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Abstract
Programmable pipeline offers flexible and high-throughput
packet processing capability, but only to some extent. When
more advanced dataplane functions beyond basic packet pro-
cessing and forwarding are desired, the pipeline becomes
handicapped. The fundamental reason is that most stateful
operations require backward cross-stage data passing and
pipeline stalling for state update and consistency, which are
anomalous to a standard pipeline. To solve the problem, we
augment the pipeline with a low-cost, yet fast side ring to
facilitate the backward data passing. We further apply the
speculative execution technique to avoid pipeline stalling. The
resulting architecture, RAPID, supports native and generic
stateful function programming using the enhanced P4 lan-
guage. We build an FPGA-based prototype to evaluate the
system, and a software emulator to assess the cost and perfor-
mance of an ASIC implementation. We realize several stateful
applications enabled by RAPID to show how it extends a pro-
grammable dataplane’s potential to a new level.

1 Introduction

Dataplane devices equipped with high-performance, pro-
grammable switch chips are changing the landscape of net-
works in a profound way. More and more potentials, from re-
alizing customized forwarding and middlebox functions to en-
abling in-network computing applications, are unleashed. The
high-throughput demand makes the hardware Match-Action
Table (MAT) pipeline [23] the chief choice of the switch chip
architecture. For example, Intel Tofino [7] and Broadcom
Trident [2] are both pipeline-based. Pipeline is also used in
high-performance NIC (e.g., PANIC [38], nanoPU [33], and
RingLeader [37]) for packet processing. Although a pipeline
has unmatched throughput, it assumes a forward processing
flow, impeding the efficient support for stateful functions es-
sential to many valuable applications.

†Co-first authors.

A stateful dataplane function can be generalized as an Ex-
tended Finite State Machine (EFSM) [42]. The state of a
packet is read from a flow state table; the corresponding ac-
tions are executed based on the current state and input; the
action may result in a state update, which is written back to
the state table. We discuss several real use cases in Sec. 2.1.

Trivial stateful functions (e.g., counter) can be realized as
atomic operations using registers in a single pipeline stage.
However, Most stateful functions need state writeback beyond
the capability of a pipeline. For such functions, determining
the next state often requires multiple actions and table ac-
cesses, causing delayed cross-stage state writeback. For cer-
tain applications [35,40], the size of state tables size surpasses
the memory capacity of a single stage, compelling cross-stage
table writebacks even with straightforward logic. To preserve
state consistency, potentially impacted packets are blocked
until writeback completion. The only recourse for data write-
back is recirculation (i.e., looping the data back to the head of
the pipeline). Both these inefficiencies can reduce the pipeline
throughput to an unacceptable level.

Pure pipelines therefore falter in supporting stateful packet
processing. There is a clear call for a new chip architecture
that prevents pipeline stalls while facilitating fast, unobtrusive
packet and data backtracking. One tentative method decou-
ples the stage processors by placing all tables in a separate
memory pool, allowing stages to interface with the same table,
obviating writeback paths. However, pipeline stalling persists,
accompanied by notable interconnection expenses and table
access scheduling intricacies [26].

In this paper, we target a cost-effective, high-performance
solution for arbitrary stateful functions via the MAT pipeline.
We augment the pipeline with a simple side ring and make
each pipeline stage interface with it. On the ring, data flows in
the reverse direction of the pipeline, providing a fast backward
communication path. The new architecture, Ring-Augmented
PIpeline Dataplane (RAPID), is illustrated in Fig. 1. RAPID
introduces a new “dataplane writable table” abstraction to en-
hance the programming language such as P4 [22] for flexible
and easy stateful function composition and implementation.
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Figure 1: RAPID high-level architecture.

The ring serves two main purposes. First, it provides a fast
path for new state writebacks to an earlier pipeline stage. Sec-
ond, it is used to handle the failures of speculative execution.
The speculative execution allows packets of the same flow to
enter the pipeline without being blocked. But once the state is
changed, the packets that read the stale state are resubmitted
to the first stage of the stateful function through the ring for
reprocessing, avoiding expensive packet recirculation.

This paper presents the design, implementation and evalua-
tion of RAPID. Our key contributions are as follows:
• Cross-stage table writeback: The architecture support and
language abstraction enable programming stateful functions
on a pipeline-based dataplane;
• Speculative execution: RAPID uses it and ring-based failure
resubmission to ensure state consistency and good pipeline
throughput.
• Multi-level consistency support: RAPID supports different
consistency levels based on application needs.

We prototype RAPID on FPGA and evaluate its cost and
performance. Estimations for area and power are made for
a 45nm ASIC setup [10]. We enhance the P4 language for
stateful functions, developing its compiler. A software ASIC
emulator is used to emulate RAPID’s behavior for parameter
tuning and performance insights. Several use cases demon-
strate the capability of RAPID.

The remaining of the paper is organized as follows. Sec.2
outlines stateful processing needs and our architectural ratio-
nale. Sec.3 reviews prior work. The architecture of RAPID is
elaborated in Sec.4. Sec.5 presents the enhanced P4 language
and compiler issues. Implementation and evaluations appear
in Sec.6 and Sec.7. We discuss design choices in Sec.8 and
conclude in Sec.9.

2 Background

2.1 Motivating Stateful Functions
Stateful functions are ubiquitous in network applications.
The generic support for stateful functions enriches the pro-
grammable network dataplane devices, as embodied in the
following motivating use cases.

• Stateful Load Balancer. Load balancers (LBs) are piv-
otal in cloud networks, where stateful LBs preponderate over
stateless ones due to their flexibility [19,34,40,62]. LBs need
to ensure connection affinity. If a packet matches an existing
flow in the state table, it adopts the old connection; otherwise,
it triggers a strategy to set up the connection with a new server,
and subsequently updates the state table. The strategy may en-
tail intricate logic. Typically, the state table is updated through
a controller, inducing queue buildup and lower throughput.
Recent efforts [19, 40] champion dataplane-centric solutions,
but when applied on a pipeline architecture, these necessitate
cross-stage data writebacks.
• DDoS Detection and Mitigation. DDoS attacks (e.g.,
TCP SYN floods) persist as major security concerns. Con-
ventional server or middlebox solutions are costly and con-
strained in throughput [63]. Thus, in-network dataplane so-
lutions start to gain traction [31, 36, 39, 59, 63]. However,
prevalent switch-driven DDoS defenses [1, 12, 27, 63] often
lean on controllers or middleboxes for detection. We advo-
cate a pure dataplane solution for better performance and
efficiency. Packets undergo initial categorization using list
tables (denylist, allowlist, graylist) and subsequent analysis
by a detection module. This module, possibly a sketch or
header-check series, re-categorizes suspicious packets from
the allowlist to graylist. Such a method necessitates cross-
stage writebacks in a pipeline to update tables.
• Traffic Shaping and Policing. Traffic shaping and polic-
ing are essential in enforcing Quality of Service (QoS) poli-
cies and ensuring optimal bandwidth allocation. During the
process, packets are first classified by user-defined header
fields, and then evaluated by rate control or scheduling al-
gorithms based on the current queue or link status. Next,
packets are queued or dropped, and the queue status is up-
dated (i.e., a writeback to the evaluation module). In this
case, the writeback would be from the egress pipeline to
the ingress pipeline. Since the seminal work of PIFO [51],
many efforts have been made to make packet scheduling pro-
grammable [18, 45–47, 61]. However, most of them cannot
avoid data writebacks. On today’s pipeline-based chips, these
schemes have to use packet recirculation or approximation
which influences the scheduling performance or accuracy.
• Stateful Firewall with Connection Tracking. A stateful
firewall tracks active connections, discerning malicious traf-
fic via flow context and a finite state machine. It consults a
table to determine if a packet belongs to a current connection,
updating connection details as necessary. For new packets,
predefined rules dictate connection permission. Approved
connections prompt state table updates with details like flow
ID. Given complex state transitions and inter-module mes-
saging, a direct dataplane pipeline cannot be realized without
cross-stage data writebacks.
• Heavy Hitter Detection. Top-K heavy hitters aid in traffic
routing, engineering, and real-time monitoring [20,32,52,56].
For in-dataplane detection, the sizable hash table is spread
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across multiple pipeline stages. Packets traverse each stage
to find an appropriate location, and then the flow data is writ-
ten back to a chosen stage. Present pipeline devices lean
on controllers or packet recirculation for these tasks. A data
writeback channel would be both practical and efficient.

2.2 Architecture Considerations
We can dissect a stateful function as state lookup, state cal-
culation, and state update processes as shown in Fig. 2. State
consistency issues may arise when a packet is updating a state
from s0 to s while another packet of the same flow reads the
stale state s0. Two major chip architectures (pipeline-based
and RTC-based) use different strategies to ensure consistency
but so far none are ideal.

state lookup state calculation state update

cross-stage table writeback

Figure 2: Stateful function abstraction.

• Pipeline-based Architecture. For a pipeline, there is no
direct dataplane path for state updates if the function occupies
more than one stage. Single-stage stateful functions [42] or
atomic stateful functions [51] limit the scope of applications.
Due to the unpredictable complexity of stateful functions, it is
implausible to try to design a single stage processor to support
an arbitrary stateful function which could make the resource
intractable.

The existing architectures (e.g., FlowBlaze [42]) assume
that all packets entering a stateful function may change the
state, and to guarantee state consistency (i.e., avoid reading
stale states), they block all the subsequent packets during the
stateful processing of a packet, which creates a performance
bottleneck. However, stateful functions often target a flow
subset; distinct flows may access separate states, and packets
within the same flow might not modify the state [41, 42, 63].
Therefore, it is rare for back-to-back packets to concurrently
read and update the same state. Speculative execution tech-
niques can prevent pipeline stalls. Once a speculative failure
happens, reprocessing affected packets is essential for state
consistency, manifesting another backward data passing re-
quirement. Packet recirculation, retracing the whole pipeline,
or controller detours involving a slower path are suboptimal.
A dataplane path for fast and direct data writeback is desired.
• RTC Architecture. The Run-to-Completion (RTC) mode
on multi-core, multi-thread processors (e.g., Trio [60] and
dRMT [26]) supports stateful functions, but requires complex
access scheduling and table locking to ensure state consis-
tency if shared memory is used. To prevent state inconsistency
during state calculation, the conflict-avoidance algorithm in
dRMT needs to schedule halts for the cores with data de-
pendency. Trio uses read-modify-write engines to do stateful
operations. However, a long latency in state access (from read

to write) results in extended suspension for other threads. Al-
ternatively, each thread can maintain its own copy of the state
table, but this demands table synchronization and consumes
much more memory.
• Consistency Levels. Depending on applications, state con-
sistency can be either strict or loose. For instance, a stateful
firewall may tolerate a transitory state inconsistency whereby
some packets employ outdated states [30]; on the contrary,
NAT and MAC learning demand strict consistency to guaran-
tee accurate packet processing and forwarding [62]. Enforcing
strict consistency requires more resource and may affect the
throughput. A good design should be able to adapt to the
application requirements with a sound tradeoff.
• Ring Topology. When unidirectional data passing is the
predominant communication pattern, a ring is the simplest
and most efficient interconnection topology. On a unidirec-
tional ring, there exists a unique path for a node to send mes-
sages to another node. Although a crossbar or other intercon-
nection networks can provide more flexible communication
paths [26, 28], they are an overkill to our problem and incur
high implementation cost.

2.3 Traffic Trace Analysis
Before delving into the new architecture details, under var-
ious traffic traces and the assumption of different stateful
processing latency cycles, we test the pipeline’s throughput
and latency using the conventional blocking scheme to expose
the problem and motivate our work.

We collect 10 traffic traces (Table 8 in Appendix A) from
campus, data center, and IoT networks and analyze the flows
based on different specifications (i.e., five-tuple and sIP-dIP
pair). Ignoring the timestamp, we feed the packets from the
traces back-to-back into a 1GHz⇥64Byte pipeline. We define
the Conflict Ratio (CR) as the ratio of the packets from the
same flow which are spaced less than n clock cycles by pack-
ets of other flows, suggesting a potential consistency violation
provided the state update latency of a stateful function is n. Ta-
ble 8 in Appendix A shows the CR results for n = 16. As the
value of n increases, maintaining state consistency through
packet blocking and pipeline stalling reduces the pipeline
throughput progressively.

Flow queues in front of a stateful function can mitigate the
Head-of-line blocking (HOL) issue, enabling more flows to
process packets in the stateful function pipeline, but may
cause inter-flow packet reordering. Consider four queues,
each holding 32 packets. The packets are scheduled in a
round-robin manner as long as there is no packets of the
same queue in the stateful function. We evaluate packet pro-
cessing throughput and latency multiplication ratio over the
stateless processing with five packet traces from Table 8 under
varied state update latency cycles, shown in Fig. 3. With fewer
cycles (e.g., 20-30 cycles), the queues buffer incoming pack-
ets effectively. As cycles rise, queues become overwhelmed,
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leading to increased packet drops, reduced throughput, and
heightened latency that plateaus.

(a) Throughput. (b) Latency ratio.

Figure 3: Packet throughput and latency under different state-
ful processing cycles (i.e., state update latency).

Our analysis, as well as the results from others [24], con-
firms that the state consistency does require pipeline to stall
for real traffic. A coarser flow specification makes the prob-
lem even more severe. While more flow queues can reduce
the HOL blocking probability, the system cost increases. All
these point to the conclusion that the speculative execution is
not only beneficial, but also imperative.

3 Related Work

There have been a long track of works concerning the state-
ful function support in programmable dataplane. The works
range from new abstractions, new chip architectures, and so-
lutions based on existing chips.
• Abstraction. OpenState [21] proposes a dataplane abstrac-
tion that uses eXtensible Finite State Machine (XFSM) to do
stateful flow processing in switches. It relies on the Open-
Flow protocol and has no real hardware support. Fast [41]
uses multiple tables to simplify the flow-level state transition.
The state transitions need data writeback to previous tables
which can only be implemented in software.
• Architecture. Banzai [51] is the first hardware architec-
ture for stateful functions. However, the stateful functions
supported are limited to those that can be compiled as an
atomic operation in a single pipeline stage. FlowBlaze [42]
extends the OpenState abstraction to EFSM and modifies the
stage processor of the conventional Reconfigurable Match
Tables (RMT) pipeline to support stateful functions that can
be implemented in a single stage. Due to the state process-
ing latency, it needs to stall the pipeline for state consistency.
SDPA [54] and SDP-CDP [29] use a co-processor to handle
packets that need stateful processing and keep the pipeline
for stateless processing only. Since a packet can only take
one path, the scheme degrades into a software-based solution
if most packets require stateful processing. dRMT [26] and
Trio [60] are both multi-core-based architectures working in
RTC mode. When supporting stateful functions, due to the
state writeback and synchronization, their performance deteri-

orates. Banzai-based MP5 [49] further allows communication
between multiple pipelines via crossbars, but it does not solve
the cross-stage state writeback problem. Thanos [48] supports
multidimensional packet filtering using a series of condition
assertions in the pipeline, but it does not involve flow tables
and thus cannot support functions that need state tables.
• Solution. The flexible match-action tables for the DPDK-
based t4p4s target [50] are dataplane writable, so software-
based stateful functions can be supported. Lucid [53] is a
high-level programming language supporting event-driven
dataplane packet processing. It relies on packet recirculation
for stateful functions. Deterministic Finite Automaton (DFA)
can be used to reduce certain complex stateful functions to
basic atomic operations supported by the Banzai architec-
ture [25]. However, its limited capability cannot support most
of the use cases we discussed. RIBOSOME [44] leverages ex-
ternal CPUs or FPGAs to perform stateful packet processing.
The programmable chip sends the packet headers and pay-
loads to different external devices for processing, and then the
processed packets are sent back to the pipeline for packet re-
assembly and forwarding. The processing latency and system
cost are both high.

4 RAPID Architecture

4.1 Overview
While the concept of a side ring is simple and convenient,
many details need to be considered to make it work. A stateful
function involves a sequence of stage processors in a pipeline.
The first processor (PR) maintains the flow state table. It re-
trieves the states of incoming packets, and updates the states
of flows as instructed by the last processor (PW ) after the inter-
mediate processors finish the stateful processing and calculate
the new states. PW communicates with PR through the ring.
The “packet” processed in a pipeline is actually just a Packet
Header Vector (PHV) which contains the parsed headers and
other metadata pertaining to the packet. As shown in Fig. 4,
a scheduler module can be configured as a ¨ Read Sched-
uler (rd_sched) in PR or a ≠ Write Scheduler (wr_sched) in
PW . Each stage processor is attached with a Æ Ring Node
Scheduler, which is responsible for resolving access conflicts
between different types of data on the ring. Traversing a ring
node requires only one cycle in most cases, much faster than
the data flow on the pipeline.

We elaborate RAPID by answering the following critical
questions:
• How to prevent packets who read stale states from being

wrongly processed and forwarded? (Sec. 4.2)
• How to write back the updated states? (Sec. 4.3)
• How to ensure state consistency and in-order processing

under speculative execution? (Sec. 4.4)
• How to support different levels of consistency? (Sec. 4.5)
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4.2 Stale State Safeguard
Before a new state is potentially calculated and written back,
the state may be in a stale condition. Reading a stale state
unattended could break the application. To prevent this, a
small Content Addressable Memory (CAM) table, dTable, in
both rd_sched and wr_sched is used to register the “dirty”
flows which have packets currently under stateful processing.
The search key of dTable is the flow’s state table index (e.g., a
flow ID’s hash value). While dTable in wr_sched is a key-only
table, dTable in rd_sched also contains associated data to keep
the information for dirty flow handling (Sec. 4.4).

Once wr_sched realizes that a packet causes a change of
its flow state, the flow is registered in its dTable. Meanwhile,
wr_sched sends the updated state to rd_sched, as well as
notifying rd_sched to register the flow in its own dTable. For
any following packet under speculative execution, if it hits
dTable at PW , it means that the packet reads a stale state and
it will be resubmitted to PR through the ring.

A flow registered in dTable in rd_sched serves as the safe-
guard to prevent newly arriving packets of the flow from
entering the stateful processing. During its residency, any
already admitted packets of the flow would undergo a specu-
lation failure and are resubmitted to PR. When all the packets
of the flow under speculation failure have been resubmitted,
rd_sched sends a cancel_dirty signal to notify wr_sched to
remove the flow from its dTable. The flow is removed from
local dTable after all its backlogged packets are cleared.

For fairness, the packets of the flows which are not in
dTable are processed without blocking. The resubmitted and
blocked packets of a “dirty” flow are opportunistically sched-
uled at free pipeline cycles only. Therefore, a buffer is needed
for the resubmitted and blocked packets. Under normal traffic
conditions, the switch pipeline is only lightly loaded, leaving
enough free cycles to handle the buffered packets.

4.3 Fast State Writeback
At PR, the state of a packet is retrieved from a flow state table
and stored as metadata which can be used as key for further
table matching or as parameter for action execution. If the
state is updated to a new value, the metadata is marked. If

wr_sched finds the state is updated, the update is uploaded
onto the ring for a writeback to PR. Meanwhile, the flow is
registered in dTable to detect speculation failures.

On the ring, the data can usually pass one node per clock
cycle. However, it is possible that some other cross-stage
table write operations exist, so there can be race condition
(e.g., a function’s resubmitted PHV may conflict with another
function’s cancel_dirty signal) delaying the data. A small
buffer for the attached stage processor and another for the
upstream ring node are allocated for a ring node. The ring
node scheduler prioritizes control signals (including write-
backs and cancel_dirty signals) over resubmitted PHVs, and
merges the signals if possible.

At the destination ring node, the writeback data is offloaded
to PR. The flow is registered in dTable and the updated state
is written into the flow state table, which is either a TCAM
table or an SRAM-based hash table. Updating existing en-
tries is straightforward, while some stateful functions (e.g.,
MAC learning) require generating and inserting new entries.
While it is easy for an SRAM-based table (e.g., using a small
stash [42]), it is complicated for a TCAM table. To resolve the
priority order, significant calculation and entry relocation may
be needed [57,58], incurring an intolerable delay. Fortunately,
most use cases do not need TCAM table entry insertion. We
leave the solution to this issue as future work.

4.4 Speculative Execution
The blocking scheme that blocks every packet before its pre-
decessor completes the stateful processing is too conservative.
The improvement that only blocks packets of the same flow
for which a packet is under stateful processing is still not good
enough: a stateful function using only one stage processor
can still result in more than 20% throughput reduction [24].

Instead, we use speculative execution. If a packet is under
the stateful processing, the following packets of the same flow
can still enter the stateful processing pipeline until the flow
is registered in dTable in rd_sched. The packets under spec-
ulation failure must be resubmitted and reprocessed. These
measures have some performance impact. The worst case,
which is unlikely in reality, happens when a long sequence
of back-to-back packets come from the same flow and each
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packet causes a state transition. Our evaluation shows that in
normal cases RAPID maintains a high throughput thanks to
the speculative execution.

A speculation failure is handled by three procedures: packet
backhauling, packet buffering, and packet releasing, as illus-
trated in Fig. 6.

Packet Backhauling. Packet backhauling uses the ring to
send packets back to PR for reprocessing. As shown in Fig. 5,
a 4096-bit data bus on the ring is sufficient for transmitting
either a PHV or a state data which contains a stateful function
ID, a flow state table index (addr), and an updated state value
(e.g., our use cases only use 128 bits for the state value).
The signal type is indicated by ctrl_tag: 0b00 for invalid
signal, 0b01 for state writeback and cancel_dirty, and 0b10
for resubmitted PHVs. The destination stage processor’s ID
is encoded in the one-hot bitmap dst2.

dst1

ctrl_tag

dst2

payload

control

data

# of processors

2

# of processors

PHV width

Width (bits)Ring Bus Usage

Heartbeat destination

Signal type

Signal destination

State index & state value
or PHV

Figure 5: Ring bus composition.

Packet Buffering. The resubmitted packets need to be
buffered in a FIFO queue at PR and wait for free cycles to en-
ter the pipeline. Since the match-action unit requires a PHV to
calculate the table search keys in a stage using the hash mod-
ule, the buffer for resubmitted packets - Resubmitted packet
Buffer (RB), is located before the hash module (Fig. 4).

Newly arriving packets from the pipeline that hit dTable
in rd_sched are kept in PHV Buffer (PB) in rd_sched. The
packets for each flow are linked in a list, and the link pointers
are maintained by the corresponding flow entries in dTable.

Once the first packet in RB gets a chance to enter the
pipeline, it is moved from RB to PB. In PB, the resubmitted
packets for each flow are also linked in a list, and their link
pointers are maintained in dTable as well.

rd_sched can schedule a packet of a flow suffering specu-
lative failure in PB only if (1) all resubmitted packets of the
flow have arrived at PR, and (2) all the resubmitted packets
of the flow in RB have been moved to PB. Condition (2) can
only be satisfied after condition (1) has been met. The former
is guaranteed by the flow timers (described in the next subsec-
tion), and the latter is guaranteed by the resubmitted packet
counters, both maintained in dTable. Each time PR receives a
resubmitted packet, the corresponding counter is incremented,
and each time a resubmitted packet is moved from RB to PB,
the corresponding counter is decremented. A counter value 0
means the condition (2) is met.

Fig. 6 illustrates an example of packet scheduling in

rd_sched. A shows the dTable which has three flows f1, f2,
and f3, where “Timer Offset" means the elapsed time since
the flow is last blocked or resubmitted (at most T ). B shows
the current status of RB and PB in which p(i, j) means the jth
packet of fi. In this example, all the packets of f1 have been
in PB, but f2 and f3 each have one packet left in RB (i.e., p2,2
and p3,1). At this moment, f1 and f2’s timers are both expired.
In summary, only f1 is legitimate to be scheduled.
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PHV Buffer (PB)
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Figure 6: Scheduling dirty flows at rd_sched. (f3 in Block
Queue; f2 in Suspend Queue; f1 in Schedule Queue.)

Once a flow can be scheduled by rd_sched , the flow record
should be removed from dTable in wr_sched. To achieve
this, rd_sched sends a cancel_dirty signal to PW by setting
ctrl_tag to 0b01, the same as state writeback signal. Because
the cancel_dirty signal carries only a 64-bit index while PHV
has 4096 bits, multiple cancel_dirty signals can be merged
with their indices placed in different locations in the pay-
load in Fig. 5. Furthermore, cancel_dirty signals can also be
merged into writeback data, so they share the same ctrl_tag.
This mechanism resolved the potential conflict. Because the
control signals have priority in the ring node scheduler, they
are never delayed. Assume the pipeline has l stages and the
stateful function occupies m stages, the cancel_dirty signal
would traverse l �m+ 1 ring nodes to reach PW . A reason-
able design can guarantee the signal reach PW earlier than
any packet of the addressed flow1, to avoid the case that a
newly released packet hits the dTable in wr_sched again and
is wrongly resubmitted.

Packet Releasing. From the moment rd_sched learns a
flow changes its state, it needs at least T = c(m) + m + 2
clock cycles to ensure that the speculative packets of the
flow that read the stale state, if any, have all been received and
buffered in RB at PR, where m is the number of pipeline stages
1The cancel_dirty signal needs at most processor_num cycles to reach the
destination processor, where processor_num < 16 in general designs. The
number of cycles of a processor is greater than 20, and then the cancel_dirty
signal can arrive earlier than the released packets.
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between PR and PW (each ring node takes one clock cycle to
pass), c(m) is the pipeline processing latency on these stages,
and 2 accounts for the cycles for uploading and downloading
the PHV to and from the ring. This waiting time, T , must be
observed by each flow in dTable.

Instead of maintaining a timer for each flow in dTable,
we use a First-In-First-Out (FIFO) queue and two clocks to
achieve the same goal: the DECREASE clock (D.clk) keeps
the remaining waiting time for the first flow to be scheduled,
and the INCREASE clock (I.clk) keeps the elapsed time since
the arrival of the last packet from one of the flows in dTable.
The reason we need only two clocks is that the flows are
scheduled in the same order as they are registered in dTable.

Timer
Offset=T

Timer
Offset=T

Timer
Offset=T

Timer
Offset=� 

Timer
Offset=� 

Timer
Offset=T

flow 1

flow 2

Initial

Enqueue flow 1
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I.clk
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D.clk
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Set D.clk to the 
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Figure 7: Achieve per-flow timer with two timers.

We use an example in Fig. 7 to show how this works. When
the first packet of the first flow f1 arrives, the initial value of
I.clk, T , is copied to D.clk and f1’s timer offset field in dTable,
and then I.clk is reset to 0 (¨!≠); both clocks start to work.
When the first packet of flow f2 arrives at the D-th cycle, the
value of I.clk, D, is copied to f2’s timer offset (which means f2
can be scheduled D cycles after f1 is scheduled), and then I.clk
is reset to 0 (Æ!Ø). After T-D cycles, D.clk decrements to 0,
so f1 meets its scheduling condition (1). Now f2 becomes the
next flow to be considered (∞). Its timer offset, D, is copied
to D.clk (±). As a result, f2 will meet its scheduling condition
(1) after D cycles and its total waiting time is also T cycles.

During a race condition on the ring, a resubmitted packet
may be delayed by the ring node scheduler. Thus, a constant
value of T is no longer accurate. To address this problem, we
introduce a heartbeat signal, dst1, on the ring bus as shown
in Fig. 5. dst1 is a one-hot bitmap. Each PW sets the corre-
sponding bit for PR to one. At each cycle, if PW generates
another type of data, the heartbeat is piggybacked on it. If PW
has no other data to send to the ring and the ring is free, a
heartbeat-only data is generated by setting ctrl_tag to 0b11;
if the ring is not free (i.e., a data from an upstream node on
the ring is scheduled), the heartbeat signal is overloaded to
that data by setting the corresponding bit for PR in dst1 of
the data. Thus, for each cycle of delay a resubmitted packet

experiences, rd_sched will not receive the heartbeat for the
flow for one cycle, which causes both I.clk and D.clk to halt for
a cycle, so the scheduling time for the flow is compensated. A
ring node can combine non-conflicting signals (e.g., different
heartbeats or heartbeat with updated states) to use the ring
bus bandwidth more efficiently.

A and B of Fig. 6 show that in PB, the resubmitted pack-
ets and the newly arriving packets of a flow in dTable are
maintained in two linked lists (e.g., the resubmitted packet
p2,1 is in a linked list and the newly arriving packets p2,3 and
p2,4 are in another linked list. When the timer of a flow expires
and all the resubmitted packet of the flow are moved to PB,
the resubmitted packet list is prepended to the newly arriving
packet list, and the flow can be scheduled to release its packet
from the newly arriving packet list. C in Fig. 6 illustrates the
flow scheduling process. The Block FIFO queue stores the
flows in dTable which have not met the scheduling condition
(1) . The Suspend FIFO queue stores the flows which have
met condition (1) but not condition (2). A flow removed from
the Block queue may not enter the Suspend queue if its resub-
mitted packets are all moved to PB before its timer expires.
Such a flow or a flow removed from the Suspend queue has
met both conditions, so it is transferred to a circular Sched-
ule queue. Flows in the Schedule queue are scheduled in a
round-robin manner. When all the packets of a flow are sched-
uled, the flow is removed from the Schedule queue, and its
record is removed from dTable as well. Thus, the process of a
flow suffering speculation failure ("Block Queue - Suspend
Queue - Schedule Queue" in the read scheduler of Fig. 4) is
illustrated.

If a scheduled packet is resubmitted to PR again before all
the backlogged packets of the same flow are cleared, the flow
is removed from the Schedule queue and inserted to the back
of the Block queue. Its timer is restarted. The corresponding
flow entry in dTable is updated accordingly. Appendix B
illustrates that the probability of hash collisions in dTable is
so negligible that it can effectively be disregarded.

4.5 Multi-level Consistency
SwiSh [62] categorizes stateful functions by their consistency
needs: strict, weak, and bounded staleness. Applying strict
consistency universally may sacrifice performance unneces-
sarily. In RAPID, an FSM guides wr_sched to accommodate
these varied consistency levels.

For strict consistency, every packet hitting dTable in
wr_sched should be resubmitted. With weak consistency, state
changes trigger writebacks without dTable registration, avoid-
ing future resubmissions. This model works for scenarios
where the state can eventually converges even some packets
read stale states (e.g., a flow rate limiter).

Bounded staleness consistency tolerates stale state reads for
up to K packets. Once this limit is met, state synchronization
is mandatory before continuing. Fig. 8 presents the FSM. In
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the Run state, no flow exists in dTable of wr_sched. On a
state change, the FSM shifts to Expiring with a counter set
to K. Here, K packets can proceed without resubmission. At
counter zero, the FSM enters Expired, registering the flow in
dTable for strict synchronization. Only a cancel_dirty from
rd_sched can deregister the flow and return to the Run state.

Run

Expiring
(state) Expired

Write State/
Start counter (K) cancel_dirty

counter=0

Figure 8: Multi-consistency support.
Key applications for this model are packet scheduling and

sketch-based DDoS detection. Sketch-based DDoS detection
risks measurement inaccuracies. Using weak consistency can
delay state convergence, while strict consistency can burden
the pipeline. Bounded staleness offers a balance between
accuracy and efficiency with a configurable K threshold.

4.6 Handling High State Update Rate
Consider a flow with n back-to-back packets and a state update
latency of T cycles between PR and PW . RAPID struggles with
elevated state update rates, leading to more writebacks and
speculation failures. When the state update rate exceeds a =
2T�3
2T+n , RAPID starts to exhibit even worse performance than
the blocking scheme (Appendix C). Although this scenario is
highly unlikely, it can be handled by introducing an additional
field resubmit_cycle in dTable to downgrade the RAPID
scheme to the blocking scheme once a high state update rate
is observed on the per-flow basis.

Run Wait

Timeout

Write dTable

Timeout

PB not empty

Schedule Suspend

PB empty

PB not empty

Figure 9: FSM for the blocking mode in RAPID.

When the packets of a flow have not been fully sched-
uled to be reprocessed, a new state for this flow may be writ-
ten back, followed by some resubmitted packets again. In
this case, the flow resets its timer to T (re-enqueued into the
Block queue), and its resubmit_cycle increments by one.
When the resubmit_cycle exceeds a threshold, the blocking

scheme is applied to the flow. At the same time a cancel_dirty
signal is transmitted. The blocking scheme lasts until PB
of the flow is cleared. Consequently, the resubmit_cycle

serves as an indicator of the state writeback rate. PB drives
an FSM in the blocking mode. As depicted in the FSM in
Fig. 9, if packets of the flow are present in PB, the flow enters
a Suspend state, requiring the timer (no need for heartbeat)
to expire before a packet can be scheduled. Once the packet
is scheduled, if remaining packets of the flow still reside in
PB (PB non-empty), the flow re-enters the Suspend state; oth-
erwise, the flow transitions to the Wait state and is removed
from dTable when the timer expires.

5 Programming Language and Compiler

5.1 P4 Language Enhancement
P4 [22] only supports atomic stateful operations using regis-
ters in a single stage (i.e., the Banzai architecture). NPL [11]
does not support stateful functions at all. XL [55] requires
intricate design to extract usable state transitions [25]. After
evaluating the existing dataplane programming languages, we
take P416 as the baseline and enhance it to support general
stateful function programming on the RAPID architecture.

/* can be written by the data plane or the control plane; 
   can be compiled as registers or flow state tables */
muTable packet_filter {

keys = {
hdr.ipv4.src_addr;
hdr.ipv4.dst_addr;
hdr.ipv4.protocol;

}

 values = {
bit<2> state;

}

type = exact; // ternary, lpm, direct
consistency = STRICT; // WEAK, BS(K)
size = 4096;

}

/* read out the current state */
cur_state = packet_filter.read(hdr);
/* get new state with calculations */
new_state = cal_state(...);
/* write back the new state */
packet_filter.write(hdr, new_state);

Figure 10: P4 language enhancement.

We introduce muTable, akin to table of P4, but modifiable
by the dataplane, suitable for flow state tables. Unlike ta-
ble, muTable leverages various memory types (e.g., SRAM,
TCAM) for multi-stage functions or registers for single-stage
atomic stateful functions. As depicted in Fig.10, keys index
states, values store state data, type defines the match method
(i.e., exact, ternary, LPM, or direct), and consistency sets
consistency levels. muTable supports both read and write
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primitives, enabling customized stateful processing logic. The
compiler determines if a stateful function spans single or mul-
tiple stages based on complexity. A port_knocking example
using muTable is presented in Fig. 25 of Appendix H.

5.2 Data Renaming
If the stateful processing involves modifying some data (e.g.,
decrementing ipv4.ttl), packet resubmission may cause the
data to be modified more than once, leading to incorrect re-
sult. The compiler uses the “field renaming” technique to
solve the problem, which is similar to the “register renaming”
used for instruction-level parallelism in computer processor
architecture [43].

1st round 
processing
2nd round 
processing

stage1: A = C + D
stage2: D = G + H

stage1: A = C + D
stage2: D = G + H

stage1: A = C + D
stage2: D1 = G + H

A = C + D
D1 = G + H

result A = C + G + H A = C + D

Before Field Renaming After Field Renaming

stage1:
stage2:

Figure 11: Field Renaming.

Fig. 11 shows an example. In the first packet processing
round, D is used as an rvalue for calculating A before it is
updated. Without field renaming, if this packet is resubmitted
and reprocessed, D will use its new value to calculate A again.
Instead, for a “Write-after-Read” (RAW) data, the compiler
renames it to avoid such errors, and the new field D1 remains
to be used for processing beyond the stateful function.

6 Implementation

6.1 Hardware Prototypes
We build hardware prototypes on a Xilinx UltraScale+
XCVU13P-based programmable switch. XCVU13P has up
to 1.7M LUTs, 3.5M FFs, and 2.7K BRAMs. We implement
PISA [23], Banzai [51], FlowBlaze [42], and RAPID with
2,584, 2,292, 3,627, and 4,676 lines of Scala code, respec-
tively. For RAPID, 1,822 lines of code are dedicated to the
ring. The prototypes of PISA, Banzai, and RAPID contain
4 physical pipeline stages; the prototype of FlowBlaze has
only 3 stages due to its high resource consumption. All the
prototypes use a 512-byte PHV. Each prototype has 4 hash
modules, 4 parallel matching tables (FlowBlaze has one addi-
tional TCAM-based EFSM table), and a number of SRAMs
and ALUs. We set 4 queues for FlowBlaze with each having a
depth of 64. The RAPID ring bus is 4,114-bit wide (8-bit dst1,
8-bit dst2, 2-bit ctrl, and 4,096-bit payload for PHV or state
data). The configuration of the RAPID schedulers is shown
in Table 1. All prototypes run at 100 MHz clock frequency.
A stage processor of PISA, Banzai, FlowBlaze, and RAPID
takes 16, 16, 21, and 18 clock cycles, respectively.

Type Size
Resubmitted Packet Buffer (RB) 16

dTable 64
PHV Buffer (PB) 32

Block Queue 64
Suspend Queue 64
Schedule Queue 64

Ring Buffer from pipeline 8
Ring Buffer from ring bus 8

Table 1: Configuration of RAPID schedulers.

6.2 Software ASIC Emulator
We develop software emulators for RAPID [14] (2,557 lines)
and FlowBlaze (1,440 lines) using C++ on the Ubuntu 20.04
LTS server which can emulate the ASIC behavior. Users
can write stateful packet processing programs using the the
enhanced P4 language to test it on the emulator. The virtual
clock of the emulators is set to 1 GHz. Since FlowBlaze only
supports single-stage SRAM-based state updates, we test it
with a simple case, the elephant flow detector. The emulators
are configured to support 16x 100Gbps ports per pipeline.

6.3 Compiler and Controller
We develop a compiler (5,606 lines) in C++ to compile pro-
grams in the enhanced P4 language. The compiler generates a
JSON file that describes configurations of every stage proces-
sor which can be directly used by the software target. For the
hardware target, we further use Python to convert the JSON
file into a binary file which can be downloaded to the FPGA.
We also implement a controller (1,967 lines) in Python to
communicate with the pipeline at runtime.

6.4 Implemented Use Cases
We implement and verify the following three use cases in
both hardware and software. These use cases use 2, 3, and 4
stage processors, respectively.
• Port knocking stateful firewall. Port knocking [21] enables
a firewall to accept connection attempts on a sequence of
closed ports, and upon receiving the correct sequence, mod-
ifies rules to grant access. Using muTable in Proc1, packets
retrieve the current state. Proc2, integrating this state and the
port of the packet, updates the knocking state table in Proc1.
Packets matching the “pass” state are forwarded; others are
dropped.
• DDoS detection and mitigation. We implement a cookie-
based SYN flood detection and mitigation approach. Proc1
keeps an Access Control List (ACL) table for admission con-
trol, and Proc2 maintains a bloom filter to identify the first
packet of a new flow. In Proc3, for a new flow, the hash value
of the packet’s five-tuple is sent back to the sender as a cookie;
otherwise, the packet is dropped, and the five-tuple is written
back to Proc1’s ACL for blocking. For a packet of monitored
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TCP flow, if the bloom filter reports positive match and the
packet carries the correct cookie with the right ACK, its flow
will be added to Proc1’s ACL as an admitted flow.
• NAT with load balancing. We adopt the method from
SilkRoad [40]: at the load balancer, a packet looks up a Con-
nTable using the carried VIP. If found, the associated DIP is
retrieved and used for forwarding; otherwise, the VIP is used
to look up a VIPTable, selecting a DIP with the lowest load
from a list. The load is then updated, and the new {VIP: DIP}
mapping is added to the ConnTable. The ConnTable resides
in Proc1, with writebacks issued from Proc4.

7 Evaluation

• Methodology. We use Vivado Design Suite [17] to syn-
thesize the four prototypes (PISA, Banzai, FlowBlaze, and
RAPID), obtaining the FPGA resources usage. To evaluate the
throughput and latency performance, we feed three real traffic
traces (ISP DC, Equinix, and MAWI22) to the FPGA proto-
types. We feed three synthetic traces to the ASIC emulator to
test RAPID’s sensitivity to different factors.
• Testbed. The testbed comprises the switch prototype with
four 100Gbps ports, a server as the controller, and two servers
for traffic sending and receiving through two 100Gbps NICs.

7.1 FPGA Resource Consumption
Table 2 compares the FPGA resource consumption for a pro-
cessor of different architectures. RAPID consumes more re-
sources than PISA and Banzai, but less than FlowBlaze. Con-
sider RAPID’s capability, the overhead is well-justified.

Architecture LUT FF BRAM
PISA 13.91% 1.71% 14.08%

Banzai 15.77% 1.73% 14.08%
FlowBlaze 27.32% 2.48% 25.99%

RAPID 20.22% 2.35% 19.55%

Table 2: Resources for different architectures.

Table 3 breaks down the resource of the scheduler compo-
nents in a RAPID processor. As the three queues only use
pointers, they consume a few LUTs and FFs. The BRAMs
are mainly used for storing PHVs in RB and PB.

Component LUT FF BRAM
RB 9.273% 5.255% 9.324%

dTable 6.869% 4.476% 0
PB 3.104% 0.543% 18.649%

Block Queue 0.050% 0.063% 0
Suspend Queue 0.101% 0.034% 0
Schedule Queue 0.055% 0.034% 0

Ring Node 9.003% 10.667% 0
Sum 28.455% 21.073% 27.973%

Table 3: Resource breakdown of scheduler components.

We can feed the traces at 100Gbps rate to the RAPID
prototype running different use cases and find no packet drop.

7.2 ASIC Implementation Cost
We run Design Compiler [15] to synthesize the prototypes on
an open-source 45nm ASIC technology library [10], and show
the chip area and power consumption of single stage processor
in Table 4. The clock frequency of the RAPID prototype
reaches 1GHz. While FlowBlaze’s cost is significantly higher
than PISA, RAPID’s cost is only slightly higher.

Area (mm2) Power (mW )
PISA 94.33 65000

Banzai 95.17 66100
FlowBlaze 176.08 86900

RAPID 99.45 67500

Table 4: Area and power of different architectures.

Table 5 summarizes the cost breakdown of the scheduler
components in a RAPID processor. The area and power over-
head of the scheduler accounts for only 4.18% and 1.2% of
the entire processor, exhibiting a low implementation cost.

Area (mm2) cost Power (mW ) cost
RB 0.5263 0.5292% 108 0.1600%

dTable 0.0740 0.0744% 7.724 0.0114%
PB 2.4874 2.5009% 516 0.7644%

Block Queue 0.0074 0.0074% 1.56 0.0023%
Suspend Queue 0.0036 0.0036% 0.728 0.0011%
Schedule Queue 0.0036 0.0036% 0.729 0.0011%

Ring Node 1.0515 1.0573% 178 0.2637%
Total 4.1537 4.1764% 812.7 1.2041%

Table 5: Area and power overhead of scheduler components.

In both FPGA and ASIC, the hardware overhead (i.e.,
LUTs, FFs, ASIC area and power) to support stateful opera-
tions is moderate and constant. When there is no speculation
failure, the pipeline latency and throughput remain unaffected.
RAPID’s dTables and the three extra queues are functioning
in parallel with the main processing engine (MAUs), so the
scheduling cycles do not incur extra clock cycles.

7.3 Parameter Setting
It is important to set the right size for the key performance
and cost influencers (i.e., RB, PB, dTable, and Ring Node
Buffer). We study this with the ASIC emulator. Assuming
90% pipeline throughput (i.e., 10% free pipeline cycles), we
vary the number of stateful function stages and state update
rates (i.e., the proportion of packets that trigger state updates
to the total packets). We use three traces, ISP DC, Equinix,
and MAWI22, for the test, and replicate each trace multiple
times to get 1-minute worth of traffic. The results on Equinix
are shown in Fig. 12, and the other results can be found in Ap-
pendix D. In general, the required component sizes increase
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(a) RB. (b) PB.

(c) dTable. (d) Ring Node Buffer.

Figure 12: Scheduler parameters under CAIDA Equinix trace.

as the state update rate and stateful function stage count grow.
However, the sizes remain in an acceptable range. In real net-
work scenarios, the pipeline throughput, the state update rate,
and the stateful function stage are mostly at their low end of
the scope, implying our configuration in Table 1 is sufficient.

7.4 Influence of Stateful Function Stages
The length of a stateful function pipeline determines the state
update latency. We test RAPID and the blocking scheme with
different number of stateful function stages (2, 3 and 4) which
take 36, 54 and 72 clock cycles, respectively. The blocking
scheme uses 4 queues of size 32. We synthesize three traces
with packet lengths of 256 bytes, 384 bytes, and 512 bytes,
respectively. The characteristics of three traces are shown in
Table 6. We orchestrate the packet headers for each trace to
achieve a consistent state update rate of 30%.

Trace packet size spacing probability of two packets in a flow
< 36 cycles < 54 cycles < 72 cycles

Trace 1 256 B 31.42% 35.59% 39.33%
Trace 2 384 B 26.83% 31.42% 34.67%
Trace 3 512 B 21.65% 26.83% 31.42%

Table 6: Features of three synthetic traces.

We get the packet throughput and latency performance in
terms of the number of function stages under Trace 2 as shown
in Fig. 13 (other results are in Appendix E). As the number

of stages increases, both the blocking scheme and RAPID
exhibit a declining performance, but RAPID outperforms the
blocking scheme and maintains a stable low latency.

(a) Throughput. (b) Latency.

Figure 13: Performance with < 0.1% and 0 packet drop rate
on Trace 2.

7.5 Influence of State Update Rate
A high state update rate predictably leads to a poorer pipeline
throughput. To test how RAPID performs under different state
update rate, we run Trace 2 on three hypothetical stateful func-
tions with 2, 3, and 4 stages, and adjust the state update rate
to examine its impact on the system. The throughput with
no packet loss is derived. Fig. 14(a) shows that, as the state
update rate increases, RAPID’s throughput gradually declines,
but its performance remains better than the blocking scheme.
From Fig. 14(b) shows that RAPID’s packet processing la-
tency gradually rises with the increase of state update rate,
and approaches the latency of the blocking scheme. The rea-
son is that, when state update rate increases, packets may be
resubmitted more than one time, leading to longer latency.
Same conclusion can be drawn from results on Trace 1 and
Trace 3 in Appendix F.

(a) Throughput. (b) Latency.

Figure 14: Performance on different state update rates of
Trace 2.

7.6 Influence of Intra-flow Packet Gap
A larger intra-flow packet gap means that, for RAPID, it is less
likely for the packets to be resubmitted or blocked, and for the
blocking scheme, it is less likely for a packet to experience
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HOL blocking. A gap larger than the state update latency can
make both problems disappear. We devise experiments to val-
idate this. Based on the Trace 2, we generate three additional
traces (Table 7) with different intra-flow packet gap distribu-
tion. We set the state update rate to 30%. The result is shown

Trace packet size spacing probability of two packets in a flow
< 36 cycles < 54 cycles < 72 cycles

Trace 4 384 B 24.57% 26.83% 31.42%
Trace 5 384 B 21.65% 24.57% 28.62%
Trace 6 384 B 17.74% 21.65% 26.83%

Table 7: Features of three additional synthetic traces.
in Fig. 15. Fig. 15(a) demonstrates that as the packet gap
within a flow increases, the throughput of both RAPID and
the blocking scheme rises, which aligns with our hypothesis.
RAPID approaches full throughput progressively. Fig. 15(b)
confirms that the processing latency of the two approaches re-
mains stable, and RAPID’s performance gradually converges
to that of stateless processing.

(a) Throughput. (b) Latency.

Figure 15: Performance on different intra-flow packet gaps.

7.7 Influence of Consistency Level

(a) Throughput. (b) Latency.

Figure 16: Performance on different consistency levels.

Different consistency levels affect packet resubmission
rates and packet blocking. To compare RAPID’s performance
under different consistency levels, we test RAPID on a two-
stage stateful function (i.e., 36-cycle state update latency).
We run three traces with six different consistency level con-
figurations: STRICT, BS(1), BS(2), BS(3), BS(4), and WEAK.
The state update rate is fixed to 30%. As shown in Fig. 16, as

the consistency requirement becomes looser, the throughput
of RAPID keeps increasing until it reaches the full through-
put, and the latency keeps decreasing. Results on 54-cycle
(3-stage) and 72-cycle (4-stage) functions are shown in Ap-
pendix G, which lead to a similar conclusion.

8 Discussion

• Potential Scalability of the Ring: We investigate the appli-
cation of the ring within a single pipeline. A ring can also be
concurrently leveraged by multiple pipelines. For instance, if
one pipeline utilizes only 10% of the Ring’s bandwidth for
data transfer, it would be feasible for two or more pipelines to
share the ring. Similar with MP5 [49], this approach provides
a viable design for collaborative task execution across mul-
tiple pipelines. Moreover, if the necessity for "cancel_dirty"
communication between the Read and Write schedulers can
be eliminated, allowing for independent scheduling on both
sides, then the unidirectional ring could be evolved into a
unidirectional backward path.
• Priority of Resubmitted Packets: When handling spec-
ulation failures, we currently give priority to new packets.
We can also prioritize flows suffering speculation failures to
speed up their processing to align with user-specific needs.
This is reserved for future exploration.
• Potential Optimization of RTC: Compared to pipelines,
RTC offers enhanced flexibility in function support. Moreover,
RTC’s multi-threading can leverage speculative execution
too. Instead of stalling threads during state access conflicts,
packets are reprocessed if errors are detected.

9 Conclusion

RAPID makes it possible to support advanced stateful packet
processing functions on a pipeline-based programmable data-
plane. A side ring is used to support cross-stage state write-
back and speculative execution. The non-blocking speculative
execution reduces the packet buffer requirements necessary
for traditional stateful support, leading to diminished back-
pressure and fewer congestion in the network. The applica-
tion programming is enabled by a simple extension to the P4
language. When it comes to hardware, RAPID is not only
efficient but also excels in performance across real-world use
cases. As a result, tasks that traditionally require ASIC-CPU
collaboration can now be executed by RAPID solely, saving
the system cost and improving the system performance.
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# of flows, average # of pkts per flow, and conflict ratioTraces # of pkts (K) average pkt size (B) five-tuple avg. CR sIP-dIP avg. CR
CTU4 [6] 24392 93 1422109 17.2 68.81% 8655 2818.3 84.27%

MACCDC [8] 6598 142 73071 90.3 8.76% 9594 687.8 43.38%
Equinix [3] 31540 482 1085931 29 1.47% 870685 36.2 1.49%

CIC-IOT [4] 1836 484 78799 23.3 46.46% 3774 486.6 56.81%
MAWI22 [9] 121308 606 13607494 8.9 9.53% 9627481 12.6 11.18%

ISP DC 33514 642 1199269 27.9 11.16% 873011 38.4 20.79%
UNIV1 [16] 912 673 10945 83.4 16.66% 2719 335.8 17.98%
CTU2 [5] 685 750 24274 28.2 27.21% 2312 296.6 29.51%

UNIV2 [16] 11772 780 33987 346.4 23.27% 19006 619.4 23.30%
Simple Web [13] 2636 836 51194 51.5 26.08% 4917 536.2 27.34%

Table 8: Statistics of the packet traces.

A Trace Statistics

Table 8 lists the statistics of the 10 traffic traces. Specifically,
the ISP DC trace is collected from the data center of an ISP.

B Hash collision in dTable

dTable records the hash values of flows. In the case of hash
collision, a flow might be mistakenly blocked and its packets
resubmitted, but this will not cause catastrophic consequences.
The victim flow only experiences an increased latency.

Given that a flow is hashed to a M-bit hash value, the proba-
bility of hash collision among this flow and another incoming
flow is P = 1

2M . Assuming M=64, the collision probability is
5.42⇥10�20, which is low enough to make its impact negli-
gible to the overall performance.

C Writeback Rate Calculation

Assuming that within T clock cycles, a flow has n back-to-
back packets arriving, and the writeback rate is a. We investi-
gate the performance similarity point between the blocking
scheme and RAPID by considering the maximum scheduling
latency experienced by the last packet in both approaches. Set
the latency of the blocking scheme is tb(T,n,a) and RAPID
is tR(T,n,a).

Based on the properties of the Blocking scheme, it is evi-
dent that its performance remains stable across varying write-
back rates, i.e.,

tb(T,n,a) = (n�1)T (1)

Suppose a = 1
n , i.e., only one out of n packets updates states,

the latency of the last packet being scheduled is: the cycles it
will pass through (T ) and the cycles it waits to be scheduled
(n). So the time is

tR(T,n,
1
n
) = n+T (2)

When a > 1
n , we assume that the first packet updates states

and the later packets update state evenly. We can get the
latency in terms of a:

tR(T,n,a) =
i=1

Â
na
(

i
na

n+T ) = naT +
na+1

2
n (3)

Combining Eq. 1 and Eq. 3, we can get the a in which two
schemes perform similarly:

a =
2T �3
2T +n

(4)

When n = 60 and T = 60, packets will experience similar
latency for both RAPID and the blocking scheme if the write-
back rate is 65%.

D Parameter Setting

Fig. 17 and Fig. 18 show the scheduler parameters under ISP
DC trace and MAWI22 trace, respectively. Based on these
two traces, we can draw similar conclusions as in Sec. 7.3.
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(a) RB. (b) PB.

(c) dTable. (d) Ring Node Buffer.

Figure 17: Scheduler Parameters under ISP DC trace.

(a) RB. (b) PB.

(c) dTable. (d) Ring Node Buffer.

Figure 18: Scheduler Parameters under MAWI22 trace.

E Different used stages on Trace 1 and 3

The system throughput and latency performance in terms of
the number of function stages under Trace 1 and Trace 3 can
be seen in Fig. 19 and Fig. 20 respectively.

(a) Throughput. (b) Latency.

Figure 19: Throughput and latency with different consistency
levels under Trace 1.

(a) Throughput. (b) Latency.

Figure 20: Throughput and latency with different consistency
levels under Trace 3.

F Different State Update Rates on Trace 1 and
Trace 3

The system throughput and latency performance in terms of
different state update rates under Trace 1 and Trace 3 can be
seen in Fig. 21 and Fig. 22 respectively.

(a) Throughput. (b) Latency.

Figure 21: Performance on different state update rates of
Trace 1.
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(a) Throughput. (b) Latency.

Figure 22: Performance on different state update rates of
Trace 3.

G Influence of Consistency Level under 54-
cycle and 72-cycle

The system throughput and latency performance in terms
of different consistency levels under 54-cycle and 72-cycle
functions can be seen in Fig. 23 and Fig. 24.

(a) Throughput. (b) Latency.

Figure 23: Performance on different consistency level under
54-cycle functions.

(a) Throughput. (b) Latency.

Figure 24: Performance on different consistency level under
72-cycle functions.

H Simple Example with muTable

Fig. 25 shows a simple code example (port knocking [21])
written in the enhanced P4 language. The flow state table
port_knocking stores the current state. The state can be read
out with the stateful primitive read. Then with another state-
less flow table, the packet can get the next state of the flow
and write it back to the port_knocking state table.

/* define stateful table */
muTable port_knocking {

keys = {
hdr.ipv4.src_addr;
hdr.ipv4.dst_addr;

}

 values = {
bit<8> state;

}

type = exact;
consistency = STRICT;
size = 4096;

}

table port_FSM {
keys = {

meta.cur_state;
hdr.ipv4.dst_port;

};

actions = {
get_new_state; // modify meta.new_state

};
}

/* read out the cur_state */
meta.cur_state = port_knocking.read(hdr);
/* get new_state to look up table */
portFSM.apply();
/* write back the new_state */
port_knocking.write(hdr, meta.new_state);

Figure 25: A simple port knocking example with muTable.
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