built. In a recent case, our
programmers spent two weeks squeezing a merged graph
(with Source NAT, destination NAT, and load balancer net-
work functions) into the programmable ASIC. They tried to
reduce the size of the routing tables but still failed to com-
pile the entire graph. Sirius helped them to automatically
generate a partitioning result that guided them to move the
source_NAT_session_table to the CPU, efficiently solv-
ing this problem. Moving source_NAT_session_table to
the CPU does not affect our throughput, since for that edge in-
stance, the source NAT traffic volume is low while the session
table sits in a critical position in the network function pipeline.
Assigning it to the CPU not only frees up a lot of memory
resources but also significantly shortens the length of the table
dependency chain [13], which creates more headroom and
makes the program easier to compile.
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Figure 13: Various metrics under different numbers of business traffics. (a) Number of tables in the merged network function
graph. (b) Memory cost and execution time of constructed traffic identification tables. (c) Number of traffic identification tables.
(d) Number of loops in the merged graph. (e) Time to encode and solve the SMT formula.

7.3 Lessons and Discussions

We now share our lessons in using Sirius in our edge clouds,
and also discuss the limitations of Sirius and open questions.

Can any of the pipelining candidates directly comply
with the hardware constraints? Our one-year experience
shows that none of the pipelining plan candidates can directly
comply with the programmable ASIC’s constraints. In other
words, the partitioning between the programmable ASIC and
the CPU is a must for the network function arrangement
in our edge clouds. This situation results from (1) the lim-
ited hardware resources in programmable ASICs, and (2) our
large-scale production programs.

Can a pipelining plan with more processing loops produce
a better partitioning result? This may happen. We selected
pipelining plan candidates that meet the specified throughput,
and then partitioned these candidates. In other words, the
pipelining plans that violate the specification are ineligible to
join the partitioning phase, because they cannot be better than
the pipelining candidates meeting the specification, no matter
how to partition them. However, for the pipelining candidates,
a candidate with more processing loops might be partitioned
to a result with less CPU usage than another candidate with
fewer processing loops.

Duplicating the overlapping network functions to remove
processing loops is impractical. We now use the recircula-
tion to remove processing loops. Another option is to dupli-
cate the overlapping network functions to remove the loops.
While such a solution, in principle, works and does not sacri-
fice the throughput, it is impractical due to the limited hard-
ware resources. Since a network function needs about 5-10
stages, additional 5-10 stages for one processing loop is too
expensive to the precious hardware resources.

Optimization target. Sirius currently minimizes the total
number of tables assigned to the CPU, which is not always
the best optimization target. For example, in some cases, our
programmers want to pin some tables or network function
chains onto the programmable ASIC to achieve consistency or
low processing latency. Sirius can support such cases by only
searching through candidates that satisfy the requirement.

Gateways in edge clouds v.s. Gateways in data center
networks. We have equipped gateways with programmable

ASICs in both edge clouds and data center networks. Com-
pared with the data center case, deploying programmable data
planes in the edge clouds is much more challenging.

First, each gateway in a data center network needs to hold
only one network function, unlike the edge cloud, where a
gateway needs to hold a large number of network functions.
This is because there are O(100) gateways in a data center
network in our global network, and multiple network func-
tions can be horizontally distributed across these gateways
without squeezing all of them into a single gateway [16]. On
the contrary, each edge cloud only contains two gateways
(for redundancy) since edge clouds are typically deployed
in the rented cheap, small-size machine rooms close to end
users. Each gateway in our edge clouds needs to hold O(100)
network functions, and squeezing so many network functions
into a programmable ASIC is very hard due to limited hard-
ware resources. For the same reason, it is impossible to deploy
multiple groups of gateways in the edge clouds.

Second, network functions in the edge clouds are logically
more complex. In the edge clouds, the gateways process pack-
ets from over 10 types of business traffics. On the contrary,
gateways in the data center just forward packets to the corre-
sponding switches. We typically developed the P4 program
for data center network gateways by just tailoring switch.p4.

Partitioning across switching ASIC, smartNIC, and CPU.
Offloading network functions to smartNIC, in principle, can
alleviate programmable ASIC hardware resources issue while
maintaining the throughput, It can replace CPU and reduce
the overall cost of the gateway. We are developing the next-
generation gateway that replaces CPU with SmartNIC. We are
also working on building a partitioning approach to distribute
the code across ASIC, smartNIC, and CPU in order to balance
the trade-off between performance and cost. While Flight-
Plan [23] has presented a good effort toward this direction,
deploying such a system in production remains challenging.

8 Evaluation

Our evaluation mainly focuses on presenting the scalability
of each component in Sirius. We chose 9 different business
traffics, added them one by one, and recorded the time of
execution and other metrics we were interested in. All experi-
ments were performed on a server with a 2.5GHz CPU and

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    487



768GiB RAM.
Figure 13(a) shows the program scale. There are two obser-

vations. Firstly, different business traffics had many tables in
common. Because the number of tables only doubled when
we added 8 more business traffics. Secondly, the difference
between different business traffics is similar, as the number
of tables grows gradually as the traffic number increases.

Traffic identification table construction. We recorded the
SRAM and TCAM usage under different numbers of network
functions, and the time Sirius took to solve the problem. Fig-
ure 13(b) shows the result. Both types of memory increased
as the number of traffics increased, which showed the over-
head of distributing flows to different network functions. Also,
the time it took to compute the minimal traffic identification
table increased dramatically as the number increased. This
is because Sirius had to try more combinations to find the
optimal result. When there were 9 business traffics, Sirius
took 371 seconds to construct the distribution tables. We also
recorded the number of tables constructed in Figure 13(c). We
observed that even though the memory increased, the number
of tables did not always increase. This is because Sirius chose
multiple rules that shared the same match field so that they
could share the same table.

Pipelining. In the pipelining process, the algorithm Sirius
used to solve the set covering problem is efficient enough to
finish all experiments within a second. So we mainly present
the number of processing loops in the network function graph
as more business traffics are added. Figure 13(d) shows the
result. The number of processing loops increases quickly as
the business traffics become more complicated, which also
demonstrates the programmers’ workload before Sirius is
deployed. Programmers had to plan carefully to make sure
each business traffic visit functions in its desired order.

We also noticed that when adding the 6th and 7th business
traffic, the number of loops stayed the same. This is because
those business traffics are similar, and they shared the same
code snippet that was in the loop.

Partitioning. In the partitioning phase, we mainly evaluated
the time for Sirius to encode the SMT formula and for the
SMT solver to solve it. The result is shown in Figure 13(e).
Both the encoding and solving time increase as the number
of business traffics increases. We can see that the encoding
time grows faster than linear because the encoding is built
atop the network function pipeline, whose complexity grows
faster than linear as the business traffic is added. Solving
the formula is faster than encoding it. This is because Sirius
leverages the constraint encoding optimizations proposed by
Cetus [13]. Overall, the partitioning finishes within minutes.

9 Related Work

Partitioning hardware code to CPU. Closed to Sirius’s par-
titioning goal, Gallium [27] automatically translates a part

of software-version middlebox programs into a P4 program
running on a programmable ASIC. Gallium does not support
recirculation modeling and mainly targets a specific switch-
CPU architecture. In addition, Sirius’s partitioning goal is
also different from Gallium’s. FlightPlan [23] deployed P4
programs across the switch, FPGA, and CPU to benefit band-
width and heterogeneity. FlightPlan relies on programmers to
explicitly split the program and profile each code block’s per-
formance on each platform. We cannot apply FlightPlan, since
the above requirements do not hold in our scenario. Some of
the prior work targeted partitioning between the SmartNIC
and the CPU, such as iPipe [14], Clara [15], and Floem [17].
These efforts are quite different from Sirius’s focused goal
and assumptions. Dejavu [25] leverages recirculation to com-
pose multiple network function chains to a single ASIC but it
cannot handle the three challenges Sirius solves.

Compiler for programmable data planes. The state-of-the-
art compiler systems for P4 [3,5,9,10,19,22] aim to optimize
resource usage in programmable ASICs or simplify program-
mers’ tasks on expressing their coding intent. For example,
P4All [9,10] optimizes resource usage by leveraging reusable
data structures. P4visor [29, 30] optimizes resources by merg-
ing redundant code fragments (e.g., header parser and tables).
µP4 [22] and P4 Weaver [3] propose P4 modular program-
ming to write P4 code from scratch or in an incremental way.

Extend switch memory with host memory. TEA [12] ad-
dresses the memory constraint issue on the programmable
ASIC by extending ASIC memory with the DRAM on server
machines. Even though memory occupation is one of our
major concerns, as shown in Figure 2 and Cetus [13], our
long network function chain is another major concern. TEA
reduces memory footprint by introducing more computation
logic in the programmable ASIC. This worsen our network
function chain dependency issue and does not solve our prob-
lem.

10 Conclusion

This paper has shared our design of Sirius, and our experience
with Sirius in our edge clouds after one year of use. Sirius is
the first system capable of automating the network function
arrangement problem. Compared with manual solutions to
the network function arrangement problem, Sirius effectively
decreased our workload for deploying and updating our edge
clouds by three orders of magnitude from weeks to minutes.

This work does not raise any ethical issues.
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