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Abstract

Hardware-Aware Neural Architecture Search (NAS) has
demonstrated success in automating the design of affordable
deep neural networks (DNNs) for edge platforms by incor-
porating inference latency in the search process. However,
accurately and efficiently predicting DNN inference latency
on diverse edge platforms remains a significant challenge.
Current approaches require several days to construct new la-
tency predictors for each one platform, which is prohibitively
time-consuming and impractical.

In this paper, we propose LitePred, a lightweight approach
for accurately predicting DNN inference latency on new plat-
forms with minimal adaptation data by transferring exist-
ing predictors. LitePred builds on two key techniques: (i)
a Variational Autoencoder (VAE) data sampler to sample
high-quality training and adaptation data that conforms to the
model distributions in NAS search spaces, overcoming the
out-of-distribution challenge; and (ii) a latency distribution-
based similarity detection method to identify the most similar
pre-existing latency predictors for the new target platform,
reducing adaptation data required while achieving high pre-
diction accuracy. Extensive experiments on 85 edge platforms
and 6 NAS search spaces demonstrate the effectiveness of
our approach, achieving an average latency prediction ac-
curacy of 99.3% with less than an hour of adaptation cost.
Compared with SOTA platform-specific methods, LitePred
achieves up to 5.3% higher accuracy with a significant 50.6x
reduction in profiling cost. Code and predictors are available
at https://github.com/microsoft/Moonlit/tree/main/LitePred.

1 Introduction

Hardware-aware Neural Architecture Search (NAS) has
achieved remarkable success in automating the design of
hardware-friendly deep neural networks (DNNs) in many
tasks [8,9,22,36,51, 53,56,57]. This holds particular im-
portance for crafting models suited to resource-limited edge
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platforms, such as mobile phones. However, to design low-
latency models for diverse edge platforms, it remains of sig-
nificant challenge to estimate accurately the inference latency
of numerous models, which depends on multiple factors such
as hardware, inference frameworks, and data precision [52].
Direct on-device measurement is expensive and impractical
due to the very large search space of possible models. Conse-
quently, many works [6,7,9, 18,31,54] have been proposed
to predict the inference latency based on the given model
architecture. However, these methods face two limitations.
First, they typically rely on random sampling and require a
significant amount of training data to achieve accurate predic-
tions. This process is time-consuming, requiring several days
of data collection for a single platform [18,54]. Second, exist-
ing approaches focus on platform-specific prediction without
considering the latency change due to various dynamics such
as new hardware, various inference frameworks or new ver-
sions, and different data precision. We take nn-Meter [54], a
cutting-edge approach, as an example. By developing latency
predictors for the Xiaomil2 CPU platform using Onnxrun-
time (ORT) [35], it achieves an impressive 99.8% accuracy on
the MobileNetV3 search space [8,22]. However, the predictor
drops to 0 accuracy when the hardware is switched to a Xi-
aomill CPU. Thus, these approaches require rebuilding pre-
dictors for every new platform, which is prohibitively expen-
sive and limits the applicability of hardware-aware NAS. This
is especially challenging given the diverse edge platforms,
which include a large number of mobile devices (e.g., 8318
heterogeneous smartphones [17]) and various inference frame-
works (e.g., TFLite [20], ORT, OpenVINO [25], NCNN [60]).
Although a few platform-agnostic prediction works [30,
33] have attempted to address the high cost, they encounter
various limitations. HELP [30] trains a latency predictor with
meta learning [29,47], but it conducts model-level prediction,
which requires expensive redesigning and retraining of the
meta predictor for new NAS search spaces. OneProxy [33]
trains a latency monotonicity model to predict model latency
rankings on different platforms. However, it only predicts
latency rankings on new platforms, rather than the actual
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values, which is often mandatory in practical deployments.
In this work, we propose LitePred, a lightweight approach
for accurately predicting inference latency in hardware-aware
NAS that eliminates the expensive rebuilding process required
for new platforms. To handle the diverse model graphs in
different NAS search spaces, LitePred performs kernel-level
prediction and computes the model latency as the sum of the
predicted latencies of all kernels *. The key idea of LitePred is
to identify the most similar pre-existing latency predictors for
each kernel on new platform, and then finetune them with just
a few adaptation samples to achieve high prediction accuracy.
This makes LitePred a cost-effective solution for predicting
latency, eliminating the bottleneck in hardware-aware NAS.
At the core of LitePred lies the principle that knowledge
from a pre-existing latency predictor for one platform can be
transferred to new platforms that share similarities. This is
based on the fact that latency depends on key factors and their
relationships, which can be learned by an accurate predictor.
When a new platform shares similarities with a previous one,
we can transfer the existing knowledge and adapt the predic-
tor to capture new dynamics. For example, when using the
same TFLite version 2.1, we can transfer a latency predictor
trained on a Xiaomill CPU to a Pixel 6 CPU. By reusing
the knowledge learned for TFLite 2.1, we only need a few
adaptation data to learn behaviors on the Pixel 6 CPU.
LitePred maintains a knowledge pool of existing latency
predictors, each being a 16-layer Multilayer Perceptron (MLP)
network. Initially, it constructs base predictors for warmup
platforms and stores them in the pool. When targeting a new
platform, LitePred detects its kernels and identifies the most
similar predictor for each kernel from the pool. These predic-
tors are then finetuned with a small amount of adaptation data
from the new platform to achieve accurate predictions.
LitePred faces two technical challenges. (1) First, construct-
ing initial latency predictors and finetuning existing predictors
require effective data collection. However, latency-dominant
kernels, such as Conv and DWConv kernels, exhibit a multi-
dimensional joint distribution in NAS search spaces, with
dimensions that are highly correlated. This makes random
and adaptive data sampling methods [54] ineffective due to
the out-of-distribution problem, resulting in a large amount
of useless training data and low accuracy. Direct sampling
from search spaces can cause data leakage and limit the gen-
eralization ability in new NAS search spaces. (2) Second,
the similarity between existing predictors and new platforms
greatly affects the number of adaptation samples and the final
prediction accuracy. However, the high diversity between dif-
ferent edge platforms, many of which are black boxes, poses
a challenge in effectively detecting the most similar predictor.

VAE data sampler. To address the first challenge, we lever-
age the concept of Variational AutoEncoder (VAE) [27] and

A kernel represents an execution unit, it may be either a single primitive
operator or a fusion of multiple fused operators, similar to nn-Meter [54].

introduce the VAE data sampler. It consists of an encoder-
decoder network, where the encoder compresses the multi-
dimensional joint distribution in the search spaces into a latent
space with a multivariate Gaussian distribution [19]. The de-
coder then reconstructs the Gaussian distribution back into
the original distribution. By sampling from this distribution
and decoding the data using the decoder, we can generate new
training data that conforms to the original multi-dimensional
distribution, addressing the out-of-distribution problem while
preserving generalizability in new model search spaces.
Similar predictor detection. To identify the most similar pre-
existing latency predictors for a target platform, we propose a
latency distribution-based similarity detection method. The
key idea is to compare the real latency distribution on the
target platform with the predicted latency distributions by pre-
existing latency predictors. For each kernel, we create a small
representative set reflecting platform-specific optimizations.
Then, we compute the distribution similarity by calculating
the Kullback-Leibler divergence [13] between the real and
predicted latencies for each latency predictor in the knowledge
pool. The predictor with the highest similarity is selected.

We extensively evaluate LitePred on 85 edge platforms,
including 10 hardware, 10 CPU frequencies, 5 commonly
used edge inference frameworks, and 2 data precisions (FP32
and INTS). Before LitePred, platform-specific approaches
take several days of data collection for a single platform,
limiting evaluations to only a few platforms. To the best of
our knowledge, we are the first to evaluate on such a wide
range of platforms, with requiring ~1 hour of measurements
on each platform.

We summarize our key contributions as follows:

* We propose LitePred, the first to transfer pre-existing la-
tency predictors and achieve accurate latency prediction on
new edge platforms with a profiling cost of less than 1 hour.

* We introduce two key techniques: a VAE data sampler
to collect effective multi-dimensional data and a latency-
distribution similarity detector that identifies the most simi-
lar pre-existing latency predictors for black-box platforms.

» Extensive experiments on various platforms and 6 NAS
search spaces demonstrate LitePred’s effectiveness, achiev-
ing 99.3% accuracy and outperforming state-of-the-art la-
tency prediction baselines. LitePred significantly improves
accuracy on new edge platforms compared to platform-
agnostic baselines, with up to a 77.5% improvement, and
achieves up to +5.3% higher accuracy against platform-
specific baselines while reducing profiling cost by 50.6x.

* By integrating LitePred with NAS, we discover better mod-
els with superior accuracy and lower latency than Mo-
bileNets. Our models surpass MobileNetV2, achieving an
impressive up to 4.4% higher accuracy on ImageNet.
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(a) Same device equipped with various inference frameworks

Predicted Platform | New Platforms

Xiaomill TFLite 2.1 TFLite 2.7 ORT NCNN  Mindspore
289.4ms 271.8ms 451.8ms 165.2ms  209.2ms

(b) Different devices under the same inference framework

Xiaomil1CPU Xiaomil 1IGPU Xiaomil2CPU Pixel5CPU PixelSCPU*

TFLite2.1

289.4ms 36.3ms 244 4ms 300.Ims  568.6ms
(c) Different data precision under the same platform
Xiaomil 1 TFLite 2.1 TFLite 2.7
289.4ms 75.4 ms 271.8ms 77.8ms

Table 1: The vastly different inference latency of ResNet50
on diverse platforms. *: we set a lower CPU frequency.

2 Background and Motivations
2.1 Factors that impact the latency

To investigate factors impacting model latency on diverse
edge platforms, we start by conducting measurements. We
monitor different platforms, varying devices, CPU frequency,
inference frameworks, and data precision. Our sample model
is ResNet50, and we deploy it on each platform to measure
the inference latency. The results in Table 1 show that model
latency is heavily dependent on the following factors:
Devices. It has been widely observed that the same model can
exhibit varying inference latencies on different devices. As
shown in Table 1(b), ResNet50 runs 8.0x faster on a GPU
than a CPU on the Xiaomi 11. Surprisingly, even among
mobile phones with ARM CPUs, latency differences for the
same model can exceed 10%.
Inference frameworks: The effectiveness of framework op-
timizations and how well they align with the underlying hard-
ware can significantly impact the overall latency. As shown
in Table 1(a), on Xiaomil1 CPU, deploying ResNet50 with
NCNN yields a 1.7x, 1.6, 2.7x and 1.3x faster speed than
TFLite 2.1, TFLite 2.7, ORT and Mindspore Lite [24], respec-
tively. Notably, even using the same TFLite framework, dif-
ferent versions can introduce significant latency differences.
CPU frequency. In addition to the device type and inference
frameworks, CPU frequency has a significant impact on in-
ference latency, as shown in Table 1(b). Our experiments on
the Pixel5 demonstrates that even minor changes in CPU fre-
quency (2.2 GHz to 1.9 GHz) can substantially affect latency.
Data precision. Finally, edge platforms support different data
precisions, which lead to different memory and computation
costs, thereby affecting inference latency. Our experiments
focus on the widely supported FP32 and INT8, as shown in
Table 1(c). When we switch the data precision of ResNet50
from FP32 to INTS, we observe a 3.8 x and 3.5 x reduction
in latency in TFLite 2.1 and TFLite 2.7, respectively.

In summary, these results indicate that any alteration in the
device, framework, CPU frequency, or data precision within
a platform can significantly affect model inference latency.

2.2 Challenges to platform-specific prediction

However, these findings pose a significant challenge to current
platform-specific latency prediction approaches [6,7, 18,31,
32,54]. Trained predictors cannot be directly applied to new

Xiaomil2 CPU, ORT | Xiaomill CPU, ORT | Xiaomil2 CPU, TFLite 2.1
Accuracy RMSE  [Accuracy RMSE  [Accuracy RMSE

99.84% 122ms | 0% 576ms | 0% 220.6 ms
Table 2: Directly apply nn-Meter’s predictors on new platform
results in a poor prediction accuracy of 0%.
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Figure 1: (a) Under the same TFLite 2.1, mobile ARM CPUs
exhibit a similar staircase latency pattern; (b) On Xiaomill,
various frameworks exhibit similar latency patterns. Config:

HW=56, Stride S=1, Input channel C;,=16.

platforms, requiring a costly rebuilding process for adaptation.
Poor prediction accuracy on new platforms. nn-Meter [54]
leads in device-specific latency prediction. By building pre-
dictors with 42k training data on Xiaomil2 CPU with ORT,
it achieves an impressive 99.8% accuracy in predicting Mo-
bileNetV3 search space [8]. However, such highly accurate
predictors perform poorly on new platforms. Table 2 shows
a significant drop in accuracy to O when transitioning to Xi-
aomill CPU or switching to TFLite 2.1 framework.

The reason is that the objective of device-specific latency
prediction is to minimize the regression errors between the
predicted latency, ¥, and the actual latency, y. As a result,
when there are significant changes in the actual latency, y, on
a new platform, these device-specific predictors experience a
large regression error and become unreliable.

Expensive rebuilding cost. The accuracy drop to 0 mandates
an expensive rebuild of the platform-specific latency predic-
tion method, demanding substantial training data collection
on the new platform. Unfortunately, this data collection pro-
cess can be extremely time-consuming, taking several days to
complete for a single platform. For instance, nn-Meter usually
collects around 42k kernel data points, requiring 2.5 days on a
Google Pixel 4 CPU. Such high cost makes platform-specific
approaches unfeasible and unscalable for handling the vast
number of edge devices and various inference frameworks.

2.3 Opportunities

Observations and insights. Although numerous factors can
impact model latency, we observe that similar latency behav-
ior patterns persist across diverse platforms. This is primarily
because many inference frameworks share a common goal of
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Figure 2: The overview of LitePred. (1) LitePred starts with building accurate base predictors for warmup platforms and stores
them in a knowledge pool. (2) For a new platform, we match the most similar latency predictors for each kernel from knowledge
pool through similarity detection. (3) We adapt identified latency predictors with a few samples from the new platform.

maximizing the utilization of underlying device resources to
minimize DNN inference latency. Consequently, some critical
optimization techniques are commonly applied across these
frameworks. An example is operator fusion, which combines
multiple operators into a single one without storing intermedi-
ate results in memory. Moreover, many frameworks leverage
Neon optimizations [3] specifically designed for ARM CPUs.
TFLite and Mindspore employ CPU kernels optimized for the
ARM Neon instruction set, while NCNN goes a step further
with assembly-level optimization for ARM Neon.

To showcase this, we conduct two experiments. In the first
experiment, we keep the inference framework fixed at TFLite
2.1 and measure the latency of Conv 3x3 on various mobile
phones. As shown in Fig. 1(a), despite significant absolute la-
tency differences among various mobile CPUs, they all exhibit
the same staircase latency pattern as output channels increases.
In the second experiment, we explore whether similar patterns
exist between various inference frameworks. Fig. 1(b) show
that TFLite 2.1, TFLite 2.7 and Mindspore Lite all exhibit a
very similar staircase latency pattern on CPU, while NCNN
CPU and NCNN GPU display a different step pattern.

We thus reveal two key observations: (i): mobile hardware
of the same type exhibit similar latency patterns; (ii) despite
varying optimizations and implementations, there exist infer-
ence frameworks display similar latency patterns.
Opportunities. These observations motivate us to develop
platform-transferable latency predictors that can eliminate the
need for a costly rebuilding process when introducing new
devices or frameworks in the target platform. Our insight is to
train latency predictors to well learn the latency patterns for
a specific platform and then transferring the shared common
knowledge to a new platform. By finetuning the latency pre-
dictor with a few training samples to adapt to any new factors
in the platform, we can achieve high prediction accuracy.

3 System Design

Overview. The observations in Section § 2 motivate LitePred,
a lightweight approach for predicting the latency of arbitrary
DNN models, through transferring pre-existing latency pre-
dictors with minimal adaptation cost across diverse edge plat-
forms. Fig. 2 illustrates the system overview.

To start, we select a few edge platforms (e.g., 5) as warmup
ones and build a set of precise kernel-level latency predic-
tors from scratch (§ 4). Utilizing a VAE data sampler for
high-quality training data collection, these predictors learn
accurate latency patterns for each warmup platform and are
stored in a "knowledge pool". When targeting a new platform,
we perform kernel detection [54] to identify all possible ker-
nels. Then, we identify the most similar latency predictor for
each kernel type from the knowledge pool and finetune them
swiftly using VAE data sampler with just a few adaptation
data (§ 5). We use these finetuned latency predictors to predict
kernel latencies, and sum them up as the final model latency.
Design choice. Our ultimate objective is to effectively serve
hardware-aware NAS on a wide range of diverse edge plat-
forms with LitePred. Specifically, LitePred aims to accurately
predict the inference latency of any DNN models on the target
platform within NAS search spaces. Guided by this goal, we
design the system based on the following principles.

e LitePred predicts latencies for DNN models in NAS search
spaces. In theory, DNN models could be arbitrary, resulting in
a vast number of possibilities that complicate latency predic-
tion. Yet, many models are inferior in accuracy and therefore
disregarded. In our work, we focus on top-tier model search
spaces in NAS, crafted by Al experts and known for their
success in finding accurate models. We collect 5 CNN NAS
search spaces and 1 vision transformer NAS search space for
our final evaluation of latency prediction. These search spaces
include a vast number of 10?° high-quality models.

e The accuracy of initial base latency predictors is crucial
for successful transfer across devices. Our approach starts by
training dedicated, accurate latency predictors for warmup
platforms, which learn the latency patterns resulting from
various inference optimizations. These predictors serve as
a source of knowledge for transferring to new platforms. If
the base predictor fails to achieve high accuracy, transferred
predictors will have inferior performance. For example, a
more accurate predictor (90% base accuracy) outperforms an
inferior one (67.1% base accuracy) with 1.6 less adaptation
data to achieve the same finetuned accuracy.

e LitePred detects the most similar pre-existing latency pre-
dictors. Instead of randomly selecting a predictor from the
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knowledge pool, LitePred uses a similarity-based approach to
identify the most similar predictor for a new platform. This
allows for the reuse of learned knowledge and leads to re-
duced adaptation data samples and lower measurement costs.
Intuitively, the most similar predictor needs the least amount
of adaptation data and delivers the best prediction accuracy.
o We predict latency at the kernel-level to simplify predic-
tors transfer to new platforms. While HELP [30] and One-
Proxy [33] use model graphs to predict latency, LitePred takes
a kernel-level latency approach. We divide a model into ker-
nels and sum up their predicted latencies as the model latency,
since kernels are sequentially executed on edge platforms.
This is advantageous as kernels are the basic scheduling units
in inference frameworks, covering framework optimizations
(e.g., operator fusion) and specific kernel algorithms (e.g.,
Winograd convolution [28]). Latency prediction at the ker-
nel level simplifies cross-platform predictor detection and
requires less adaptation data than model-level prediction.
Technical challenges. LitePred faces two major technical
challenges: (i) Given the exponentially large NAS search
spaces, how to efficiently collect high-quality data for training
base predictors and finetuning pre-existing predictors? (ii)
How to find most similar predictors and adapt them on new
platforms with minimal profiling costs?

4 Build Accurate Base Latency Predictors

In this section, we introduce our approach for training base
latency predictors on warmup platforms and propose VAE
data sampler to efficiently collect high-quality training data.

4.1 NAS search spaces and the challenges

We begin by studying model distributions in NAS search
spaces. Then, we discuss the challenges in data collection.

NAS search space collection. We collect 5 widely-used CNN
and 1 vision transformer NAS search space, including OFA-
MobileNetV3 [22], ProxylessNAS [9], OFA-ResNet [8], Big-
NAS [53], FBNetV3 [14] and AutoFormer [10]. These search
spaces are of high quality (i.e., models have the potential for
high accuracy) and specifically tailored to edge-regime DNNs.
In total, the 6 search spaces contain an impressive of 102
different models, representing a vast prediction scope.
Multi-dimensional distribution of kernel configurations.
As elaborated in Section § 3, LitePred builds latency predic-
tors at kernel level. To construct these kernel latency pre-
dictors, we need to collect a large amount of training data
consisting of configuration and latency pairs for each ker-
nel type. However, this presents a practical challenge due to
the vast configuration space of common CNN model kernels,
such as Conv+bn+relu. This kernel has five primary configu-
ration dimensions (input height and width HW, kernel size K,
strides S, input channels C;,, and output channels C,y;), re-
sulting in a large number of possible configurations. Profiling
on-device latency for every possible configuration on every
target platform can be prohibitively expensive.
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HW . (CD): The kernel size KS and Cj;,, of DWConv also ex-
hibit different distributions under different HW. Larger circle
size indicates that the configurations have larger frequency.

Fortunately, we observe that each kernel configuration dis-
plays a unique and smaller multi-dimensional joint distribu-
tion in NAS search space. To illustrate this, we collect all the
configurations (HW, K, S, Cin,Coy) for Conv and DWConv
kernels from 5 CNN search spaces. As shown in Fig. 3(AB),
the values of C;,, and C,,;; of Conv kernels under different HW
display distinct distributions. Fig. 3(CD) demonstrates that
kernel size KS also has a different distribution under varying
channel numbers C;, and input size HW. This allows us to
gather training data conforming to the distribution, rather
than collecting data for all possible configurations.
Challenges in collecting high-quality training data.
However, gathering training data aligned with the multi-
dimensional distribution poses a challenge. Random sampling
can result in the collection of irrelevant data and lower ac-
curacy. nn-Meter introduces an adaptive data sampler that
constructs a probability distribution per dimension and per-
forms independent sampling. However, since the dimensions
are highly correlated (Fig. 3), independent sampling can still
trigger out-of-distribution issues. While uniform sampling
from search spaces resolves this, it introduces data leakage
problems by revealing evaluation data during training, lim-
iting the generalizability to new search spaces. Therefore,
we call for a new sampling approach. In next section, we
introduce VAE data sampler to address all these challenges.

4.2 Efficient VAE data sampler

To collect high-quality training and adaptation data, we di-
vide the process into two specific tasks: (i) learning the multi-
dimensional joint distribution of different kernels, and (ii)
generating new data based on the distribution. In this section,
we take inspiration from the concept of Variational Autoen-
coders (VAE) [27] and propose a VAE data sampler.
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VAEs are a type of generative neural network, originally
popularized for their applications in image and text genera-
tion tasks [40,41,43]. They learn to represent complex data
distributions by encoding input data into a lower-dimensional
latent space and then decoding it back to the original space.
VAEs comprise two primary components: an encoder network
that maps input data to the latent space, and a decoder network
that reconstructs the input data from this latent space.

Inspired by the encoding and decoding process of VAEs,
we propose training an encoder-decoder VAE model to learn
the multi-dimensional distribution for each kernel. Then, we
utilize the trained decoder as our data sampler, generating
new samples that adhere to each kernel’s distribution within
the NAS search space. Next, we will discuss the application
of VAEs for sampling data to train kernel latency predictors.

VAE model design. Fig. 4 illustrates the design of our VAE
model, which consists of a 5-layer Linear encoder and a 5-
layer Linear decoder with a hidden dimension of 256. The
latent space dimension size is empirically set to 128. For each
kernel type (e.g., Conv+bn+relu), we carefully sample sev-
eral configurations as input x, representing its distribution in
search spaces. The encoder maps input x to the latent space z,
which is assumed to follow a multivariate Gaussian distribu-
tion [19]. The decoder then maps from the latent space back
to the input space, generating data x” that adhere to the same
distribution as the original input x. Note that x and x’ follow
the same distribution, but with minimal values overlap.

Input data x. To train the VAE model, it is crucial to collect
representative configurations from search spaces, which char-
acterizes the distribution for each kernel and acts as the target
distribution for the input data x, which the VAE aims to learn.

However, collecting such data is non-trivial, as many
latency-dominated configurations have low frequencies in
NAS search spaces. For instance, Conv and DWConv kernels’
latency is significantly larger in the first 3 layers, contributing
up to 44% of model latency. Accurate prediction of these con-
figurations is crucial for precise latency prediction. However,
they represent only 1.52% in NAS search spaces, with most
configurations in the middle layers. Naive uniform sampling
can result in the omission of latency-dominating data.

We tackle this challenge by performing data normalization
on latency-dominated large kernels. We assign a larger weight
to Conv and DWConv related kernels. Also, since the number
of kernel configurations differs for each search space, we
collect the x proportionally based on their relative quantities.
Training the VAE model. After collecting the representative

distribution x for each kernel type, the next step is to train the
VAE model that learns the multi-dimensional distribution for
each kernel and generates new configurations x’ based on it.
The training objective aims to minimize the distance between
the decoder output x’ and the encoder input x.

We follow the original VAE work [27] and use two
loss functions: a Mean Squared Error (MSE) reconstruction
loss [2] and a Kullback-Leibler (KL) divergence [1]. The re-
construction loss measures the difference between the decoder
output x’ and the original input data x. The KL divergence
measures the difference between the encoder output distribu-
tion in the latent space and the standard normal distribution.
We train the VAE model to minimize the total loss function.
After the training is done, the decoder is able to map the latent
space z back to the original kernel configuration distribution.
Generating kernel configuration data via the decoder.
Once the VAE is trained, we can employ the decoder to gen-
erate new kernel configuration data x’ that closely aligns with
the distribution x in NAS search spaces. As illustrated in
Fig. 4, to generate N configuration data for Conv+bn+relu
kernel, we first sample N vectors from the latent space, which
follows a multivariate Gaussian distribution. We then pass
these N vectors through the decoder, resulting in the gener-
ation of N new configurations for Conv+bn+relu. Note that
the original decoded configuration data x’ are continuous val-
ues. We apply a straightforward round-to-nearest strategy,
mapping continuous values to the closest valid discrete value.

4.3 Build transferable base latency predictors

The above VAE data sampler efficiently samples high-quality
training data for each kernel. This section outlines designing
latency predictor models that accurately predict latency on
warmup platforms using the collected data. Moreover, these
predictors are designed for easy transfer to new platforms.

Conventional platform-specific prediction methods [6, 7,
11,54] typically rely on decision-tree-based machine learning
regressors to create latency predictors. For example, models
like RandomForest and XGBoost regression are often used,
which fit the training data by minimizing the difference be-
tween actual and predicted latency values. However, these
decision-tree-based regressors require a complete retraining
process, making it impossible to reuse fitted predictors for
transferring to new platforms.

To achieve accurate and transferable latency prediction, we
introduce a DNN model. DNN models have demonstrated
strong performance in transfer learning tasks [39, 59]. Specif-
ically, our latency model is a 16-layer Multilayer Perceptron
(MLP) network, a small model with ~1 million parameters.

We now describe the training process. For each kernel,
we measure the latency of VAE sampled kernel configura-
tions on warmup platforms. The prediction features are kernel
configurations, FLOPs, and parameter size, while the corre-
sponding inference latency is the label. Our training objective
is to minimize the Mean Absolute Percentage Error (MAPE)

1468 21st USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



loss between the predicted and actual latency values. We use
MAPE loss because we follow previous work [18, 54], which
uses +10% accuracy as the evaluation metric. This metric
calculates the percentage of kernels with predicted latency
within +10% error. Minimizing MAPE loss aligns with our
goal of maximizing +10% accuracy.

LitePred trains base predictors for five randomly selected
warmup platforms listed in Table 3 and stores them in the
knowledge pool, as illustrated in Fig. 2. In the following sec-
tion, we will describe our method for reusing and transferring
these existing predictors to new platforms.

5 Transfer Predictors to New Platforms

For a new edge platform, LitePred addresses the challenge
of identifying the most similar kernel predictors from the
knowledge pool. It then transfers these pre-existing predictors
to the new platform using minimal adaptation data.

5.1 Similar predictor detection for each kernel

Identifying the most similar latency predictor for each ker-
nel on new platforms is challenging as most edge platforms
are black boxes. OneProxy [33] suggests using Spearman’s
Rank Correlation Coefficient (SRCC) to assess the statistical
dependence between latency rankings of models. However,
this method has limitations. First, the SRCC is based on the
total model latency, which might not accurately identify the
most similar platform. In contrast, our experiments shows
that the most similar platform predictor varies by the kernel
type. Second, it depends on random model sampling to evalu-
ate platform similarity, which is typically sparse and fails to
reflect specialized optimizations on the target platform.
Overview of our approach. In our work, we introduce a
lightweight latency-distribution based similarity detection ap-
proach. Instead of focusing on the similarity of the entire
model, we detect similarity at the kernel level since on-device
optimizations are usually implemented at this level. A pre-
existing kernel latency predictor is considered similar for
the target platform if its predicted latency displays a similar
distribution to the real latency. To achieve this, we design a
small set of representative kernel configurations that capture
both kernel distribution and platform-specific optimizations,
rather than randomly sampling or relying solely on the VAE
data sampler. This enables us to identify the most similar la-
tency predictors more effectively while keeping the approach
lightweight.

Fig. 5 illustrates the overall process. We design a small
set of representative configurations for each kernel, and mea-
sure the actual latency of under these configurations on the
platform, denoted as Y;. For each latency predictor in the
knowledge pool, we predict the latency of these configura-
tions as Y,. We then calculate the similarity score using KL
divergence between the actual latency Y, and predicted latency
Y,,. Finally, we return the predictor with lowest KL divergence
(i.e., the highest similarity score).

Latency predictor
knowledge pool
®

Predicted

Representative
configs
@ latency

Measured latency
)

New platform
Figure 5: Our proposed similarity detection to identify the
most similar predictor for each kernel type on new platforms.

Return predictor with
minimal KL metric

Representative data for computing similarity. The effec-
tiveness and cost of our similarity detection technique heavily
rely on the quality of representative data. We now introduce
how we design it for computing predictor similarity between
diverse platforms. We consider two types of kernel configura-
tions: (i) configurations in the search spaces that reflect the
underlying distribution; and (ii) specifically designed configu-
rations that capture the latency patterns on the target platform.
Type (i) data collection employs our VAE data sampler. To
collect type (ii) data that reflects specific on-device optimiza-
tions, we adopt a simple but effective fine-grained approach.
This is inspired by Fig. 1, where it reveals that device-specific
staircase latency patterns necessitate dense profiling to un-
cover. In contrast, VAE and random samplers exhibit sparse
coverage, which can distort the profiled latency patterns.
Specifically, we select an initial configuration from search
spaces per kernel. We fix all dimensions except one, and per-
form fine-grained sampling on that dimension. We sample 16
continuous points in the channel number dimension and enu-
merate {1, 3, 5, 7} in the kernel size dimension. For example,
for Conv+bn+relu kernel with the configuration (56, 3, 2, 16,
16), we fix the HW, K, S and C;, dimensions, and generate
16 continuous points (e.g., 16 to 32) in the output channel
dimension. Then, we fix the HW, S, C;,, and C,,; dimensions,
and enumerate {1, 3, 5, 7} in the kernel size dimension.
Similarity score. To compute the similarity of latency distri-
butions between each pre-existing predictor and a target plat-
form, we use the Kullback-Leibler (KL) divergence, a widely
used statistical metric for comparing probability distributions.
First, we obtain the real kernel latency for representative con-
figurations as Y;.. Next, for each pre-existing predictor i that
is trained or finetuned for a different platform, we obtain its
predicted latencies Y,ﬁ under the representative configurations.
Finally, we compute the KL divergence between the prob-
ability distributions P and Q that correspond to Yl’; and Y,
respectively. The KL divergence is defined as follows:

P )
Dki(PllQ)= X Py,)log 2
.Vreyr-,)’[leyp

For each kernel, the predictor with the lowest KL diver-
gence is chosen for adaptation to the new target platform.
Note that the cost of our similarity detection method comes
from the profiling overhead of the representative configura-
tions, which typically takes less than 10 minutes.
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5.2 New platform adaptation

After identifying the most similar latency predictors for all
kernels, we introduce the method for adapting these predictors
to the new platform through a finetuning process.

Our method, illustrated in Fig. 2, begins by sampling adap-
tation configurations on the target platform using a VAE data
sampler and measuring their latencies. We then finetune the
identified predictors using the sampled data, updating their
weights to improve accuracy on the new platform.

Increasing adaptation data typically improves prediction
accuracy but raises profiling costs. Our experimental results
indicate that a small number of samples (less than 500) can
achieve high accuracy when finetuning on a new platform.
This is because we identified very similar latency predictors,
which greatly reduces the required amount of adaptation data.
As a result, our approach is significantly more cost-effective
than traditional platform-specific prediction methods.

6 Implementation

Training the VAE. For large kernels such as Conv+bn+relu
and DWConv+bn+relu, we collect 2000 configurations to
train the VAE model as described in Sec.§ 4.2. For smaller ker-
nels such as Squeeze&Excitation (SE) [23] and bn+relu, we
collect 500 configurations. Our VAE model is implemented
based on the Pytorch implementation [44]. We train the model
for 2k epochs. During each training step, we randomly sample
a batch of 16 configurations based on their frequency. We use
the Adam optimizer [26] with a learning rate of 0.001 and
decay rates of (0.9, 0.999).

Build base latency predictors with VAE decoder. After
completing VAE training, we utilize the learned latent space
and the decoder to gather training data for constructing base
latency predictors for each kernel type. Specifically, to sample
N configurations, we generate N 128-dimensional vectors
from multivariate Gaussian distribution and feed them into
the decoder. The N decoder outputs are used as training data.
We sample up to N=10k configurations for Conv and DWConv
related kernels and N=1000 for small kernels.

For each kernel type, we generate the corresponding model
graph based on the sampled configurations. Then, we measure
the inference latency on 5 random warmup platforms to gather
training data for building base latency predictors. Each pre-
dictor is trained for 350 epochs using the AdamW optimizer
with a cosine learning rate scheduler, and the initial learning
rate is set to 0.001. The training cost is feasible. On an Nvidia
RTX 2080Ti, it takes 26 minutes to train latency predictors
for large kernels and only 6 minutes for small kernels.
Transfer to new platforms. For a new platform, we first
conduct kernel detection [54] to identify all possible kernels.
Then, we perform similarity detection for each kernel to find
the most similar predictor from the knowledge pool. Specifi-
cally, we identify similar predictors for Conv and DWConv
kernels using 400 representative data. For small kernels, we
reuse the detected platform for Conv kernels and use the

Device CPU GPU CPU Frequency
Pixel 4 Qualcomm Snapdragon 855 | Adreno 640[2.4GHz, 2.1GHz
Pixel 5 Qualcomm Snapdragon 765G | Adreno 620(2.2GHz, 1.9GHz
Pixel 6 Google Tensor SoC Mali-G78 [2.5GHz, 2.2GHz
Xiaomi IT| Qualcomm Snapdragon 888 [ Adreno 660 [2.4GHz, 2.1GHz
Xiaomi 12| Qualcomm Snapdragon 8 Gen 1| Adreno 730({2.4GHz, 2.1GHz

Ire‘ﬁ"grl?f;e TFLite 2.1, TFLite 2.7, NCNN, Mindspore Lite, Onnxruntime
Precision FP32, INT8

Table 3: Our 85 evaluated platforms, including 10 different
hardware and CPU frequencies, 5 popular inference frame-
works on edge and 2 data precision.

corresponding predictor, as small kernels usually have same
platform detection results as Conv kernels.

To finetune predictors, we use our VAE data sampler to
generate a few configurations and measure their latency. We
sample 100 configurations for small kernels and 500 for large
kernels like Conv and DWConv. If accuracy is unsatisfactory,
we iteratively sample 500 more data points per round until
the desired accuracy is reached. During finetuning, we use
detected kernel weights as initial weights and finetune for
300 epochs. We follow the same training settings as the base
predictor, but with a smaller learning rate of 0.0005.

7 Evaluation
7.1 Experiment Setup

Platforms. We evaluate LitePred on a wide variety of edge
platforms, as detailed in Table 3. Our evaluation includes 10
mobile hardware (CPU and GPU), 5 popular inference en-
gines for edge devices, and 2 data precision options (FP32
and INTS8 for CPU devices). Besides, we test each CPU de-
vice under two frequencies. In total, we evaluate 85 differ-
ent platforms, a significantly larger number than previous
works. This large-scale evaluation is achieved by our pro-
posed lightweight, scalable, and transferable latency predic-
tion paradigm. Without it, the cost of such an evaluation would
be extremely expensive.

Evaluation datasets. To evaluate the effectiveness of
LitePred in hardware-aware NAS, we build latency datasets
using the 6 high-quality NAS search spaces (ref Section 4.1).
We randomly sample 4k models from each search space and
measure their latency on our 85 platforms. In total, the dataset
contains 1.86 million model and latency pairs.

For each platform, we measure the model inference latency
by performing a warmup of 10 inference runs and then cal-
culating the average latency over 50 subsequent inference
runs. For CPU platforms, we set the CPU frequency to the
target value and measure the corresponding latency. For INT8
precision, we measure the INT8 latency on TFLite platforms,
as TFLite has good support for this precision. Specifically, we
use TFLite’s official tools [46] to quantize models to INT8
precision and follow the standard process to measure latency.
Comparison baselines. We compare LitePred with state-
of-the-art latency prediction methods by implementing two
strong baselines: (1) nn-Meter [38, 54], a platform-specific
method; and (2) HELP [30], a platform-agnostic method.
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Metrics. We evaluate three metrics: Root Mean Square Er-
ror (RMSE), prediction accuracy, and profiling cost. RMSE
quantifies the errors between predicted and real latency. Since
RMSE can be highly influenced by the range of real latency
values, we also report prediction accuracy. Following related
works [18,54] , we measure prediction accuracy as the per-
centage of models whose predicted latency error falls within
+5% and £10% of the real measured latency. For profiling
cost, we report both the number of sampled kernels and the
total on-device measurement time cost.

7.2 Key findings

Before presenting detailed results, we summarize our valuable
findings and insights gained from extensive experimentation:
(i): Despite differences in hardware, software inference engine
implementations, data precision, and CPU frequencies among
edge platforms, LitePred successfully transfers pre-existing
latency predictors and achieves 99.3% accurate latency pre-
diction across diverse edge platforms.

(ii): On most edge platforms, LitePred requires <1 hour
of adaptation profiling cost. Compared to state-of-the-art
platform-specific baselines, it achieves up to 5.3% higher
accuracy and reduces profiling costs by 50.6x.

(iii): The detected most similar predictor’s corresponding plat-
form varies depending on the kernel type. (Table 5).

(iv): The data required for adaptation depends on the simi-
larity between the detected platform predictor and the target
platform. A highly similar predictor requires minimal data,
while less similar predictors demand more data for finetuning.
(v): By enabling hardware-aware NAS, LitePred facilitates
the development of efficient DNN models for various edge
platforms. Remarkably, our searched models outperform Mo-
bileNetV2 by up to 4.4% in accuracy on the ImageNet dataset.

7.3 Evaluation on diverse edge platforms

7.3.1 Comparison with baseline methods

We demonstrate the effectiveness of LitePred by comparing
with state-of-the-art latency prediction baselines.

Setup. We select 4 out of 85 platforms for comparison and use
the higher frequency of the CPU device. By default, we use
FP32 data precision unless stated otherwise. Since HELP per-
forms model-level latency prediction, a separate meta latency
predictor needs to be designed and trained for each search
space. For simplicity, we choose MobileNetV3 search space,
which HELP already supports, as the evaluation dataset.

For nn-Meter, we use the official code [38] to sample train-
ing data and train kernel latency predictors for each target
platform. For HELP, we initially adapt its meta predictor using
10 randomly sampled models from target platform. However,
the accuracy is poor. Therefore, we add two edge platforms
(i.e., Pixel5 CPU with MindSpore, and Xiaomil1 GPU with
NCNN) to retrain the meta latency predictor for better predic-
tion. During evaluation, we increase the number of adaptation
models and allow the profiling cost to be the same as ours.
We refer to this improved implementation as HELP*.

Prediction Acc

Cost RMSE +5%  +10%
HELP 10 models 12.44s 6.6 ms 11.5% 22.5%

Xiaomill CPU HELP* 1030 models 0.35h 4.1 ms 39.3% 48.7%
Mindspore nn-Meter 234997 kernels 16.23h 0.8 ms 78.0% 98.9%
Ours 4800 kernels 0.35h 0.4ms 95.4% 100%

HELP 10 models  10.87s 9.5ms 154% 23.0%

Xiaomill CPU HELP* 3000 models 0.88h 6.7ms 37.1% 49.1%
NCNN nn-Meter 169305 kernels 20.17h 0.4 ms 96.4% 100%
Ours 11400 kernels 0.88h 0.3 ms 99.5% 100%

HELP 10 models  2.66s 1.2ms 13.9% 28.0%
Pixel 5GPU HELP* 2500 models 0.62h 0.8 ms 51.6% 61.1 %
TFLite 2.7 nn-Meter 104996 kernels 7.94h 0.8 ms 37.7% 95.8%
Ours 11900 kernels 0.62h 0.3 ms 95.9% 99.9%

HELP 10 models 16.41s 12ms 7.9% 16.8%

Pixel 5 GPU HELP* 2100 models 0.96h 7.5 ms 33.5% 50.8 %
NCNN nn-Meter 397384 kernels 48.60h 1.6 ms 52.2% 94.7%
Ours 17400 kernels 0.96h 0.9 ms 92.6% 100%

Table 4: LitePred outperforms both state-of-the-art platform-
specific and platform-agnostic baselines by achieving higher
prediction accuracy with significantly lower sampling costs.

Platform Method  Train Data

Results and analysis. Table 4 summarizes the compari-
son results. LitePred consistently outperforms both platform-
specific and platform-agnostic prediction baselines by achiev-
ing higher prediction accuracy and lower RMSE, all while
requiring significantly lower sampling costs. Compared to
platform-agnostic methods, LitePred conducts much more
precise latency prediction on new platforms, with over 92%
of models whose predicted latency error falls within 5% of
the real latency. In contrast, HELP achieves only 12% accu-
racy on average, and the improved HELP* achieves 40.4%.
Furthermore, LitePred achieves much higher £5% predic-
tion accuracy than platform-specific baseline while reducing
prediction costs to within 1 hour. Compared to nn-Meter,
LitePred speedups the prediction cost by 46.4x,22.9x, 12.8x
and 50.6x on the four platforms, respectively. These results
demonstrate the remarkable effectiveness of LitePred in terms
of both prediction accuracy and efficiency.
7.3.2 Transfer to diverse new platforms
We now evaluate the effectiveness of LitePred in latency pre-
diction on a wider range of new platforms by transferring
pre-existing predictors. Due to space limit, we select 14 dif-
ferent edge platforms, covering a variety of hardware types,
frequencies, data precisions, and inference frameworks.
Setup. We conduct two experiments to demonstrate that
LitePred can adapt well to any new edge platforms. (a): we
select the most similar kernel predictors from knowledge pool,
regardless of the hardware or inference engines for the de-
tected predictors. (b): To demonstrate that LitePred can trans-
fer latency predictors across different hardware and inference
engines, we exclude the predictors with the same inference
engines as target platform from the knowledge pool and select
the most similar predictors from the remaining ones.
Results and analysis. Table 5 summarizes the detailed results,
including the detected similar kernel predictors, the required
data and time cost for adaptation, and the prediction accuracy
over our benchmark dataset on each target platform.
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(a) Selecting most similar kernel predictors from the whole knowledge pool

Platform Similar Platforms #Adaptation Time | Prediction Accuracy

Conv kernel DWConv kernel Data Cost | +5%Acc +10%Acc
Xiaomil 1CPU, ORT Xiaomil2 CPU, ORT Xiaomil2 CPU, ORT 1400 0.48h| 90.5% 98.9%
Pixel5 GPU, NCNN Xiaomill GPU, NCNN Xiaomil1l GPU, NCNN 17400  0.96h| 84.3% 99.1%
Xiaomill CPU, MindSpore Pixel5 CPU, MindSpore Xiaomil2 CPU, MindSpore 4800 0.35h| 90.4% 99.9%
Xiaomill GPU, TFLite 2.7 Xiaomil2 GPU, TFLite 2.7 Xiaomil2 GPU, TFLite 2.7 11000  0.17h| 83.7% 98.6%
Xiaomill CPU, NCNN Xiaomill CPU, MindSpore Pixel5 CPU, NCNN 11400  0.88h| 80.3% 98.9%
Pixel6 CPU, TFLite 2.1 Xiaomil2 CPU, TFLite 2.1 Xiaomil2 CPU, TFLite 2.1 3500 0.16h| 79.4% 100%
Pixel5 CPU, TFLite 2.7 Xiaomill CPU, TFLite 2.7 Xiaomill CPU, TFLite 2.7 3400 0.13h| 79.6% 99.2%
Xiaomil2 CPU, TFLite 2.7, INT8 Xiaomill CPU, ORT Pixel5 GPU, TFLite 2.7 3100 0.05h| 95.7% 100%

(b) Similarity detection of kernel predictors Excluding same inference frameworks

Xiaomill CPU, ORT Pixel5 CPU, MindSpore Pixel5 GPU, NCNN 2400 0.72h| 84.2% 99.2%
Xiaomil2 GPU, TFLite 2.7 Pixel5 GPU, NCNN Xiaomil2 CPU, MindSpore 16100  0.22h| 79.4% 98.7%
Xiaomill CPU, Mindspore Pixel5SCPU, TFLite 2.7 Pixel5GPU, TFLite 2.7 9700 0.80h| 98.1% 99.2%
Pixel5 GPU, NCNN Xiaomil2 CPU, TFLite 2.1  Xiaomill CPU, ORT 18500 1.73h| 86.5% 99.3%
Xiaomil2 CPU, TFLite 2.1, low Freq| Xiaomill GPU, NCNN Pixel5 CPU, MindSpore 1800 0.18h| 94.7% 100%
Xiaomil2 CPU, TFLite 2.1 Pixel4 CPU, TFLite 2.7 Pixel5 CPU, MindSpore 1800 0.10h| 97.6% 99.9%

Table 5: Transferable latency prediction of LitePred on diverse new platforms. LitePred accurately predicts the inference latency
of models across five different CNN NAS search spaces, with minimal adaptation cost (0.05 to 1.73 hours) on new platforms.

Table 5 demonstrates that LitePred achieves superior ac-
curacy in predicting latency on diverse new edge platforms
equipped with varying hardware, inference engines, data pre-
cision, and frequencies. Remarkably, we achieve an average
of 99.3% transfer accuracy, with 87.0% of models having
prediction errors within a negligible 5% margin.

Furthermore, not only does LitePred accurately predict in-
ference latency on unseen new platforms, but it also requires
only ~4,000 adaptation data points for finetuning all kernel
predictors across most of the platforms we evaluated. This
leads to <1 hour of measurement overhead, which is a signif-
icant improvement over platform-specific methods that typi-
cally require 1-3 days of measurement for a single platform.

In Table 5, we observe that more adaptation data is needed
for finetuning kernel predictors on GPUs with NCNN/TFLite
2.7 and CPUs with NCNN. This is due to two main reasons.
First, models generate 4 new kernels in the NCNN framework:
Conv+bn+swish/hswish and DWConv-+bn+swish/hswish, re-
quring the use of similar predictors and more adaption data
points. Second, edge GPU platforms typically require more
adaptation data for Conv and DWConv related kernels due
to specific optimizations on various GPUs, making it chal-
lenging to find a highly similar platform. Thus, more data is
needed for the predictor to learn these optimizations.

7.4 Ablation study

We now conduct ablation studies to assess the effectiveness
of each of our techniques.

The effectiveness of VAE data sampler. An effective data
sampler is crucial for improving prediction accuracy and
avoiding useless data. To evaluate the effectiveness of our
VAE data sampler, we compare it with the state-of-the-art
adaptive data sampler proposed in nn-Meter on 4 platforms.

Platform Method Conv Acc.|DWConv Acc.

Xiaomill CPU|Adaptive data sampler| 84.9% 52.8%
MindSpore VAE data sampler | 91.4% 93.6%
Xiaomill CPU | Adaptive data sampler| 81.5% 95.5%
NCNN VAE data sampler 88.8% 98.3%
Pixel5 GPU | Adaptive data sampler| 61.6% 86.7%
TFLite 2.7 VAE data sampler 76.7% 89.1%
Pixel5 GPU | Adaptive data sampler| 65.6% 79.6%
NCNN VAE data sampler 87.1% 81.7%

Table 6: Under the same sampling budget of 10k data points,
VAE data sampler outperforms state-of-the-art methods with
achieving much higher latency prediction accuracy.

We sample 10k configurations using both data samplers to
train the latency predictor for Conv and DWConv kernels.

Table 6 presents a comparison of the achieved prediction
accuracy. Our VAE data sampler consistently outperforms
the adaptive data sampler, achieving much higher prediction
accuracy on all four platforms. This is because we can sample
configurations that conform to the multi-dimensional distri-
bution in NAS search spaces. In contrast, the adaptive data
sampler is constrained to align solely with individual dimen-
sions, leading to the out-of-distribution issue.

The effectiveness of our similarity detection technique. We
evaluate whether our method detects the most similar latency
predictor for target platform. We set up two baselines: (i)
OneProxy [33], choosing the predictor with the highest SRCC
metric by comparing predicted and real latency rankings for
random kernel configurations, and (i) Random, selecting a
predictor from the knowledge pool randomly. For the selected
kernel predictor, we use VAE data sampler to generate the
same adaptation data for finetuning. A more similar predictor
is expected to have higher accuracy after finetuning on the
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Figure 6: Finetuned accuracy of Conv kernel on new plat-
forms. By our similarity detection, we achieve higher accu-

racy with 2.5 x less adaptation data than baseline methods.
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Figure 7: Prediction accuracy of Conv kernel. Finetuning
a similar pre-trained predictor yields higher accuracy than
training a new predictor from scratch on the same platform.

new platform and require less adaptation data.

Fig. 6 compares the finetuned accuracy of Conv kernel
predictor on two platforms. Our method consistently identify
the most similar predictors for the target platform, resulting
in significantly higher accuracy across varying amounts of
adaptation data. When achieving same accuracy, our detected
predictors require 2.5 x and 3 x less adaptation data than those
required by random selection and OneProxy, respectively.
The effectiveness of finetuning pre-existing predictors.
With sufficient time, it’s possible to train kernel latency predic-
tors from scratch for a new platform using VAE data sampler.
Our experiment shows that finetuning a similar pre-trained
predictor yields higher prediction accuracy with less training
data. As shown in Fig. 7, finetuning leads to faster conver-
gence and better accuracy. This finding is consistent with
the intuition of our work, as a similar predictor can already
capture some latency behaviors for the target platform.
Transfer cost analysis. We now analyze the transferring costs
in Table 5. Our results show that major adaptation costs come
from finetuning Conv and DWConv kernels. Conv finetuning
uses 51.1% of the adaptation data, and DWConv uses 32.5%.
Small kernels need only 100 points, while SE kernels need
slightly more, ranging from 300 to 700 points.

We further analyze the impact of varying amounts of adap-
tation data on prediction accuracy. We select two platforms:
Pixel5 GPU with NCNN, which required the largest amount
of data, and Xiaomil2 CPU with TFLite 2.1, which only re-
quired 1800 samples. The results, shown in Fig. 8, indicate
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Figure 8: Model-level prediction Acc. vs. data amounts.

a large drop of 5% accuracy when reducing the adaptation
data, followed by a more gradual decline at =10% accuracy.
If we set a relaxed threshold of 90% +10% accuracy as ac-
ceptable number, then we can reduce the amount of adaptation
data by 3.5x and 3.6 for the two platforms, respectively.

7.5 Hardware-aware NAS with LitePred

We now showcase how LitePred effectively supports
hardware-aware NAS in finding accurate, low-latency DNNs
for various edge platforms. We integrate LitePred with a state-
of-the-art NAS approach, called OFA [8], and conduct latency-
constrained search for 4 different edge platforms. It is worth
noting that we test 2 edge GPU platforms, which are rarely
evaluated in current hardware-aware NAS due to the chal-
lenges of accurately obtaining latency on them. Specifically,
we search 5k model architectures for each given latency con-
straint and select the model with highest validation accuracy
on ImageNet 2012 dataset [15]. We then evaluate the test ac-
curacy of the final model and measure the on-device latency.
Table 7 compares the best searched model accuracy with
MobileNetV2 [42] and MobileNetV3 [22], which are state-of-
the-art lighweight CNNs designed for edge platforms. Results
show that OFA with LitePred delivers better models than Mo-
bileNets, achieving higher accuracy on ImageNet and lower
latency on 4 diverse edge platforms. Our searched models sur-
pass MobileNetV2 by up to 4.4% higher ImageNet accuracy.
Our results proves LitePred’s value as a tool for hardware-
aware NAS in designing higher accuracy models that meet
specific latency constraints on diverse edge platforms.

7.6 LitePred on Transformer models

We demonstrate LitePred’s generalization ability on other
DNN architectures by assessing transfer latency prediction on
vision transformers [10, 16,48]. We test on mobile CPUs with
TFLite platforms, which have good support for transformer
models. We build latency predictors for five vision trans-
former sub-modules: MultiHeadAttention, PatchEmbedding,
MLP, LayerNormalization, and Linear layers. Specifically,
TensorFlow’s optimizations for MultiHead Attention remove
the need for fine-grained kernel detection.

Table 8 shows the latency prediction accuracy for Auto-
Former [10] search space. The high transferable prediction
accuracy showcases LitePred’s effectiveness in transferring la-
tency predictors for vision transformers across edge platforms
with varying devices, data precision, and CPU frequencies.
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Pixel6 CPU, TFLite 2.1

Xiaomil I CPU, Mindspore

Pixel5 GPU, NCNN

Xijaomil1 GPU, TFLite 2.7

Method Topl Acc.t Latency | | Topl Acc. ! Latency | Topl Acc. T Latency | | Topl Acc. T Latency |
MobileNetV2 72.0 45.9ms 72.0 22.7ms 72.0 31.3ms 72.0 5.0 ms
OFA [8] + LitePred 76.4 44.4 ms 73.4 21.8 ms 75.3 31.1 ms 75.8 5.0 ms
MobileNetV3x 0.75 73.3 29.7ms 73.3 24.4ms 733 34.4ms 733 4.0ms
OFA [8] + LitePred 74.8 29.6 ms 74.5 23.9 ms 76.0 34.3 ms 74.4 3.9 ms
MobileNetV3 75.2 37.2ms 75.2 33.4ms 75.2 30.3ms 75.2 4. Tms
OFA [8] + LitePred 75.5 36.8 ms 75.6 33.2 ms 75.6 29.8 ms 75.5 4.6 ms

Table 7: Hardware-aware NAS search results on ImageNet 2012 dataset [15]. By integrating LitePred into OFA, we achieve
superior accuracy compared to MobileNets across various edge platforms.

Platform Similar Platform Eg:‘;’ irsel%i Cti;):r; ()A‘7Co ¢
KR | b PO Toow | woow s9ow
T)éfﬁin%?ﬁ% TFLiliéxg.l;,il())I\iFreq 0.02h | 41.4% 99.9%

Table 8: Transferable latency prediction of LitePred on vision
transformer NAS search space [10].

8 Related Works

Platform-specific latency prediction. Most previous latency
prediction approaches [6,7, 18,31, 32, 54] are designed to
build platform-specific latency predictors. Notable examples
include BRP-NAS [18] and nn-Meter [54]. BRP-NAS [18]
uses graph convolutional networks (GCN) to train a GCN
latency predictor. However, it requires the entire model graph
as input, which makes it necessary to redesign and retrain the
model for new hardware-aware NAS search spaces, leading to
expensive and time-consuming processes. nn-Meter [54] tack-
les this challenge by building kernel-level predictors. How-
ever, all these approaches require significant time costs and
efforts to rebuild the predictors for new platforms, as they rely
on platform-specific data collection and predictor training.
Platform-adaptive latency prediction. Recently, a few
works propose to construct platform-agnostic latency pre-
dictors [30,34,37]. HELP [30] builds a meta latency predic-
tor that incorporates hardware embeddings. However, meta-
training requires numerous latency measurements on a wide
variety of heterogeneous platforms and faces challenges in
generalizing to new unseen devices. OneProxy [34] exploits
latency monotonicity across diverse devices to predict DNN
latency rankings on new unseen platforms. However, many
hardware-aware NAS approaches [8, 9, 45, 56, 57] require
actual latency values rather than rankings.

Hardware-aware NAS. Hardware-aware NAS approaches [8,
9,49, 50, 53,55,57] aim to design efficient DNN models
that balance accuracy and latency. However, the vast model
search space makes latency measurement costly. Most NAS
works [21,49, 50] use FLOPs as an efficiency metric, but
it’s an inaccurate proxy for latency. Recent works such as
ProxylessNAS [9] and OFA [8] employ a layer-wise latency
predictor, but ignore latency changes caused by graph opti-
mizations. Also, most of the evaluated platforms are limited to
cloud platforms. LitePred provides rapid and accurate latency
predictions on diverse edge platforms, facilitating the design

of more efficient DNN models for edge environments.

9 Discussion

Comparison with Cost Models in DNN Compilers. Many
deep learning compilers [4,5, 11, 12, 58] build cost models to
predict the execution time of different code implementations
on a given hardware platform. They typically rely on complex
feature engineering to build decision-tree-based regression
models. For instance, TVM [11] employs XGBoost to make
predictions based on a diverse set of features, including mem-
ory access and data reuse ratio, along with embedded fea-
tures like AST. However, as many edge inference frameworks
are closed source, these code-based methods are infeasible.
LitePred differentiates itself from these approaches by predict-
ing model latency solely based on the model configurations.
Generalization Ability. Currently, LitePred focuses on pre-
dicting inference latency for CNNs and vision transformers on
commercial edge platforms. If a new edge platform is signifi-
cantly different from our knowledge pool, it may be necessary
to sample more adaptation data and train like starting from
scratch. Our approach can be easily extended to other model
types, such as language transformers. Generalization to cloud
platforms has not been validated due to potential concurrency
in kernel execution. We leave this as future work.

10 Conclusion

In this work, we propose LitePred, a lightweight latency pre-
diction approach that can accurately predict the inference
latency of DNN models on a new edge platform based on a
small amount of extra measurements. LitePred incorporates a
VAE data sampler to collect high-quality training and adap-
tation data. By transferring the most similar pre-existing la-
tency predictors, LitePred achieves accurate predictions with
an adaptation cost of less than 1 hour. Extensive experiments
on 85 edge platforms and 6 NAS search spaces demonstrate
the effectiveness of LitePred, achieving an impressive predic-
tion accuracy of 99.3% and a remarkable 50.6 x reduction in
profiling cost compared with state-of-the-art baselines.
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