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Abstract

Recent works showed that it is feasible to hijack resources

on cloud platforms. In such hijacks, attackers can take over

released resources that belong to legitimate organizations. It

was proposed that adversaries could abuse these resources

to carry out attacks against customers of the hijacked ser-

vices, e.g., through malware distribution. However, to date,

no research has confirmed the existence of these attacks.

We identify, for the first time, real-life hijacks of cloud

resources. This yields a number of surprising and important

insights. First, contrary to previous assumption that attackers

primarily target IP addresses, our findings reveal that the type

of resource is not the main consideration in a hijack. Attack-

ers focus on hijacking records that allow them to determine

the resource by entering freetext. The costs and overhead of

hijacking such records are much lower than those of hijacking

IP addresses, which are randomly selected from a large pool.

Second, identifying hijacks poses a substantial challenge.

Monitoring resource changes, e.g., changes in content, is in-

sufficient, since such changes could also be legitimate. Ret-

rospective analysis of digital assets to identify hijacks is also

arduous due to the immense volume of data involved and the

absence of indicators to search for. To address this challenge,

we develop a novel approach that involves analyzing data

from diverse sources to effectively differentiate between mali-

cious and legitimate modifications. Our analysis has revealed

20,904 instances of hijacked resources on popular cloud plat-

forms. While some hijacks are short-lived (up to 15 days), 1
3

persist for more than 65 days.

We study how attackers abuse the hijacked resources and

find that, in contrast to the threats considered in previous work,

the majority of the abuse (75%) is blackhat search engine

optimization. We also find fraudulent certificates and stolen

cookies. We cluster the abuse resources and abuse content to

identify about 1,800 individual attacking infrastructures.

1 Introduction

Digital resources form the fabric of modern societies. They

provide the fundamental platform for digital services and

assets, e.g., for financial services, critical infrastructure, gov-

ernment services. Due to their importance, digital resources

pose a lucrative target for attackers. Therefore securing these

resources and correctly managing them is crucial for the se-

curity of the Internet. Managing resources requires not only

creating and configuring them, but also releasing them cor-

rectly after they are no longer required. Previous work [12]

showed that when organizations release resources of services

that are no longer needed, they often do not purge the infras-

tructure that was set up for them, creating dangling resources.

Dangling records. Previous work [1, 3, 12, 16, 18] stud-

ied the threat introduced by dangling records, i.e., Domain

Name System (DNS) records that point to resources that

were released. The concept of dangling records is related to

dangling pointers in programming, which occur when a vari-

able’s memory is deallocated. Similarly, DNS records become

dangling when domain owners forget to purge the records.

For example: a domain owner does not remove a mapping

foo.com A 1.2.3.4 of service foo.com to a cloud IP address

1.2.3.4 from the authoritative DNS server after the resource

at 1.2.3.4 is discontinued and released. Adversaries, which

succeed in taking over the released resources that are pointed

to by the existing DNS record, can launch attacks against

clients that attempt to access the domain. In our example, if

an adversary can take over 1.2.3.4 it can obtain control over

all the records that point to that IP address, since all requests

to foo.com are sent to the adversary. The attack does not re-

quire any extensive capabilities. All that it requires is some

way of collecting domain names (e.g., via passiveDNS or Cer-

tificate Transparency), checking if the resource is hosted in

the cloud and is reachable, and if not, registering the resource

through an account with the cloud provider.

Research finds multiple dangling records. In 2016 [12]

analyzed dangling records on cloud and other platforms and

the threat that they create for hijacking domains. [12] found

467 dangling records in top 10K Alexa domains and 52 .edu

domains. A follow-up study [3] extended the methodology

of [12] for identifying dangling records on cloud platforms

and identified over 700,000 dangling DNS records. [16] im-
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proved the subdomain enumeration of [12] and discovered

exploitable vulnerabilities in 887 domains. [1] studied the

risk of stale NS records finding 628 hijackable domains. Re-

cently [18] developed a hostingChecker, eventually finding

10K vulnerable subdomains. Although dangling records and

their threat have been extensively studied in previous work,

no research has provided evidence that dangling records are

abused for attacks and demonstrated real-life abuses.

We study real-life abuse of dangling records. The most

remarkable result of our work is the first evidence and analysis

of actual, real-life attacks that abuse dangling DNS records.

Detecting real-life abuses is hard. The fundamental challenge

is detecting malicious vs. legitimate changes in resources. We

find that the hijacked resources often do not stand out and

even have valid (yet fraudulent) certificates. Approaches that

look for changes in the infrastructure or in the content do

not work, since changes are often legitimate and happen not

only in abused resources. In addition, the huge data volumes

involved and lack of known indicators make finding abuses

equivalent to looking for a needle in a haystack. We show

that the key to finding real-life abuses is a combination of

longitudinal data analysis from multiple sources with cluster-

ing of changes according to similarities and manual keyword

derivation. Applying this approach we derive indicators which

enable detection of real-life hijacks. Our longitudinal study

of abuses in 12 cloud platforms identified 20904 hijacks that

hosted malicious content. We detect hijacked domains in 219

Top Level Domains (TLDs) and abuses on popular clouds.

Selection of hijacked resources is financially motivated.

Previous work measuring dangling records on cloud plat-

forms looked for released IP addresses that were still pointed

to by DNS records. In our study we surprisingly find no IP

takeovers among real-life abuses of dangling records. The

analysis of the abuse cases in our longitudinal dataset shows

that the selection of resources by attackers is financially moti-

vated: attackers target dangling resources which can be easily

and cost-effectively taken over. These requirements do not

apply to IP addresses on popular cloud platforms. There-

fore, although the threat of IP address take-over considered

in previous work is real, we find that attackers target differ-

ent resources than previously assumed. We characterize the

resources abused by real-life adversaries and explain which

factors make them lucrative targets.

We also show that, surprisingly, the most popular abuse

of the hijacked resources (75%) is blackhat Search Engine

Optimization (SEO), rather than, e.g., malware distribution,

as suggested previously [16].

Definition: hijacks & abuse. We use the term "hijack"

to refer to the appropriation of a (sub)domain name through

the re-registration of a released cloud resource pointed to by

a dangling DNS record. We use the term “abuse" to refer

to the subsequent use of such a resource for malicious pur-

poses, such as blackhat SEO, clickjacking, phishing, etc. Our

definition therefore falls into the type 2 and 3 categories of

DNS abuse, defined by [4], and subsumes their definitions

of “malicious conduct", “abusive activity", “DNS abuse" and

“DNS misuse". We refer to “blackhat SEO” as “SEO", unless

being specifically discussed in the context of regular SEO.

Ethics and notifications. We initiated a notification cam-

paign and already notified more than 300 organizations of the

abuse we found in their resources, which already confirmed

the hijacks. Large-scale vulnerability studies pose risks and

therefore such research, e.g., [2, 5–8, 10, 13, 17], explicitly

takes ethics of scans and collected data into account. Due to

the sensitive nature of our findings we also take extensive

measures to ensure the security of the organizations studied

in this work. In our study and data collection we follow the

ethical guidelines for network measurements [7, 14], which

were also approved by the ethics committee (IRB) in our

organization. By following these guidelines we ensure that

the equipment of target organizations and cloud platforms is

not affected or overloaded, and that the organizations’ private

data is not compromised. In addition, we conducted a privacy

impact assessment with our legal department, which allowed

us to conduct the study. For each organization in our dataset

we send at most two HTTP requests per Fully Qualified Do-

main Name (FQDN) to check an abuse: the first request is for

the page itself, and if we cannot establish an abuse with con-

fidence, we send another request for the sitemap. We repeat

this data collection on a weekly basis.

Contributions. We develop a methodology and use it to

find and analyze real-life abuse of dangling records.

▷ Longitudinal comprehensive dataset. We collect a longi-

tudinal dataset of (sub)domains pointing to deallocated cloud

assets, which started with 1,508,273 records and after three

years grew to 3,101,992 records.

▷ Methodology to detect abuses. We develop the first

methodology that identifies abuse of dangling records. Key to

finding abuses are longitudinal data collection from multiple

sources and a novel analysis methodology. In our dataset we

find 20,904 cases of abused dangling records that belong to

organizations in multiple sectors.

▷ Attackers prefer cheap and easy hijacks. [3] showed it

was possible to take over cloud IP addresses pointed to by

dangling DNS records. We find that adversaries avoid IP ad-

dresses, which are typically randomly allocated from a large

pool, and instead target cheap and easy-to-take-over resources.

▷ Attacker capabilities. We show that the abuse that the

attacker can launch against the clients of the victim domains

is a function of the dangling resource that the attacker takes

over. We develop a model of the attacker capabilities as a

function of the dangling resource, extending [16] which only

focused on the configuration in the legitimate service.

▷ Characterization of abuses. We find that the main abuse

(75%) is SEO. The attackers mostly target domains with es-

tablished reputation to increase the ranking of their malicious

content by search engines. We also identify cookie stealing

attacks, fraudulent certificates and malware distribution - and
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we analyze these attacks. Overall, we find that the hacking

groups successfully attacked 31% of the Fortune 500 com-

panies and 25.4% of the Global 500 companies, some over

long periods of time. Many of the victim organizations were

abused more than once, with one even suffering abuse across

more than 100 different subdomains.

▷ Methodology to detect vulnerability to cookie theft. We

develop the first method which enables IT staff to automati-

cally and easily check their own (sub)domain setup for vulner-

ability to cookie theft, should one of them be hijacked. Using

this method we perform a large-scale study of top 10K Alexa

domains, finding 65% of domains to be vulnerable to cookie

theft and 23% to theft of authentication cookies.

▷ Characterization of attackers. We develop a methodology

for clustering attackers into groups, using content and meta-

data on the abuse sites and the infrastructure of the attackers.

We identify 1,800 individual attackers infrastructures.

Organization. We review related work in Section 2. In

Section 3.1 we develop a methodology for collecting hijacks.

In Section 4 we characterize hijacked resources and in Sec-

tion 5 analyze the abuse deployed on hijacked resources. In

Section 6 we develop methods to cluster the abuse by attacker

infrastructure and conclude in Section 7.

2 Related Work

The threat of hijacking domains by taking over released

resources, pointed to by dangling (stale) DNS records, was

considered in previous work [3, 12, 16, 18]. The idea is that

the attacker attempts to get assigned a recently released re-

source, therefore taking over the domain which points to that

resource. [12] showed that it was practical for an attacker

to obtain the desired IP address from the cloud pool by re-

peatedly allocating and releasing IP addresses. The authors

scanned cloud IP addresses to find dangling DNS records

from their dataset of domains using Zmap [7] and found hun-

dreds of dangling records on cloud platforms and on top

10K Alexa domains. [3] extended the dataset of [12] and

collected 130M domains that point to IP addresses in cloud

platforms. [3] found that over 700,000 domains point to cloud

IP addresses that were free and hence vulnerable to domain

takeover attacks. [3] also estimated that it would be economi-

cally practical for attackers to obtain a target IP address from

the cloud pool. [16] further improved the subdomain enu-

meration and their analysis of deprovisioned cloud instances

yielded 13,532 potentially vulnerable domains with dangling

records. [1] analyzed dangling NS records and found 628

hijackable domains. Recently, [18] developed an automated

framework for detecting dangling records by reconstructing

DNS resolution chains and found 10K subdomains among the

top 1M Tranco domains with dangling records. Our research

augments the previous work in the following aspects:

Targeted dangling records. While [16] suggested that the

likelihood of a domain being vulnerable is directly related to

the number of subdomains it has, we show that the ease of

taking over the dangling DNS record and the reputation of

the target domain define the likelihood of an attack.

Analysis of the attack surface. To measure the prevalence of

the dangling records previous work sent liveness probes to IP

addresses in cloud IP ranges to determine if the IP addresses

were allocated and in use. [12] checked TCP ports 80 and 443

and TCP/UDP port 53, [3] sent ICMP pings and TCP/UDP

requests to 36 common TCP/UDP ports, and [16] scanned

148 TCP/UDP ports. Records that pointed to IP addresses that

did not respond on any ports were classified as dangling.

Due to virtual hosting, TCP/UDP and ICMP pings do not

accurately reflect the availability of a (web)service. Reaching

a virtually hosted service requires connecting on the applica-

tion layer, rather than the transport layer, in order to traverse

the forwarding logic in the webserver. To illustrate this we

compare ICMP, TCP and HTTP requests using our dataset

of cloud-hosted, hijacked domains. Using ICMP pings we

receive responses from 72% of the domains in the cloud. On

TCP ports 80/443 we receive responses from 93% of the

domains. An HTTP request to the respective FQDN results

in 89% responsive domains. The results indicate that ICMP

pings tend to overestimate unresponsiveness, and therefore

vulnerability of services by around 20%, whereas TCP pings

tend to underestimate by around 4%, compared to HTTP re-

quests to the actual FQDNs. Therefore, to accurately check

domain liveness we download HTML files via HTTP/S from

the services rather than simply probing the ports on the target

servers, therefore capturing the availability of each individual

FQDN, regardless of virtual hosting.

Abuse of dangling records. In contrast to previous work

that measured the prevalence of dangling records, in our work

we identify and analyze real-life abuse of the dangling records.

We analyze the resources that the attackers take over, char-

acterize the target domains and the abuses of the dangling

resources for attacks. Previous work proposed that dangling

records could be exploited for stealing cookies, issuing fraud-

ulent certificates, loading malware or authentication bypass.

In our work we show that the most common abuse of dangling

records is for SEO, which was not considered in prior work.

3 Collection of Abused Resources

In January 2020 we started monitoring 1.5 million cloud

assets in use by large organizations. After a couple of months

we noticed that, after a time period of being inactive, do-

mains of large organizations became active again. However,

all those pages that became active after a period of inactivity,

shared something in common: they had similar error pages,

in different languages, reporting that the website was under

maintenance; an interested reader is referred to Figure 23 in

the Appendix for one such example in English on a Fortune

500 company domain. Further analysis of these domains re-

vealed that behind the web pages with the error messages

were thousands of other pages. In all those cases the hackers

gained control over the domains by taking over abandoned re-
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Algorithm 1 Collection of Cloud-pointing FQDNs.

1: function COLLECT_FQDNS( f qdns, cloud_su f f ixes, cloud_IPs)

2: f qdns_to_analyze←{ }
3: for f qdn in f qdns do

4: A_results, CNAME_results← DNS_A_query( f qdn)

5: for CNAME in CNAME_results do

6: if CNAME.ends_with_any(cloud_su f f ixes) then

7: f qdns_to_analyze.add( f qdn)

8: end if

9: end for

10: for IP in A_results do

11: if IP in cloud_IPs then

12: f qdns_to_analyze.add( f qdn)

13: end if

14: end for

15: end for

16: return f qdns_to_analyze

17: end function

sources on cloud platforms. We identified such abuse patterns

in hundreds of domains, belonging to governments, univer-

sities and enterprises worldwide. Periodically adding more

organizations to our list, we were identifying more hijacked

domains. In June 2020 we were already tracking more than

two million domains, over multiple cloud assets, most of them

in Azure and AWS (see Table 2 for full list of asset types). In

this section we describe our three-year data collection method-

ology and the resulting dataset of assets. An overview of this

collection process is shown in the top left (blue) of Figure 25.

This data forms the basis for the analyses, shown in the top

right (green), which are covered in Sections 4, 5 and 6.

3.1 Dataset

Our initial search space contains domains across a number

of sectors: a list of 2M government domains1, Fortune 10002

and Global 500 enterprise domains3, and 1M-top Alexa do-

mains4. We also use a list of 9,933 university domains5. These

domains serve as candidates for finding potential hijacks. We

do not sanitize these further, as inaccessible domains are auto-

matically removed as part of our search methodology. Using

the FarSight passive DNS service, with global sources across

all continents, we also discover all subdomains observed for

these domains. From this initial list of known high-profile

(sub)domains we determine the subset that points to cloud

assets, resulting in a list of 1,508,273 (sub)domains, which

constitutes the dataset we study in this work.

The pseudocode of our methodology is described in

Algorithm 1. We select domains and subdomains that

have a CNAME DNS record referencing an FQDN

with a known cloud suffix (e.g., *.azurewebsites.net,

*.amazonaws.com); we provide a list of the known cloud suf-

fixes relevant for our research in Appendix A.1. For domains

without CNAMEs we check if one of its IPs falls within a sub-

net used for cloud hosting. This is often the case with domains

1.gov filtered from https://domainsproject.org/
2https://fortune.com/analytics/fortune-1000
3https://fortune.com/ranking/global500/
4https://www.kaggle.com/datasets/cheedcheed/top1m
5https://github.com/Hipo/university-domains-list
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Figure 1: Monitored vs. hijacked cloud-hosted domains over time.

hosted on AWS S3 buckets or dedicated VM servers, which

refer to these servers using A records rather than CNAME.

Subnet information is published by the cloud providers (see

Appendix A.1). By downloading these regulary we ensure

that we are using up-to-date information.

Over the 3 year period, we kept updating the list by con-

suming a commercial feed of FQDNs for the enterprises in

our dataset (in Section 3.1). Within that time, we filtered

through more than 87,000,000 non-NXDOMAIN (i.e., with

at least one DNS record) domains and subdomains, result-

ing in a doubling of our initial list to 3,101,992 monitored

FQDNs. Figure 1 shows this monthly increase of monitored

cloud-hosted FQDNs, overlayed with the cumulative number

of abuses seen until that time. We collected the data and moni-

tored the changes in DNS records and in HTML files for over

3 years.

3.2 Detection of Abused Domains

Finding abuses is hard, hence it is not surprising that so far

no analysis of dangling records has found actual abuses. The

main problem is that changes in DNS records and websites

are often legitimate, and without knowing what malicious

content to look for, finding abuse is virtually impossible. To

determine whether assets were abused, we track changes of

site content. To accomplish this we take regular samples of

each site, downloading the index HTML as well as the sitemap

stored in a database. By comparing these snapshots, including

changes to DNS, HTTP response, sitemap (e.g., size changes

of 100KB), language changes, and keywords, differences can

be detected. The components in our analysis are illustrated in

Appendix, Figure 25).

Signatures. Having identified content changes in groups of

assets within a short time frame, we manually inspect the new

content to ensure no false positives when notifying affected

organizations. We then create signatures by automatically

extracting keywords from the index page and other pages,

as well as sitemap features, JavaScript and other loaded ob-

jects. We validate that these are shared across multiple abuse

pages and finally test these against a large dataset of benign

assets to ensure they do not yield false positives; those that

do are discarded. The benign assets are also assembled from

Alexa websites, Fortune 500 sites and university sites, ensur-

ing cross-sector representation, and verified to not contain

malicious content. Once created, these signatures can be used
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to detect similar malicious changes on other domains we mon-

itor. Examples of the signatures we create include:

(1) index page includes "Comming soon ..."

//"Comming" is written with a typo instead of "Coming".

(2) index page refers to 3 other pages in a specific

structure; the referred pages are written to create a

new window on each click.

(3) loading a particular "popunder.js" script

(4) sitemap with several thousand pages (> 5 MB);

each page is structured similarly; consistent random name

generation

(5) New sitemap or 100KB increase in sitemap size.

(6) Language change.

(7) Keywords related to content uploaded by the attackers

We validated the changes manually on the abused assets.

Figure 2 shows what percentage of domains in our dataset

match different types of indicators or combinations thereof.

For example, some domains (30.2%) can be identified with

just keywords (such as those shown in Table 5), whereas

others (10.1%) require using keywords as well as attacker

infrastructure-related indicators, such as hyperlinks or scripts

and images loaded from other domains, as differentiating

features. If the required features are present on the site, the

signature matches and the domain is classified as abused.

In our analysis we find that the page contents, i.e., key-

words, are the most telling indicators of abused assets,

whereas infrastructure-related indicators are only useful in

combination with keywords or sitemap features. Looking at

the sitemap and keywords in combination is the most effec-

tive, identifying an additional 36.1% of abused assets in our

dataset, compared to just keywords.

30.2

0
10.3

11.9

36.1
10.1

Keywords

Infrastructure

Sitemap

Figure 2: % of detected hijacks with

extracted signatures by type.
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Content Classification on Hijacked Domains

Figure 3: Content classification on

hijacked domains.

Keywords. We extracted 56,946 keywords with an average

keyword count of 2.72 to classify index HTML files as abused.

Table 1 shows the top keywords found, with gambling and

adult content as the major sources. Figure 3 shows the full

distribution of topics found based on keywords. We list the

most popular keywords in the Appendix, Figure 29.

# Keyword Count # Keyword Count
1 HTML Snippet 4615 2 HTML Snippet 4288
3 HTML Snippet 4199 4 sex 3257
5 daftar (list) 2930 6 porn 2786
7 situs judi (gambling sites) 2611 8 HTML Snippet 2193
9 gacor (hot streak) 2048 10 [j]udi slot online (gambling online) 1892
11 situs slot (slot/gambling sites) 1880 12 slot gacor (hot slot machine) 1564

Table 1: Top 12 keywords for index.html classification.

Abuse dataset. After 3 years of monitoring, we detect

17,698 unique, abused FQDNs (where 1,565 are Second-

Level Domains (SLDs), Figure 5) across 11,924 unique SLDs
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Figure 6: HTML Files uploaded to each abused site

and 218 affected TLDs (see Appendix Table 6 for top 12).

These abused domain names point to 15,248 unique CNAMEs

(11,654 unique IP addresses). This dataset forms the basis for

our subsequent analyses. We notified > 300 affected organi-

zations, which confirmed the abuse.

The Tranco list is a research-focused ranking of the top

websites based on their popularity and stability over time [11].

We find 7,049 of 17,698 (39.8%) unique hijacked FQDNs on

SLDs included in the Tranco domain list. On average, every

tranco-ranked SLD has 2 (1.89) hijacked subdomains. The

rank and corresponding unique hijacked subdomain count are

illustrated in Figure 4.
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Figure 4: Rank of SLDs and associated hijacked subdomain counts.
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Figure 5: Abused second level domains and sub-domains.

Abuse data volume. We collected 54,325 index HTML

files classified as abused content with an average file size

of 52.4kB, some of them for the same assets (with changes

made by the hackers). We also collected 15,482 sitemaps

and analyzed them for the quantity of total malicious HTML

content uploaded. Figure 6 shows a histogram of the number

of HTML files uploaded, grouped into bins of 5,000. The

number of files ranges from 2 to 144,349 HTML files per site,

with the clear majority of sites containing many thousands of

pages. Abusers uploaded a total of nearly 500M (492,489,492)

files with an estimated size of 24TB (25,806,449,380.8kB)

and an average of 31,810 HTML files per site.

Ruling out benign changes. There are cases in which

changes in content can be legitimate, e.g., changes in parked

domains, that display commercial HTML content that changes

collectively over time. To rule out legitimate changes applied

by registrars that manage multiple domains, we analyze in-

formation of the registrars and the owners of the domains.

Specifically, we check that clusters of domains with identical

changes in content, have different owners and registrars.

To do this we aggregate domains into clusters based on the

keywords extracted from their web pages. Identical keyword

lists indicate the same page content. By matching the second-
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Figure 7: Abuse in top 1M Tranco Domains.
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Figure 9: Abuse in QS-ranked universities.

level domains to their respective registrars, we determine the

set of unique registrars for each cluster of domains with the

same content-changes. We then plot the percentage of these

clusters, with at least two domains, by the number of unique

registrars observed. This is shown in Figure 10.

Our analysis yielded that in 89% of the cases, where the

same change is detected on at least 2 domains, these changes

span 2 or more different registrars and owners. In 33% of

cases, the changes occur across domains owned by 4 or more

registrars; see distribution in Figure 10. This result demon-

strates that identical changes in clusters of domains are not

made by the registrars, since the domains typically have dif-

ferent registrars.
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Figure 10: % abuse clusters (grouped by keywords) spanning ≥ X registrars.

4 Analysis of Abused Resources

We describe resources of organizations that were abused

and identify which cloud platforms host abused resources. To

confirm a hijack we have downloaded and manually examined

malicious content on hijacked domains. The fact that the same

content is seen across unrelated, independent domains and that

the content is unrelated to the topics of these domains provides

an evidence of abuse by a third party. We also analyzed abuse

showing that the content hosted on those hijacked resources

are malicious in Section 5.

4.1 Abused Organisations

Popular domains. Among the abused domains we find

8,432 popular websites from the Tranco list [15] (top 25

shown in Figure 7).

Enterprises. We find abuse in 31% of the Fortune 500

companies2 and 25.4% of the Global 500 companies. Com-

paring these two lists suggests that the attackers focused on

Western countries. The 25 highest-ranking Fortune 500 enter-

prises abused are shown in Figure 8. Many of the companies

were abused more than once, hosting fraudulent content on

more than one subdomain at some point in time. Figure 12

shows that the Industrial, Energy and Motor Vehicle sectors

have the highest volume of hijacks, but overall the abuse is

widespread rather than localized to any one sector.

Universities. We find hijacks of university domains

worldwide5 (top 25 shown in Figure 9). Between May 2020

and 2023 we found 264 abused subdomains in universities

globally. University domains have good reputations and are

therefore a desirable target for promoting fraudulent content.
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Figure 11: Cloud resources.
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Figure 12: Abused content by sector.

4.2 Abused Providers & Resource Types

Hackers exploit a variety of cloud platforms to claim dan-

gling records. The different services provided by each plat-

form can be determined by the respective cloud domain suffix.

Figure 11 and Table 2 show, that Microsoft Azure Cloud ser-

vices are hosting more than half of the content, followed by

AWS S3 static hosting and AWS Elastic Beanstalk, which

together make up 1
3
. All other cloud providers only account

for small fractions. A 2016 study showed substantially fewer

dangling records pointing to Azure than AWS [12].

Cloud Resource # Monitored # Abuses % Abuses
Azure Web Application 690,779 8,347 1.21
Azure VM 565,684 983 0.17
Azure Blob 20,389 - -
AWS Elasticbeanstalk 138,523 668 0.48
Azure Traffic Manager 140,183 2,980 0.21
Azure Cloud Service 299,494 1,060 0.35
Azure API 17,100 - -
Azure FrontDoor 14,183 - -
Heroku App 30,532 146 0.48
Azure CDN 37,360 461 1.23
Azure Service Bus 10,152 - -
AWS S3 1,137,613 5,876 0.52

Table 2: Abused cloud services among domains monitored.

4.3 The Problem of User-Nameable Resources

We find that the common denominator among the hijacks is

user-nameable resources. As shown in Table 3, all hijacks we

discovered exploited cloud resources that allow free choice

of a text-based identifier (blue in Figure 13), enabling easy

1982    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



  hijack.hosting.com  A  5.6.7.8

  hijack.com  CNAME   hijack.hosting.com

  hijack.com  NS          ns1234.hosting.com

  hijack.com  CNAME  sites.hosting.com

  sites.hosting.com  A  1.2.3.4
resource

sites.hosting.com

VHOST:  other.com

VHOST:  hijack.com

VHOST:  ...

resource

ns1234.hosting.com

DNSZONE:  hijack.com

hosting.com

resource

DNSZONE:  other.com

DNSZONE:  ...

= random = user-chosen

hijackable.com

  hijack.hosting.com  CNAME   
  sites.hosting.com

Figure 13: Hijack types: dashed lines are released resources an attacker could

re-register to take over the routing and/or content of hijackable.com.

re-registration by an attacker.

CNAMEs & internal routing. Such user-chosen names

are found at the DNS-level and the virtual hosting-level to

route requests to the appropriate resource. At the DNS-level,

these names are used in resource’s domain, auto-generated by

the cloud provider to resolve to the resource’s IP address. For

example, choosing the name example for an Azure website

results in the subdomain example.azurewebsites.net be-

ing generated, resolving to the IP of one of the Azure servers.

The server also configures its virtual hosting layer to route

incoming requests for example.azurewebsites.net to the

example resource (Figure 14).

Cloud providers typically also allow configuration of cus-

tom domains as aliases, so that incoming requests for, e.g.,

example.com, are also directed to the example resource. The

customer can then conveniently set up a CNAME record

directing example.com to example.azurewebsites.net,

allowing the example resource to be resolved through

example.com at the DNS level.

Deterministic re-registration. However, this system poses

two problems. First, the resource name chosen by the legiti-

mate user is publicly visible through the DNS record of the

auto-generated CNAME. Second, this resource name can be

re-registered by an attacker. An attacker who has found a

DNS record pointing at example.azurewebsites.net can

check if the example resource still exists and, if not, regis-

ter this specific resource. As long as the CNAME record

linking example.com to example.azurewebsites.net is

never purged, requests for example.com (and any other do-

main in a CNAME chain to example.azurewebsites.net)

will be hijacked by the attacker.

Randomized identifiers. One effective mitigation of these

hijacks is to randomly generate the resource names, because

then an attacker is not able to deterministically replicate a tar-

get resource. This would maintain the convenience of linking

custom domains to the resource through a CNAME record,

but provide comparable security to the random IP assignment

used for cloud servers with dedicated public IPs.

Cloud resources with dedicated IP addresses are assigned

informs internal request routing
Server Resource 1Server Resource 1Server Resource 1Server Resource 1Server Resource

[User-nameable] resource

[CNAME].azurewebsites.net > A > 51.141.12.112a
d
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Figure 14: User-nameable resource informs CNAME and internal routing.

Provider Configurable Sub domain name Function Record Abuses
Azure [freetext].azurewebsites.net Web App CNAME 6,288
Azure [freetext].trafficmanager.net Traffic Router CNAME 1,468
Azure [freetext].cloudapp.net (legacy naming) VM CNAME 1,037
Azure [freetext].azureedge.net CDN CNAME 830
Azure [freetext].REGION.cloudapp.azure.com VM CNAME 928
Azure [freetext].sip.azurewebsites.windows.net Web App CNAME 223
AWS [freetext].s3-website.REGION.amazonaws.com Static Hosting CNAME 2,227
AWS [freetext].REGION.elasticbeanstalk.com Orchestration CNAME 555

Heroku [freetext].herokuapp.com Web App CNAME 139
Pantheon [ test- | dev- | live- ][freetext].pantheonsite.io CMS CNAME 50
Netlify [freetext].netlify.app Web App CNAME 14

Table 3: Abused resources on cloud platforms with free text entry.

their IP at random from a pool available to the cloud provider

(red in Figure 13). Similarly, cloud providers who offer DNS

hosting distribute user-created DNS zones randomly across

a range of nameservers (purple in Figure 13). When a dan-

gling A or NS record, respectively, points at the IP of such a

resource, attackers must register a similar resource repeatedly

in the hope of being assigned the desired IP.

Previous work [3, 12] showed strategies to do this effec-

tively, but it is still a probabilistic technique, which, according

to our data, attackers do not pursue. Since our collection

methodology (see Algorithm 1) also takes A records pointing

to cloud IPs into account, such takeovers of specific IPs would

also be captured in our dataset. However, we find no instances

of such takeovers in our dataset, suggesting that it is not worth

the effort compared to the deterministic approach possible

with user-nameable resources. This is further underlined by

the absence of abused Google Cloud-hosted domains, which

are assigned a random subdomain, allowing no user input.

4.4 Abuse Duration

We calculate the approximate lifespan of the abused do-

mains as the difference between the timestamp of the first

HTML sample that is recognized as abused and the timestamp

of the DNS record that is eventually created by the domain

owner to correct the dangling vulnerability. Figure 15 shows

the lifespan distribution of the domains in our dataset. A large

number of abused domain names are removed within 15 days.

At the same time, more than 1
3

of the domains last longer

than 65 days, some more than a year. This gives the attacker

time to monetize content by exploiting the reputation of the

abused domains. Figure 16 illustrates for each domain the

time frame that it was hijacked as a horizontal line from start

to end date. The domains are sorted by start date. We see

an initial period of hijacks in 2020, followed by a period of

relative inactivity in early 2021, and finally a ramping up of

activity throughout late 2021, 2022 and 2023. The number of

concurrently hijacked domains continuously increases in this

period, indicating a growing problem.

5 Characterization of Abuse

In this section we first explain how the attacks with hi-

jacked resources depend on the type of dangling resource that

the attacker took over. We then report on different types of

attacks we identified that have been launched from the hi-

jacked domains in our dataset. These include SEO, malware

distribution, cookie theft and fraudulent certificates.
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Figure 15: Hijack duration in days.
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Figure 16: Hijack time frames.

5.1 Abuse Depends on Hijacked Resource

The capabilities of the adversary are dictated by the type

of cloud resource used in the hijack (Table 4).

webserver
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another.com

other.html
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another.html
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Figure 17: Attacker capabilities based on cloud resource - red indicates

attacker-controlled resources, blue indicates hosting-provided resources.

With a dedicated server resource the attacker can host a

full webserver (shown in Figure 17 on the right). With other

resources the hosting provider may host multiple domains on

a single logical webserver through virtual hosting and route to

the appropriate resource by domain name. Storage resources

such as AWS S3 or Content Management Systems (CMS)

such as Pantheon allow control only of static content, which

is read and returned by the provider’s webserver (Figure 17,

left), whereas with traffic management and web applications

the provider’s server forwards requests to a specified endpoint,

where the requests can be processed in full (Figure 17, center).

In the context of cookie stealing, control of the webserver

(Figure 17, center & right) affords the attacker both access

to cookies in headers and those available via javascript,

thus allowing access to all cookies, whereas control of just

the content (Figure 17, left) only enables access to cookies

accessible via javascript6, in other words, cookies without

the HttpOnly flag. The former also affords the https capabil-

ity, required to access cookies with the Secure flag enabled,

whereas the latter scenario does not necessarily afford this

capability for the hijacked domain. [16] characterized the lim-

itations that configurations on the victim webserver impose

on attacks, e.g., the impact of HttpOnly and Secure flags in

cookies or that bypassing CSP requires only file and html

capabilities, while abuse of CORS, postMessage and domain

relaxation also requires the javascript capability. In our

model we show that all of these are possible from static host-

ing resources. However, depending on the configuration of

the target, https may be necessary, which generally requires

full webserver access to configure a certificate7. In addition to

the configuration of related domains (shown by [16]), the type

6In the case of CMS, the use of JS may require the installation of ad-

ditional plugins. However, since the attacker controls the resource, this is

straightforward.
7Hosting providers may offer a dashboard option to configure a certificate,

but this is not the default.

Resource Function Access Capabilities

AWS S3 Storage
Static Content

file, content,

html, javascript2Pantheon Site CMS

Netlify

Web App

Full Webserver

file, content,
html, javascript,

headers, https

Heroku

AWS Elastic Beanstalk

Azure Web Application

Azure CDN
CDN &

Load BalancingAzure Load Balancer

Cloudflare

Azure VM Server

Table 4: Attacker capabilities based on cloud resource

of attacks that can be launched with a hijacked domain are

also a function of the cloud resource that the attacker controls.

5.2 Generating Traffic

We find that the main abuse of hijacked, dangling resources

is to generate traffic to adversarial services. The attackers

exploit the reputation of the hijacked domains to generate

page impressions to the content they control to earn money.

Once they control the content, sources of income are either

advertisements displayed directly on the websites hosted on

the hijacked domains or referral (click-through) to another

site, where they earn a small amount for each page impres-

sion, a higher amount for account registration (Figure 24 in

Appendix) and even more for money spent.

Attackers use different techniques to generate traffic and

increase the click-through rate to the target site that pays for

the traffic. Next we describe the two techniques (SEO and

clickjacking) for which we find evidence in our dataset.

5.2.1 Blackhat Search Engine Optimization (SEO)

Search Engine Optimization (SEO) is the process of im-

proving a website’s visibility in search engine results. Black-

hat SEO or spamdexing8 involves ethically questionable tech-

niques or violates search engine guidelines. We found that

75% of HTML samples we collected contain some form of

(blackhat) SEO. We determine this by manually examining

a sample of 100 HTMLs in a sandboxed environment and

then checking which of the other sites contain similar con-

tent based on keyword features. Specifically, we found the

following techniques:

Cloaking. The Japanese Keyword hack9 is one example

of cloaking, a technique where content presented to search

engine spiders is different from what is presented to the user.

About 1% of the sites (Figure 3) featured a large number

of randomly generated Japanese pages, which we catego-

rize as the Japanese Keyword Hack. If hackers have the

ability to add content to a site, they upload a large number

of randomly named HTML pages (see Figure 6) with auto-

generated Japanese content. These cloaked pages are served

in parallel to the original site content, but shown only to

crawlers, not regular users. Search engines then associate the

site and its reputation with the parasitic content. Additional

modifications of the .htaccess and robots.txt files in the

8https://en.wikipedia.org/wiki/Spamdexing
9https://web.dev/fixing-the-japanese-keyword-hack/
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website’s root directory point the crawlers to the generated

spam pages and away from the legitimate content. We find

that 7.17% of SEO creates private link networks and utilizes

the Japanese Keyword Hack.

Private link networks. Some websites host a large number

of files with the sole purpose of linking to other pages and

domains , without any valuable content of their own. The

reputation of incoming links contributes to the reputation

of the target, so hackers create 2-way link networks across

pages on hijacked subdomains, exploiting their reputation;

we explain this in Section 5.2.3. In our dataset the abusers

uploaded a total of about 500M files with an estimated size

of 25.8TB, with an average of 31,810 HTML files per site;

statistics are visualized in Figure 6.

Doorway pages. These are low-quality web pages created

to rank highly in search results, but link or redirect visitors to

a target page that enables monetization. Most of these door-

way pages we observed were gambling-related and featured

gambling content from Wikipedia. We find that 62.13% of

the SEO uses doorway pages.

Keyword stuffing. This technique optimizes keywords,

placing them in the content and keyword meta tag: 41% of

58353 HTML pages we analyzed contain the keyword meta

tag to help make them more discoverable. Table 5 shows the

top 12 keywords used.

# Keyword Count # Keyword Count
1 slot 144,108 2 online 77,669
3 judi (gambling) 60,521 4 situs (website) 35,265
5 joker123 23,630 6 terpercaya (trusted) 19,407
7 gacor (hot streak) 18,006 8 agen (agent) 16,939
9 daftar (register) 12,881 10 game 12,113
11 bola (football) 11,688 12 pulsa (credit) 10,467

Table 5: Top 12 meta tag keywords on content hosted on hijacked domains.

5.2.2 Click-Jacking

With this technique an onClick event is inserted early

in the event bubbling pipeline to intercept a user’s mouse

click on a legitimate looking hyperlink and redirect it to a

malicious JavaScript function. Through our manual inspection

we found this method was used on adult-related pages. Instead

of navigating to the indicated page, the user is redirected to

another server where ads are served.

5.2.3 Reputation of Abused Domains

We find that hijacked subdomains are valuable for hackers

due to their reputation (or that of the parent domain), which

often takes years to establish. Injecting fraudulent content on

hijacked subdomains exploits the historic reputation of the

parent domain, ranking high in search engine results. Google

is the primary source of traffic to websites and accounts for 85-

92% of all search engine traffic for the past 8 years 10. As such

both legitimate and fraudulent content is optimized to rank as

high as possible in search results. Details of Google’s ranking

algorithm and weights of ranking signals are proprietary and

10https://www.statista.com/statistics/216573/worldwide-

market-share-of-search-engines/

change over time. Nevertheless, domain age, as well as other

parameters discussed below, play a role in the ranking.

Domain age. Nearly all (98.51%) of the hijacked second-

level domains are older than one year and the vast majority is

older than a decade. This is clearly seen in Figure 18, which

shows the distribution of creation dates obtained through

WHOIS for second-level domains in our dataset. Since sub-

domains inherit their reputation from the parent, we look at

the second-level domain for each subdomain.
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Figure 18: Domain age based on WHOIS creation date of SLDs.

Secure transport. Google also gives preference to sites

that are secure. We find that 18.2% of the (sub)domains in

our dataset had valid certificates.

Backlinks. Backlinks play an important role in domain

selection by attackers. When other reputable websites link to

a domain, Google sees this as a sign of trust and authority.

This is especially true if the linking sites are themselves high-

reputation domains.

5.3 More Page Views Mean More Profit

In summary, scammers leverage the reputation inherited

from the parent domain to drive search traffic to fraudulent

content on the hijacked subdomain. Since search engines are

the primary source of traffic, scammers optimize SEO signals

to boost their pages’ rankings.

In Appendix, Figure 24 we show a screenshot of the traffic

accounting infrastructure of a gambling site that receives

traffic from the hijacked domains. The resources behind the

hijacked domains are used to relay traffic to the sign-up screen

in Figure 24. In this infrastructure a referral code is passed

from the content hosted on a hijacked domain to the gambling

website. The website pays for traffic based on the referral ID

attached to incoming requests, thereby paying the hijackers

for each page view, each account sign-up, and money spent

on the site. The presence of the referral ID also suggests that

website owners and domain hijackers are two different entities.

In this abuse we witness an ecosystem, involving multiple

entities creating revenue from the hijacked resources.

In summary, we find referral links, a large focus on SEO,

ads and gambling, hijacking of cloud resources exclusively

with user-chosen names requiring particularly low effort to

hijack, and a lack of differentiation of abuse content across a

wide range of SLDs (see Section 6). We view this to be strong

evidence for a financial motive as the driver for these hijacks.

5.4 Malware Distribution & Flagged Sites

We find almost no evidence of malware distribution, which

was considered to be one of the main threats of dangling
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records in previous work [16]. Since this is the first work to

find exploitation of dangling domains, there is no comparable

dataset in previous work. We scanned 58,353 samples of

HTML index pages for downloadable executable files for

all operating systems, to determine, if hijacked domains are

directly used for the distribution of malware or other software

and which operating systems are targeted.

VirusTotal executables analysis. We retrieved 2628 bina-

ries using cURL. Among these were 181 unique Android apps

(.apk) and a single Windows executable (.exe). Only 2 EXEs

were labeled as Trojans by VirusTotal11. The vast majority

of APKs were gambling apps corresponding to the gambling

sites. Our data suggests that the hijacked domains are not

predominantly used for large-scale malware distribution.

VirusTotal domains analysis. VirusTotal also allows

checking if domains are flagged by various antivirus vendors.

We queried VirusTotal for our dataset of hijacked domains:

only 135 were flagged by at least one vendor, only 18 by two

or more. Figure 19 plots these values over time (based on the

earliest certificate issuance found for that domain), suggesting

that widespread blacklisting takes at least 2 years. Whether

due to lack of traffic to these domains, the slow inclusion of

domains in blacklists or a general disinterest of AV vendors

to include hijacked domains, the small percentage of blocked

domains suggests that blacklisting does not effectively protect

clients from being served content from hijacked domains.

Figure 19: VirusTotal blacklist counts for hijacked domains by date of first

certificate issuance.

5.5 Stolen (Authentication) Cookies

As pointed out by [12,16], one of the threats of gaining con-

trol of a subdomain’s content (e.g., access to a CMS) and/or

an entire webserver, is access to cookies. Cookies are used

for tracking users across pages via a session identifier, as well

as storing authentication tokens which tell the server that a

user has previously logged in. As a consequence, stealing

authentication cookies enables full access to the website as a

logged-in user. This sensitive data can be stolen as they visit

the legitimate-looking, but adversary-controlled content or

webserver on a hijacked subdomain.

Cookie policies implemented by browsers are such that

a cookie is only sent back to the domain that created it, or

a subdomain thereof. Cookie access depends on the degree

of control an adversary has of a hijacked domain. With full

11https://www.virustotal.com

server access, they can read all cookies (including authentica-

tion), but if they are only able to inject content onto a running

webserver (of a CMS), they are only able to read a subset

of browser-accessible cookies: cookies with the HttpOnly

attribute set to “false" or not set at all (the default).

Stolen cookies of abused domains. Since there is no way

to tell if cookies are being actively exfiltrated from HTTP

headers on the server, we look for stolen authentication cook-

ies for sale. In a collaboration with a threat intelligence organi-

zation we identify 83 unique authentication cookies detected

in darknet leaks in the timeframe in which the correspond-

ing dangling domains were detected by us as hijacked. These

cookies are linked to 3 different hijacked subdomains originat-

ing from 53 unique IP addresses. The low number of leaked

authentication cookies we found is not surprising, due to their

relatively short expiration time.

5.6 Fraudulent Certificates

In this section we describe our analysis of the fraudulent

certificates we found on hijacked domains. Due to availability

of HTTP-based Domain Validation, hijackers are in a posi-

tion to obtain a valid certificate, simply by having access to

the webserver root. In fact, many hosting providers, such as

Azure, integrate functionality within their dashboards to issue

certificates for custom domains that point to the hosting re-

source. Once a hijacked subdomain is taken over, obtaining a

valid certificate is trivial. We can therefore expect hijackers

to use certificates, as it allows the use of HTTPS, increas-

ing the efficacy of various attacks. One of the more critical

possible abuses for domain hijacks is access to cookies. As

detailed in Section 5.5, subdomains will typically receive not

just cookies set for that subdomain, but those for the parent

domains as well. However, if a cookie has the "Secure" flag

set, it will only be sent via HTTPS. So attackers looking to

steal, e.g., secure authentication cookies would need to setup

HTTPS with a valid certificate for the hijacked subdomain.

An interested reader is referred to Section A.2 in Appendix

for explanation on different motivations for obtaining a valid

but fraudulent certificate for abused resources.

5.6.1 Analysis of Certificates on Abused Domains

Certificate Transparency (CT) logs publicly list all cer-

tificates issued by CAs. We use CT to analyze the entire

timeline of certificates for all domains in our dataset, look-

ing for anomalies. Across CT history for our dataset we find

24239 single-SAN (single-Subject Alternative Name) cer-

tificates and 41877 multi-SAN/wildcard certificates. Since

during domain validation hijackers can typically only success-

fully prove control of a single subdomain that they control, we

search the CT history of hijacked subdomains for certificates

that contain only a single, non-wildcard subdomain name.

We contrast this set with the certificates issued for these

subdomains (Figure 20). We see two distinct time frames

(2017-07-31 to 2017-08-14 and 2022-09-09 to 2022-12-16)

where a significant number of certificates were individually
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Figure 20: Multi-SAN vs. single-SAN certs issued for hijacked subdomains.

issued across our set of hijacked subdomains. Particularly the

former shows a clear anomaly, covering a significant number

of "www." subdomains. Taking a closer look at these time

frames, we find that the majority of the single-subdomain

certificates (95% and 53%, respectively, for each time frame)

were issued by Let’sEncrypt, suggesting that these were in-

tentionally issued, as opposed to automatically by a hosting

provider. A correlation with our dataset of the abused domains

shows that the time frames correspond to campaigns to gather

vulnerable subdomains. Based on the dates, we trace this kind

of activity back to mid 2017, about a year after the first paper

on dangling DNS records was published [12].

5.6.2 CAA Records are not Effective

Hijackers have many options for obtaining a certificate.

Cloud providers, such as Azure and AWS, often run their own

CAs and provide certificate issuance built into their hosting

products, free of charge, which can be leveraged by anyone

in control of the hosted resource. Let’s Encrypt and ZeroSSL

are two additional CAs that provide certificates via domain

validation and at no cost.

It has been suggested that domain owners could configure

CAA records to allow certificate issuance only by an autho-

rized set of CAs, in order to prevent unauthorized issuance.

This is unlikely to be effective, however, since an attacker can

simply register an account with one of the authorized CAs

and still issue a certificate. This kind of restriction would only

be protective if certificate issuance is restricted to a specific

account with a specific CA ("domain locking"12).

In can be argued that, in the case of cyber-criminals gath-

ering large numbers of domains to use for SEO and traffic

generation, authorizing only CAs who charge for certificates

(i.e., unauthorizing all CAs with free certificates) might disin-

centivize attackers from issuing certificates at scale, due to an

increase in cost. This would, however, necessitate the major-

ity of domain owners switching to a paid CA and setting the

appropriate CAA records, in order to function as a deterrent.

This is unlikely to happen due to cost to the legitimate

owners. Hence, we find that only 2% of parent domains (and

only 0.2% of subdomains) have a CAA record set and only

0.4% (0.01%) specify a CA without free certificate issuance.

We also find that half of these domains still had hijacked

12https://docs.digicert.com/en/certcentral/manage-

certificates/organization-and-domain-management/domain-

locking.html#locking-a-domain

Figure 21: Geo-distribution of phone numbers based on country code.

subdomains with valid certificates. This suggests that CAA

records are not a suitable countermeasure for such attacks.

5.6.3 Certificate Transparency as Countermeasure

CT can be leveraged as a much more effective countermea-

sure than CAA records. Though reactive, rather than preventa-

tive, CT monitoring of one’s domain via third-party services

is a low-to-zero cost, set-and-forget measure to ensure one

is notified whenever a certificate is issued for the domain or

one of its subdomains. Should an attacker take over even a

long-forgotten subdomain and issue a certificate, an alert is

triggered and the domain owner is made aware of the hijack,

typically within a few hours. However, the effectiveness of

detection rests on the attacker’s choice to obtain a certificate.

6 Characterization of Attacker Infrastructure

In this section we characterize the infrastructure used in

the hijacks in our abuse dataset. We look for indicators from

the infrastructure and the user-facing content side. Due to the

large number of hijacks we combine manual analysis of a sub-

set of examples with automated keyword-based approaches.

Hijacked webserver software. Using the Generator Meta

tag, we identified that about 22% of the 54,325 collected

HTML samples were homepages of WordPress blogs. These

are custom WordPress installations on cloud.

Static identifiers. Next we considered other backend links

present in the HTML samples. We analyzed the href at-

tributes of <a> and <link> tags contained in the HTML doc-

uments served by the hijacked domains. We discovered 792

unique phone numbers through WhatsApp links. Based on the

country code, we can see that all of them are based in Asia,

primarily Indonesia and Cambodia; see Figure 21. We also

discovered 1,884 unique contacts in the form of Telegram,

Twitter, Instagram and Facebook accounts/channels/groups

and direct chat IDs, as well as 2,671 unique forwarding links

provided by URL shortening services. We also discovered

3,553 unique references to IP addresses. Based on WHOIS

data, we find that the majority of these IPs belong to vari-

ous hosting providers (Figure 26 (a) in Appendix). This also

matches the concentration of IPs in the US, France and Singa-

pore, based on GeoIP information (Figure 26 (b) in Appendix).

The use of cloud hosting does not allow identification of the

countries where attackers are operating.

Clustering attacking infrastructure. All of the above

data points serve as identifiers. If two identifiers appear on

the same HTML page, it is reasonable to assume that they are

associated with the same operation. Thus, we cluster these

data points based on how many HTML pages of hijacked

domains each pair appears on. The resulting relationships

between identifiers are visualized as a network graph in Fig-

ure 27 in the Appendix. The network graph provides a broad
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Figure 22: Top 50 clusters sorted by number of hijacked domains.

overview. To delineate concrete groupings we find all nodes

that are connected through some path in the network graph.

This is accomplished by successive hierarchical clustering,

plotted in Figure 28 in Appendix.

Each tick on the x-axis represents an identifier, while the

y-axis indicates the distance (on a scale of 0 to 1) at which

identifiers are grouped. The minimum distance of 0 indicates

that a pair of identifiers are associated with an identical set of

hijacked domains and the maximum distance of 1 indicates

that two identifiers share no domains at all. The dendrogram

displays all groupings up to a cutoff point at a distance of

0.95 (since at the end of the hierarchical clustering process all

nodes are merged into one). The cutoff is chosen to achieve

the maximal degree of grouping. This is warranted, since the

probability of an identifier appearing on two domains by co-

incidence is very small. Groupings are delineated by color, so

all adjacent vertical lines of the same color point to identifiers

that have been grouped; the largest grouping is displayed in

gray on the right side of the dendrogram. Long, single-color

vertical lines indicate identifiers that do not share any domains

with other identifiers and thus cannot be grouped.

The hierarchical clustering results in 1,798 clusters, with

the vast majority consisting of 1 or 2 identifiers which could

not be linked to any others. For the largest grouping, however,

it was possible to tie together 1,609 identifiers, associated

with 743 hijacked domains. The four next-largest clusters

contain 414, 222, 179 and 112 domains, respectively. Figure

22 shows this long-tailed clustering result for the top 50 clus-

ters, sorted by the number of hijacked domains in each cluster.

The identifiers cover 8,489 (~ 1
3
) of the hijacked domains and

all are associated with Indonesian gambling.

While the clustering still leaves the possibility for a large

number of actors involved, it ties large sets of domains to-

gether, showing that at least some actors collect a wide range

of diverse domains in a coordinated effort. These are then

homogeneously used for the same purpose of referring traffic

or manipulating search rankings. The lack of differentiation

in how the hijacked domains are abused suggests an attempt

at maximizing profit by maximizing the number of domains

recruited for a campaign, as opposed to specific targeting of

individual domains, e.g., for political reasons.

Our analyses do not yet allow conclusions as to the no-

ticeable bias of observed page content, linked infrastructure,

discovered APKs and phone numbers toward Indonesia. How-

ever, because our discovery of hijacks begins with a set of do-

mains based on global organizations (e.g., Alexa 1M, Fortune

1000, etc.), there is little reason to assume a biased dataset.

Instead, we see a possible explanation in the population size

(4th largest in the world) and strict illegality of gambling in

Indonesia, leading to a prevalence of online gambling and a

need to advertise it through illicit means.

7 Conclusions

Although the threat of take-over of dangling resources in

the cloud was explored, there was no evidence in research

of real-life abuse. We explore this question empirically with

a longitudinal three-year analysis of cloud-hosted resources.

Our two key contributions are a methodology for detecting

abuse and a longitudinal dataset of abused resources at scale.

Our research shows that the abuse of dangling resources on

cloud platforms is a real problem that affects a large number

of victims in popular and established organizations across

different sectors. Our methodology and the findings provide

a feasibility proof for identifying abused resources without

assuming control over the cloud platform.

Based on our analysis we derive lessons for improving vis-

ibility of abuse and developing countermeasures. The hijacks

we found show that the attackers target released resources that

(1) are cheap and (2) can be directly determined by entering

freetext, while avoiding resources that are expensive and re-

quire effort to obtain, such as the lottery-based IP assignment

from a pool of IP addresses. Therefore, as an easy-to-deploy

mitigation we recommend that cloud platforms either do not

allow user-created resource names to be publicly visible (e.g.,

through DNS records) and/or disallow the re-registration of

recently released resource names. We also recommend, simi-

larly to previous work, to purge stale DNS records. In addition,

cloud platforms should keep track of released resources us-

ing our methodology and alert owners of registered domains

about changes to the content or sitemap. Since we observe that

attackers issue certificates for hijacked domains, we recom-

mend that cloud providers also monitor CT logs for unusual

patterns across domains hosted on their platforms to help

detect potential large-scale abuse campaigns.

Finally, we point out that although our work focuses on

resources on cloud platforms, our results can be used to iden-

tify abuse in other third-party services. For instance, while

Content Management Systems (CMS) like Wordpress are not

included in our dataset, we expect a large number of hijacks of

[freetext].wordpress.com subdomains, since Wordpress

also implements freetext subdomain registration for its blogs.
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TLD Count TLD Count
1. com 12942 7. de 758
2. org 1069 8. edu 414
3. net 996 9. ca 398
4. uk 758 10. nl 207
5. au 414 11. jp 183
6. br 398 12. co 156

Table 6: Top 12 Top Level Domains (from a total of 218) and their counts.

A Appendix

A.1 Cloud Suffixes

We compiled the list of cloud suffixes using the following

sources:

https://docs.aws.amazon.com/general/latest/gr/rande.html

https://learn.microsoft.com/en-us/azure/security/

fundamentals/azure-domains

https://docs.netlify.com/domains-https/custom-domains/

https://docs.pantheon.io/guides/domains/platform-domains

https://devcenter.heroku.com/articles/custom-domains

https://infogalactic.com/info/List_of_Google_domains.

Cloud IP ranges were obtained from these provider

published sources:

https://ip-ranges.amazonaws.com/ip-ranges.json

https://www.microsoft.com/en-us/download/

details.aspx?id=56519

https://www.gstatic.com/ipranges/cloud.json

Based on recent market share data, the AWS, Azure and

Google clouds cover 65% of the hosting market, with the rest

split across a long tail of providers. Our cloud identification

is therefore not 100% complete, but covers a large majority

share of the cloud market.

A.2 Motivations for Obtaining a Certificate for

a Hijacked Domain

Browser Warnings. Most popular browsers display a warn-

ing when attempting to connect to a domain with a self-signed,

expired or otherwise invalid certificate. Some end-users might

ignore this warning, but many won’t. Obtaining and using a

valid certificate would remove this barrier and thus increase

traffic to the site.

Similarly, browser UI indicators (i.e. green lock icon) in-

crease the users’ trust in the legitimacy of the site. It has been

shown that phishing sites using HTTPS are more effective [9].

Thus, a certificate for the hijacked site likely serves to increase

user interaction.

SEO. The primary type of abuse seen on hijacked domains

is SEO spam. A key parameter in search engine rankings is

the use of HTTPS. Sites that don’t use HTTPS are typically

ranked lower. Thus, a certificate would help boost the efficacy

of SEO spam.

HSTS. If a hijacked subdomain (or its parent) has previ-

ously added the domain to the HSTS list of visiting clients,

these clients will only connect to this domain via HTTPS in

the future (until expiration of the HSTS setting). Hijackers

wishing to capture this traffic, will need to serve HTTPS con-

nections and will thus require a certificate. We queried 1,323

parent domains from our hijacked dataset and found over 16%

of non-error responses contained an HSTS header.

Secure Cookies. One of the more critical possible abuses

for domain hijacks is access to cookies. As detailed in Section
5.5, subdomains will typically receive not just cookies set for

that subdomain, but those for the parent domains as well.

However, if a cookie has the "Secure" flag set, it will only be

sent via HTTPS. So attackers looking to steal, e.g., secure

authentication cookies would need to setup HTTPS with a

valid certificate for the hijacked subdomain.

Furthermore, the SameSite flag differentiates HTTPS and

HTTP origins. In particular, SameSite=None requires Se-

cure=True, increasing the likelihood that a domain uses secure

authentication cookies13.

Figure 23: Main page for a Fortune 500’s abused site with an error message

(May 2020).

13https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-

Cookie/SameSite
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Figure 24: Referral code is passed for traffic accounting.

FQDNspassiveDNS

FQDNscommercial
domains lists

IPs & CNAMEsDNS

cloud FQDNs

collector

abused FQDNs HTMLs
DNS

monitor

HTMLs
certificatescloud domains

suffixescloud suffix
lists

DB

certificates
certificatescrt.sh

URLs

org namesWhoIs

GeoIP

countriesphone codes

countries

executablesscoresVirusTotal

rankingsQS world
ranking

rankingsFortune 500

rankingsTranco

rankings

keywords

DATA SOURCES COLLECTION
A

N
A

LYSES

CAADNS
revocation

Figure 25: Overview of data collection and analysis process.

Figure 26: (a) Organizations associated with extracted IPs based on WHOIS

data. (b) Geographical distribution of extracted IPs based on GeoIP data.
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Figure 27: Clustering of extracted identifiers - IPs (red), contact information such as phone numbers, social media channels and chat links (green), and URL

shortener links (blue). Node size indicates the number of hijacked domains associated with the identifier, edge thickness indicates the number of shared domains

between a pair of identifiers.

Figure 28: Dendrogram of identifier clustering.
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Figure 29: List of extracted keywords and code fragments.
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