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Abstract

This paper describes the process and operational experiences
of deploying the Data Center TCP (DCTCP) protocol in a
large-scale data center network. In contrast to legacy conges-
tion control protocols that rely on loss as the primary signal
of congestion, DCTCP signals in-network congestion (based
on queue occupancy) to senders and adjusts the sending rate
proportional to the level of congestion. At the time of our
deployment, this protocol was well-studied and fairly estab-
lished with proven efficiency gains in other networks. As
expected, we also observed improved performance, and no-
tably decreased packet losses, compared to legacy protocols
in our data centers. Perhaps unexpectedly, however, we faced
numerous hurdles in rolling out DCTCP; we chronicle these
unexpected challenges, ranging from its unfairness (to other
classes of traffic) to implementation bugs. We close by dis-
cussing some of the open research questions and challenges.

1 Introduction

Congestion control algorithms (CCAs) modulate traffic
entry into the network, seeking high utilization, low latency,
and relative fairness by making frequent decisions about how
much data to send and when. These decisions are based on
congestion signals, and the base signal in many CCAs is the
dropped packet. CCAs tend to increase the amount of data
in flight until the point to induce packet loss. Subsequently,
they create queue buildup and increase delay. This impacts
latency requirements for our datacenter applications. These
workloads generate a large number of small request and re-
sponse flows across the datacenter that, combined, complete
a user-requested computation. For a fast response time, each
of these short flows should be completed fast.

A class of CCAs [4, 5, 12, 14, 17, 20, 24] tailored specifi-
cally to the requirements of datacenters workloads, leverage

Lawrence Brakmo and Hechao Li contributed to this work during their
time at Meta.

a diverse set of congestion signals (notifications from the net-
work, measured delay at endpoints, etc.) to detect and react to
imminent congestion faster. As one of the earliest and most
mature protocols in this class, Data Center Congestion Control
(DCTCP) [4] uses Explicit Congestion Notifications (ECNs)
from the switches to adjust the sending rate proportional to
the level of congestion. ECN remedies large queue buildups
and drops by providing a congestion signal before queues
overflow, and DCTCP interprets the fraction of ECN-marked
packets to scale its response, avoiding persistent queueing
and overflows that lead to loss.

A few features of our network made DCTCP’s potential
worth considering. First, our top of rack switches had “shal-
low buffers,” providing limited space for queueing. Second,
buffer sharing and contention over buffers led to variable and
unpredictable queue capacities [13]. Finally, our approach
to distributing jobs across datacenters created a set of racks
with a mixture of large throughput-heavy flows and small
latency-sensitive flows that had to compete for the limited and
variable buffer space in the network. DCTCP could moderate
large flows’ use of switch buffers, providing more isolation
between jobs sharing shallow-buffered switches.

Using DCTCP required resolving a challenge: designed
specifically for short-RTT datacenter traffic, DCTCP had to
be applied exclusively to in-region1 traffic and not cross-
backbone traffic. This translates to a few problems: (a) we
had to identify in-region traffic, separate it from cross-region
traffic, and negotiate DCTCP only for the former. Doing so
in a network with the scale and complexity of ours, without
risking a broken network, required a large engineering effort,
and (b) the in-region DCTCP and cross-region Cubic traffic
had to co-exist and share the network. This required careful
parameter tuning and network configuration to strike a bal-
ance between various classes of traffic. Although challenging,
these were surmountable issues that our engineers could over-
come to apply DCTCP only to the in-region traffic alongside
the Cubic cross-region traffic.

1A region is a collection of datacenters in roughly the same location.
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In addition to fitting our workloads’ needs, one specific
feature of DCTCP made it an operationally appealing choice:
it was a relatively simple, mature, and well-established pro-
tocol. When we initiated an effort to change our datacenter
congestion control algorithm from Cubic in 2018, DCTCP’s
design had been published eight years prior (2010), its design
was well-understood, it had been added to the Linux kernel
for four years (since 2014), and had widespread hardware
support for ECN marking. We anticipated a smooth transition
to DCTCP. Contrary to our anticipation, however, nearly ev-
ery point in the end-to-end stack presented a riddle to solve
to rollout DCTCP: the kernel had bugs; optimizations such
as receive offloading could not always inter-operate with it
as DCTCP’s smaller congestion windows were not always
enough to trigger prompt delivery; some switches dropped
ECN-capable packets despite having space to buffer them,
resulting in poor application performance; not all switches
could consistently and reliably support ECN; we could not
change the congestion control of long-running connections in
the middle of their data transfer, etc.

In this paper, we share our experience of deploying DCTCP
in Meta Datacenters. This project started in earnest in 2018,
balancing successful tests with head-scratching problems. We
share the stumbling blocks we discovered in the hope of
helping researchers consider the deployability of new data
center congestion control algorithms. In particular, switch and
NIC implementations are diverse, vendor specific, not always
known to datacenter operators, and evolve frequently as the
scale and demand of our networks change. Protocols that
are dependent on parameter tuning for optimal performance
are hard to deploy and maintain. In a large-scale and diverse
network, each congestion control algorithm will coexist with a
large and diverse set of protocols. Finally, bugs are inevitable
in any large-scale, complex network. Ideally, the congestion
control protocols should be equipped with mechanisms to
detect and gracefully handle bugs and corner cases. We found
every problem in the text that follows to be rich and deep,
with quite a few surprises. In the moment, we questioned
why is this so hard: switches can mark ECN and the kernel
implements DCTCP. What more does there have to be? But
reflecting on the experience, by expecting unforeseen trouble,
careful deployment and monitoring paid off.

Ours is not the first report on production DCTCP deploy-
ment; Judd [15] shared experiences that influenced our design.
They showed that DCTCP could be unfair to an established
Cubic flow, motivating our study of mark and drop thresholds
to keep them fair. He also noted that SYN and SYN/ACK
packets should be ECN-capable, despite standards; we were
surprised to find the same even after our switch thresholds
prevented DCTCP from starving out Cubic. His deployment
supported ECN marking only on top-of-rack switches; this
became the starting point we focus on in this paper.

We organize the paper by characterizing problems by
where they occurred. In the next section, we briefly overview

DCTCP. Feel free to skip this section or read Alizadeh et
al. [4] instead. Section 3 describes how we chose to enable
DCTCP for in-region TCP connections but not cross region
ones; focusing on deployment safety. Section 4 describes how
to configure switches to mark DCTCP traffic and encourage
balance with competing Cubic flows; for some devices in our
network, this was unexpectedly elaborate. Section 5 describes
what we built to monitor the deployment, looking to confirm
that congestion-experienced bits were set, DCTCP was nego-
tiated and not falling back to Reno, switch buffers were less
occupied, etc. Section 6 describes the often subtle kernel and
driver bugs that ECN marking packets and smaller congestion
windows surfaced. Section 7 describes a few extensions we
applied to the initial DCTCP deployment, extending where
congestion can be instrumented with ECN. We conclude in
section 8, discussing lingering problems in congestion and
reflecting on how the design of nearly every component in
the network influenced this deployment.

2 Background

Data Center TCP (DCTCP). DCTCP uses Explicit Con-
gestion Notification (ECNs) signals from switches. It uses 2
bits in the IP header for ECN information. If neither of the two
bits are set, the flow does not support ECN and switches will
not mark the packets. When only one bit is set, the flow sup-
ports ECN signals and no congestion has been encountered.
Finally, when both bits are set, the flow supports ECN and
the packet has encountered congestion. Congestion, in this
context, is usually defined as the queue sizes of the switches
on the packet’s path passing a pre-defined threshold. That is,
when a switch receives an ECN-enabled packet, if the queue
used to enqueue the packet is larger than some threshold, the
switch marks the packet as having experienced congestion.
This signal then arrives at the receiver. The receiver notifies
the sender by echoing back the congestion signals on the TCP
header of the ACK packet.

Pre-DCTCP, senders treat ECN-marked ACKs as packet
loss. TCP Reno, for instance, reduces its congestion window
(CWND) by 50%. This aggressive throttling can lead to link
under-utilization. Another issue is that legacy protocols do
not differentiate between short bursts and standing congestion.
For example, sub-RTT queue buildups due to microbursts still
result in reducing CWND, a suboptimal outcome.

In contrast, DCTCP reduces CWND proportional to the
level of congestion by tracking the percentage of bytes per
RTT. For example, if 100% of bytes encounter congestion,
DCTCP reduces its CWND by 50% but if only 50% of bytes
do so, it reduces CWND by 25%. DCTCP also leverages a
moving average to avoid overreacting to transient bursts. For
example, if 100% of the bytes in an RTT encounter conges-
tion, but there was no congestion in previous RTTs, then the
CWND would only be reduced by 1/32 instead of 1/2 [9].

Given the characteristics of our workloads, notably their
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Figure 1: Retransmission rates drop following DCTCP rollout.

burstiness [13, 27], we expected DCTCP’s faster reaction to
bursts to improve the performance of our applications.

DCTCP helped our network. Encouraged by positive test
results, we gradually rolled out DCTCP to each region in the
fleet. Overall, we observed improvements in network metrics
such as reduced top-of-rack switch congestion discards and
queue lengths, resulting in the reduction in the number of
retransmitted packets that hosts received. We compared the
overall volume of retransmissions for each region after de-
ploying DCTCP and compared it against one week before the
transition and observed a reduction of around 75%. Figure 1
shows the change in normalized retransmission rates2 for four
regions a few days before and after the rollout of DCTCP in
each region. Note that the reduction in retransmissions after
deploying DCTCP is not immediate. In §3.2, we discuss a
potential reason (the delay in changing the congestion control
algorithm for long-running connections).

Along with retransmissions, we tracked base host metrics
like throughput, and the congestion window size, as well as
general system state metrics such as CPU and memory utiliza-
tion. We did not observe any regressions in these metrics. For
four regions, we measured the changes in retransmission rates,
throughput, the average CWND, and the average smooth RTT
(srtt) after transitioning to DCTCP. Table 1 reports the re-
sults. Note the variance across different metrics and regions,
e.g., while srtt did not change in Region 4, it did improve
in Region 5 albeit not as dramatically as the retransmission
rate (7% vs. 50%). Moreover, for one of our data-intensive
services, we measured the changes in read latency in a region
before and after transitioning to DCTCP and observed 38%
reduction in the 90th and 99th percentiles of latency (from
65ms to 40ms and from 130ms to 80ms, respectively).

Rollout timeline. It should be noted that we did not upgrade
all selected regions to DCTCP at the same time; we proceeded
gradually over a four-month period while carefully monitor-
ing the impact of the change on our networks (§5). Figure 2
shows the timeline of the per-region rollout, overlapped with

2Normalized retransmission rates are retransmission rate of each region
divided by the maximum retransmission rate across all regions.

Figure 2: DCTCP’s rollout accelerated over time.
Metric Region 3 Region 4 Region 5 Region 6
Retrans. 33% ↓ 79.5% ↓ 50% ↓ 73.4% ↓
Throughput 10.3% ↑ 4.8% ↑ 2% ↑ 5.8% ↓
Avg. srtt No change No change 7% ↓ 7% ↓
Avg. cwnd 30% ↑ 22.3% ↑ 20% ↑ 18.1% ↑

Table 1: Changes in performance metrics.

the aggregate rate of ECN-enabled packets during this pe-
riod. The rate of ECN-enabled packets in our networks is a
proxy of DCTCP’s adoption, as DCTCP traffic is by default
ECN-enabled. During this interval, the DCTCP was the only
class of ECN-enabled traffic in our networks. To compute
the normalized rates in Figure 2, we divided the number of
ECN-enabled packets received by all datacenter hosts by the
maximum number of ECN-enabled packets received by all
hosts once the rollout process was completed. The figure de-
picts progressively smaller and smaller time gaps between
successive rollouts; our deployment process gradually acceler-
ated as our initial deployments helped us identify and resolve
the issues that we will discuss in the rest of the paper.

To gauge the impact and effectiveness of DCTCP after
the rollout, we temporarily disabled it for a few hours in one
region. This resulted in around a 10% drop in throughput and
4.5× increase in retransmissions in that region.

3 Enablement

We wanted to enable DCTCP only for in-region connections,
which have small enough RTTs that DCTCP is effective. This
presented several immediate challenges for us as our available
options could not achieve this, e.g., the selective enablement
requirement meant that sysctl is not viable, while complex-
ity ruled out options such as setsockopt and routes.

As we explored and experimented with enablement options,
we also encountered several other challenges related to kernel
features, and obscure DCTCP fallback behavior. We discuss
these challenges below.

3.1 Enabling DCTCP for only in-region flows
We discuss the drawbacks of available knobs in greater detail
before presenting our approach for resolving this challenge.
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3.1.1 Potential knobs for changing congestion control

Our goal was to identify knobs to target short-RTT connec-
tions and change their congestion control algorithm (CCA).
For DCTCP, this should be done before the 3-way handshake
since ECN is negotiated during connection establishment. We
targeted sub millisecond latency which is typical for traffic
within a region. In our data center network, we can use IP ad-
dresses as a proxy for RTT, and classify connections created
within the region by looking at the source and destination IP
addresses. CCAs can be changed in many ways, notably via
sysctl, setsockopt, and routes as we discuss next.
sysctl sysctl is the most common and easiest approach

to change CCA. This takes effect for all new sockets. This was
not ideal for two reasons: (a) we could not easily distinguish
between inter- and intra-region traffic and limit the adaptation
of DCTCP only to the latter, and (b) the transition process
would be slow. Since changes through sysctl take effect
only on new sockets, listening sockets had to be reset for the
passive side of the connection to pick-up this change. At a
region-scale, resetting listening sockets requires restarting
services which takes days or weeks.
setsockopt The most granular approach is to call

setsockopt() per socket. This also provides the most flex-
ibility since it enables running arbitrary logic for each in-
dividual connection. On a datacenter scale, setsockopt in-
volves building a library that is used by every service and
fitting into the continuous integration and delivery schedule
of thousands of services which run across the fleet. Although
this was conceptually feasible, this tight coupling was opera-
tionally not ideal as it would complicate debugging and fault
isolation. Plus, it offered little benefit since DCTCP did not
require any service-specific information that would justify
inter-dependency with services.
routes Linux supports customizing TCP parameters per

IP destination route. By changing the granularity of routes,
we could target different scopes, ranging from an entire region
to a single host. For enablement, we needed to enumerate all
the intra-region route prefixes and create multiple route table
rules. This approach was attractive since it had the lowest de-
pendencies across all options. However, it was not extensible:
it did not support matching based on other criteria such as
the port number, the kernel version, and the NIC model that
we envisioned using in future designs. Another risk of this
approach was modifying the host routing table and depend-
ing on aggregatable IP prefixes. Given how routes control
reachability in our fleet, these created substantial risks.

In summary, none of the approaches discussed above was
adequate for our use case. We had to develop a new approach
based on eBPF which we discuss next.

3.1.2 TCP socket hook eBPF

We developed a method based on eBPF to address the chal-
lenges discussed above. By providing hookpoints across the

kernel stack, eBPF allows us to customize the network stack.
Since its introduction in Linux 4.11, sockops has provided
a way to run eBPF programs during TCP socket events. A
major advantage of sockops is its flexibility and programma-
bility. It enables running an eBPF program at the start of
every connection which can use user-space configuration to
select a CCA for every connection. We use the same IP-based
classifier to identify connections to enable DCTCP.

By design, sockops is restricted to a specific version of
cgroup (cgroup-v2).3 Alas, in our fleet, we deployed hetero-
geneous kernel versions with two versions of cgroup. Kernel
and cgroup limitation meant this cannot be used standalone.

To work around the dependence of sockops on cgroup
version, we used two BPF programs to enable DCTCP for
new in-region TCP connections: (1) On cgroup-v2 hosts,
we attached a per-connection sockops BPF program to set
DCTCP as the CCA for in-region connections while leaving
inter-region connections unchanged, and (2) on cgroup-v1
hosts, we used sysctl to set DCTCP as the default CCA
and attached a per-packet Traffic Control (TC) program to
clear ECN-related bits on inter-region SYN packets, forcing
those connections to fallback to Cubic. This program not
only disables DCTCP for inter-region traffic, but also enables
DCTCP for connections on pre-existing listening sockets.

3.1.3 Enablement plan

Our intended scope for deploying DCTCP was an instanta-
neous region-wide enablement, so that we could minimize
disruption in the network caused by in-region DCTCP and
Cubic flows interacting in the same switch buffer. This was a
substantial change that had never been done before in our
network and had to be performed safely without causing
disruption to services. This was a challenge given the het-
erogeneity of our fleet (e.g., in terms of cgroup and kernel
versions). Ensuring safety despite the diversity of the fleet
required having visibility and monitoring into enablement
knobs to detect problems, and the ability to revert fast if there
was a problem. Safety, flexibility, and fail-open characteristics
made eBPF a good choice for this problem. Given we had
90% of the fleet already on cgroup-v2 when we started with
this effort, we took on more complexity in the short-term to
handle cgroup-v1, but over time, we retired the cgroup-v1
solution and evolved eBPF to be able to customize both the
algorithm and deployment capabilities that we had originally
envisioned. We explain the two separate eBPF knobs for the
two cgroup versions next.

3.1.4 cgroup-v2 and 4.11+ kernels

We attach a per-connection sockops BPF program [8] to the
root-cgroup. A sockops program is invoked for different state

3Control groups or cgroups is a Linux kernel feature that limits, monitors,
and isolates the resource usage of a collection of processes.
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int sockops_program(skops) {
switch (skops->op) {
// Before sending SYN on client or SYN-ACK on server
// if peer in-region request ECN
case BPF_SOCK_OPS_NEEDS_ECN:
if(in_region(skops)) {

skops->reply = 1;
}
break;

// Once connection is established
// If we see ECN then enable DCTCP, else Cubic
case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:
case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB:
if(ecn_enabled(skops)) {
bpf_setsockopt(skops, TCP_CONGESTION, "dctcp");

} else {
bpf_setsockopt(skops, TCP_CONGESTION, "cubic");

}
}

}

Figure 3: Summary of ECN enablement in cgroup-v2 sockops

transitions in the lifetime of a TCP connection. During spe-
cific TCP events, sockops eBPF programs can change some
TCP parameters using setsockopt() calls or influence ker-
nel actions. For example, when client or server have to decide
ECN negotiation, eBPF programs registered on this callback
can opt-in for ECN negotiation after analyzing the TCP and
IP headers in the packet or any user-space map state. Our
cgroup-v2 program uses the source and destination IP ad-
dress and calculates the scope (rack/cluster/dc/region) of the
connection. It uses an IP prefix eBPF map populated with all
intra-region IP prefixes. It takes the following actions also
summarized in Figure 3.

#1: NEED_ECN: When kernel asks whether a socket
needs ECN or not, choose “YES” for in-region traffic and
“NO” for inter-region traffic.

#2: CONN_ESTABLISHED: When a connection is estab-
lished, if it is in-region and ECN enablement succeeded, then
call bpf_setsockopt to set the socket’s CCA algorithm to
DCTCP. Inter-region CCA remains unchanged and uses the
default specified via sysctl.

3.1.5 cgroup-v1 and older kernels

On hosts with cgroup-v1 or older kernels where sockops
eBPF hookpoint was not available (less than 10% hosts), we
still needed a solution to selectively change CCA. We chose a
combination of sysctl and TC eBPF to solve this. We used
sysctl to set DCTCP as the default CCA and used a Traffic
Control (TC) eBPF program to terminate ECN negotiation
for inter-region connections, thereby forcing them to fall back
to Cubic as we explain below. Table 2 shows the sequence of
events that happen during a 3-way handshake (the blue parts
are specific to ECN/DCTCP).

To selectively disable DCTCP for inter-region scope, we
use a per-packet TC eBPF program on the server in the ingress
direction. TC eBPF programs can access socket buffer (skb)
and through this modify packet contents. This program can
thus selectively clear all ECN state set by the client (step

Step Direction IP flags TCP Flags

1 Client→Server ECT(0) SYN + ECE + CWR
2 Server→Client ECT(0) SYN + ACK + ECE
3 Client→Server ECT(0) ACK

Table 2: ECN + DCTCP Handshake

1 from Table 2). This is possible because in the ingress di-
rection TC programs are executed before the TCP stack can
negotiate ECN. This program uses a similar scope resolver as
explained in the sockops section above to detect inter-region
clients and match TCP SYN packets with ECN negotiation
bits (ECE/CWR bits [6]). If there is a pattern match, this pro-
gram clears the ECN-related bits in the TCP and IP header
of the SYN packets thus causing the ECN negotiation to fail.
Without ECN, DCTCP is configured to fallback [7] and this
eBPF program exploits this configuration.

Although the Linux DCTCP implementation was config-
ured to fall back to TCP Reno as the CCA when ECN ne-
gotiation failed, we did not want this extra algorithm to be
added to the set of algorithms in our networks. Recall that
the co-existence of Cubic and DCTCP traffic was a major
challenge in deploying DCTCP. Adding a new protocol to
the set of CCAs would exacerbate the situation and require
re-running the entire process of parameter tuning and switch
configuration with a new combination of protocols. To avoid
this problem, our kernel team altered the DCTCP code [7]
to fallback to Cubic instead, a change we did not publish
upstream.4 This was our only custom kernel change for the
effort, and we removed this patch by replacing the logic with
BPF code that could itself handle the fallback.

3.2 Long-lived connections
ECN is negotiated at the onset of the connection: this created a
challenge for changing the CCA of ongoing connections from
Cubic to DCTCP as we could not enable ECN for a flow in the
middle of the connection. Unfortunately, many connections in
our networks are long, running for days or longer. This slowed
down the process of migrating to DCTCP. The naive solutions
such as terminating the existing connections and collaborating
with service owners to force all services to be restarted were
suboptimal due to their complexity and perceived impact on
service performance.

We realized that one of our internal disaster recovery tools,
Maelstrom, can be repurposed to aid with the CCA upgrade
process. Maelstrom [26] is a large-scale disaster recovery sys-
tem. It provides a traffic management framework with modu-
lar primitives that can be composed to safely and efficiently
drain the traffic of interdependent services from one or more
failing datacenters to the healthy ones. Maelstrom encoded
inter-service dependencies and had a safe way to temporarily

4There are some drawbacks to including this fallback policy in the main-
line kernel, e.g., Cubic is an optional module in Linux, while Reno is not.
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drain traffic from a region. We leveraged Maelstrom to run
multiple drain exercises to gradually upgrade the connections
to DCTCP. Each drain exercise resulted in approximately 50%
of the connections to flip to DCTCP resulting in significant
coverage for the CCA change.5

To enable future upgrades and maintenance, eventually,
we enhanced our eBPF framework with a connection iterator
which can iterate over all existing connections, upgrade con-
gestion control, and make other transport changes. The ability
to trigger this program on-demand and share similar code as
sockops simplified CCA’s evolvability and maintenance.

4 Switches and buffers

DCTCP relies on network support—switches mark packets
with ECN when buffer occupancy exceeds a certain thresh-
old. Most modern switches support ECN, but it quickly be-
came clear that our specific network characteristics made
widespread deployment of ECN unfeasible. We list the spe-
cific challenges we faced in deploying ECN in our network.

4.1 Switch queues are a scarce resource
DCTCP, as the name suggests, is designed for data center
flows with low RTT (∼ 1ms). It is not expected to work well
with long-distance flows (10s to 100s of ms). This is because
the ECN signal, based on queue occupancy, is ephemeral;
current queue occupancy is meaningless several milliseconds
in the future. So, for our cross-region flows, we continue using
Cubic, which relies on packet loss as its signal.

It is common that DCTCP and Cubic flows terminate at
the same host, a service can talk to other hosts both in-region
and cross-region. In such cases, ideally, we would isolate the
feedback signal of the two CCAs in the network. For Cubic
and DCTCP, isolation is even more important because they
rely on two very different signals. ECN-based CCAs aim
to keep bottleneck buffer utilization low, while loss-based
CCAs drives the buffer to capacity and loss. In switch terms,
conceptually, isolation is easy enough to achieve – we just
need to put each CCA in its own queue where it gets access
to its own allocation of the dynamically shared buffer.

However, switch queues are primarily used for traffic clas-
sification in our network; we support several classes of traf-
fic [3], and each class is allocated to a queue. To isolate CCAs
from each other, we would need two queues per traffic class.
While later generations of switches supported this, initially,
our switches did not have enough queues to support this con-
figuration. This meant that we had to put both DCTCP and
Cubic in the same queue, and depending on the switch vendor,
the switch supported ECN and Drop Tail (or WRED) in the
same queue, or only either ECN or Drop Tail (or WRED).

5Another benefit of Maelstrom was that it could keep the region in the
drained state if we observe any CCA-related outage. This enabled us to
manually connect to hosts and remediate the issue.

Luckily for us, the bottleneck layer in our data center network
had the switches that supported both.

4.2 ToR switches were sufficient for ECN
We analyzed our production network, and found that bottle-
necks largely occurred in the ToR switch downlinks [13]–to
hosts–or in our backbone WAN network. The latter is out of
scope for this work, as DCTCP does not traverse regions, so
we focused only on the ToR downlinks.

A natural question is why we saw congestion largely in
the ToR downlink. The answer is a combination of factors.
First, due to the nature of our hardware, there was very high
disparity in link speeds in the ToR downlink compared to the
rest of the fabric, making this layer more susceptible to bursty
incasts. Secondly, provisioning and topology ensured high
cross-section bandwidth between racks. Finally, rack-agnostic
job scheduling ensured a high level of heterogeneity in traffic,
largely preventing potential hotspots caused by concentrated
placement of network-heavy services.

As we mentioned previously, not all layers in our fabric had
switches that supported dual mode thresholding to support
DCTCP and Cubic. However, since congestion was rarely an
issue elsewhere in the network (and therefore buffer utilization
not a big enough issue to cause discards), we could effectively
ignore them, and focus our attention of getting the thresholds
right for the ToR downlink.

4.3 How to set a mark and drop threshold
Our switches had the ability to mark ECN or do Drop-
Tail/WRED on a flow depending on ECN-Capable Transport
(ECT) marking, so both DCTCP and Cubic would receive
the correct signal, but the buffer itself was shared across both
classes of flows, resulting in no isolation.

ECN signaling tries to keep DCTCP queues low, but offers
no guarantees – it is entirely possible that a burst of DCTCP
traffic can occupy a buffer well beyond the ECN threshold.
Cubic flows, on the other hand will try to maintain high buffer
utilization. This is a challenging scenario: high buffer occu-
pancy with bursty Cubic flows will result in very high ECN
marks for a competing DCTCP flow, while high buffer oc-
cupancy with bursty DCTCP flows will result in very low
available buffer for competing Cubic flows. Complicating the
issue further, not all DCTCP flows are bursty (unless within
an incast), while even a few long-RTT Cubic flows could be
bursty due to the high BDP.

Our hypothesis was that we need to prevent either CCA
from entirely taking over the buffer – but we were more con-
cerned about Cubic’s ability to do so, so we narrowed down
to a solution where we set relatively high ECN thresholds for
DCTCP and low droptail thresholds for Cubic. This was a
sub-optimal solution for both CCAs, because it diluted ECN
for DCTCP and made loss likelier for Cubic, but it solved for
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what we thought was the dominant problem in our network –
Cubic bursts undermining DCTCP.

Post-deployment experience proved our hypothesis to be
not entirely correct: while Cubic indeed could capture a shal-
low buffer, incast scenarios were far more serious in our net-
work than we originally anticipated, and had to implement
further features to control DCTCP burstiness and buffer uti-
lization, particularly for services that had both sets of flows.

4.4 The multi-host NIC
Multi-host NICs use a single connection to a ToR switch
to provide connections to the PCI busses of (typically two
or four) different hosts. The multi-host (MH) NIC design
is efficient in space, power, and hardware, but is a network
component not typically modeled in congestion control work.

The MH NIC connects multiple machines to the network
and has a buffer (on the order of 0.5 to 1 MB in size), but it
does not act as a conventional switch. The MH NIC does not
mark ECN mark by default; earlier versions do not even have
this feature. The buffer is not partitioned explicitly across
hosts or queues, so it does not provide isolation, nor is able
to preferentially deliver high priority traffic. It does not have
predictable downlink rates; PCI bus rates are split across the
hosts, resulting in per-host rates being significantly less than
the MH NIC rate. Furthermore, when a host kernel is unable
to keep up with interrupts, or is unable to supply free buffers,
the delivery speed to an individual host can drop further.

As the MH NIC buffer fills, the NIC can send ethernet
pause frames back to the top-of-rack switch, leading to queu-
ing at the switch. This can happen when a single host is the
target of incast: the complete bitrate of the NIC can be applied
to deliver the burst of traffic from switch to NIC, reaching a
bottleneck at delivering the data to the memory of the desti-
nation host. This delivery can also be slowed enough to send
pause frames when a host is processing difficult-to-accept
data such as small frames from many different connections
not amenable to offloaded reassembly.

Unmodified, the ECN marking threshold at the ToR means
that the effective queue backlog to the host is the ToR ECN
threshold plus the size of the NIC buffer. This creates an
effectively far-too-high ECN threshold, resulting in persistent
unfairness, poor performance, and even packet loss of DCTCP
traffic as the congestion window overshoots the target.

The effectively larger buffer for a host is not as severe a
problem for Cubic alone: it appears as a single large buffer
shared across the hosts. However, a single host’s traffic can
still dominate the buffer, and since only the switch has the
ability to prioritize traffic, unfairness between buffer-hungry
services and services that need highly-reliable delivery led to
shifting the buffer to the switch via per-host queuing.

On racks with this type of MH NIC, the ToR switch creates
a separate, rate-limited queue for each downstream host. This
rate limit is based on the host’s “share” of the NIC bandwidth,

i.e., 1/2 or 1/4. This queue is then configured with ECN mark
and drop thresholds from Section 4.3. This queue-per-host
design does not remedy all interactions between different jobs
sharing the same NIC: for example, a slow kernel processing
small packets can still fill the NIC buffer, leading to some
pause frames to the ToR, but while the link is unpaused, the
ToR can round-robin among the other hosts to limit perfor-
mance degradation. Important for DCTCP however is that
in the expected case, packets are marked when the effective
queue, entirely on the ToR, reaches the intended threshold.

This queue-per-host feature played an important role in
getting performance and fairness out of DCTCP on MH NIC
systems. Testing focused on fairness and performance of flows
to individual hosts; the performance of concurrent, production-
like traffic to different hosts on the MH NIC was not easily
observed. We were fortunate that the queue-per-host feature
in our ToRs was rolled out in time for DCTCP deployment.

4.4.1 Database clients in particular

Here is a specific example of how queue-per-host became
necessary to deploy DCTCP. During our first region rollout,
it turned out that many in-region connections establishments
were timing out. After one second, the Database client code
making this connection would time out and report an error.
Packet loss and retransmissions overall were down, utilization
up; the typical signals of network performance looked good.

We have a set of tools that instrument retransmissions gen-
erated by the Linux kernel using eBPF “tracepoints” and
“kprobes.” While the kernel’s built-in counters can track how
often retransmissions happen, with eBPF we can classify what
generated the retransmission (timeout? duplicate ACK?) what
was retransmitted (a SYN? SYN/ACK? a tail loss probe?),
and which services were the endpoints of these retransmis-
sions. We observed both SYN retransmissions toward the
Database server and SYN/ACKs in return.

The issue was that while SYNs and data packets were
marked as being ECN-capable, potentially being marked, the
listening socket did not mark the SYN/ACK as being ECN-
capable, directing it into the Cubic connection packet drop
profile. With DCTCP acting aggressively due to the too-high
effective threshold, DCTCP traffic from—potentially from
other hosts in the MH NIC—would fill the space between
its mark threshold and the Cubic drop threshold, causing the
“Cubic” seeming SYN/ACK to be discarded.

We were fortunate that this problem affected this Database
client, which had a hard-coded application level timeout just
long enough that SYNs and SYN/ACKs would be retransmit-
ted. With that information, it was easy to find endpoints that
saw SYN/ACK loss. Many other services abandon connec-
tions after a short timeout, and thus do not retransmit SYN
packets; such services also reuse connections, making them
less sensitive to problems in the three way handshake.

Enabling the queue-per-host feature immediately solved
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this problem, though we also prepared BPF filters that
would look at each packet to ensure that DCTCP-negotiating
SYN/ACK packets would be ECT marked, just in case.

4.5 Experience with different switch ASICs
We discussed in §4.3 how we tuned our ECN and Droptail
thresholds for the ToR layer. At the time of initial deploy-
ment, the vast majority of ToR switches had the same ASIC,
which we refer to as Asic-A1. However, our production net-
work continued to evolve, with newer ASICs from the same
manufacturer (Asic-A2), and a new ASIC from a new vendor
(Asic-B). There are two major issues to consider about switch
ASICs when we rely on them for congestion marking: buffer
sizing and ECN implementation.

In our case, initially, the newer ASICs, Asic-A2 and Asic-
B inherited the thresholds that we developed for Asic-A1.
Asic-A2 had the same architecture as Asic-A1, though it had
4x the buffers. With host NIC speeds also evolving, the newer
switches also served faster NICs (2-4x). Put together, although
the original thresholds were not always optimal, they still
resulted in reasonably good performance.

However, Asic-B had a fundamentally different approach to
buffer design and management making our thresholds behave
differently from Asic-A family. For service operators, ToR
placement is considered to be transparent: however, with Asic-
B, performance was potentially now dependent on the ToR
hardware; we explain the differences in ASIC architecture
that proved consequential for threshold tuning next.

Queue management. Asic-B used separate Virtual Output
Queues (VOQs) for ECN-Capable Transport (ECT) traffic
and non-ECT traffic, which facilitated isolating these two
classes of traffic, even when they are destined to the same
host. For Asic-B, we could separate out DCTCP and Cubic
buffer threshold tuning as two independent problems. How-
ever, this raised unexpected, somewhat intractable issues due
to how the shared buffer was allocated in Asic-B.

Buffer allocation. Asic-B’s shared buffer space is divided
into separate “slices”, and buffer thresholds are applied in-
dependently in each slice. This is in contrast to Asic-A fam-
ily where the shared buffer pool is broken down into ingress
traffic managers (ITMs), but the buffer threshold for a spe-
cific VOQ is applied as the sum of buffer to that VOQ across
all the ITMs. This distinction was particularly important for
any traffic pattern more than a single flow: any such traf-
fic could end up consuming effectively more buffer space
on Asic-B–across all slices–compared to Asic-A family for
the same buffer thresholds. Needless to say, naively reducing
thresholds by a factor of number of slices was not an option
because that would affect individual flows that get mapped
to a single slice when we did not have incast.

Quantized thresholds. Further complicating threshold de-
ployment, the Asic-B architecture used “quantized” regions,

resulting in a small number of actual threshold values, which
meant that it did not support arbitrary thresholds, and any
configured threshold between two quantized values would
be applied on the lower value. For example, if the quantized
regions are at 100KB and 200KB, the configuration would
accept 120KB, but it would actually apply the threshold at
100KB. This quantized buffer management reduced the ef-
fective parameter space; although this had the potential to
simplify search, it also reduced tuning flexibility.

Quantized drop probabilities. Similar to thresholds, Asic-
B also has quantized drop probabilities (important for
schemes such as Drop Tail and WRED. This made it hard to
model WRED’s performance in our fleet as it was unclear
if WRED would perform consistently for different sets of
flows with the same thresholds and drop probabilities.

Drop decisions. Although all our ASICs have a notion of
dynamically shared buffers, Asic-A family and Asic-B use
very different logic to share available buffer. The Asic-A
family use the α parameter to share available buffer, while
Asic-B uses a function based on the total buffer use, the
VOQ size, and the delay experienced by the last packet sent
from the VOQ. These values were quantized and used to
index into a lookup table. Compared to the Asic-A family’s
single-parameter shared-buffer model, this mechanism is
substantially more complicated, with many knobs to tune.
This was further compounded by the fact that the value of
these knobs were not always known to us.

These differences are irreconcileable—it is impossible to
guarantee that a specific traffic pattern will see the same buffer
and marking or drop probabilities across all platforms, or even
just across Asic-A2 and Asic-B, which we consider to be gen-
erationally equivalent. Even with only a single parameter to
tune—ECN—the above challenges underscore the difficulty
and complexity of parameter tuning, particularly for more
complex parameter-sensitive protocols, in an increasingly het-
erogeneous network similar to ours.

5 Visibility for Operations

We approached visibility from two perspectives. First, we
looked at metrics from each of the layers in the network—
from switches and their counters through to services and
their query times. Second, we looked at covering different
time scales—fine-grained debugging at RTT scale, looking at
packet traces, out to long term trends in network metrics such
as retransmissions. Visibility and monitoring are important
components to any deployment effort. We needed to ensure
that our regular monitoring systems were enhanced to account
for CCA where possible, and DCTCP-specific counters, such
as packet counts with ECT/CE bits set.
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5.1 eBPF for monitoring

We used eBPF-based instrumentation extensively to monitor
the DCTCP deployment. Similar to our enablement efforts, we
found that kernel-maintained counters are not always enough:
they do not separate bytes sent with DCTCP and with Cubic,
or in-region and cross-region traffic. Similarly, counters of
retransmissions have major limitations, as we describe later.

Each TCP connection has a field that stores the CCA for
that connection. This allows us to track, using our fbflow [25]
packet sampling implementation, the specific CCA that gov-
erned that transmission. With this, we can quickly confirm
that in-region flows are using DCTCP when we expect them
to, and that the overall bit rate of in-region traffic is about the
same before and after enablement.

We also instrument and log retransmissions with an eBPF-
based system that traps calls to the tcp_retransmit_skb
function, and annotates the retransmission event with the type
(timeout, fast, syn, and synack), CCA, information about the
endpoints and the services involved. The CCA field doesn’t
always have a well defined answer, since a SYN packet can
be retransmitted before ECN capability has been negotiated.

5.2 The puzzle of more retransmissions

We observed unexpected increases in retransmissions, both in
kernel netstat counters (RetransSegs), and in our eBPF-based
pipeline. Packet discard counters at switches were down; so
why would the kernel need to retransmit more often?

This increase in retransmissions turned out to be a result
of tail loss probes (TLP) [11]. TLP is a means of guarding
a TCP connection from a packet loss that otherwise needs
a complete RTO to recover. The sender eagerly retransmits
as soon as an ACK is overdue, in order to repair the missing
packet, to receive an ACK that identifies the missing packet,
or to confirm that the original was delivered.

The algorithm for deciding when to send a TLP imple-
mented in Linux is to set a timer after each transmission,
set to expire after two times the RTT plus two “jiffies” (i.e.,
milliseconds when the constant HZ is 1000). We observed
that DCTCP reduced queueing and RTTs; on hosts that were
somewhat busy and needed a couple milliseconds to answer a
query, this reduction was enough to shift the connection from
not seeing a TLP (a 3ms RTT would lead to an 8ms TLP timer,
and 8ms was plenty to generate the response) to seeing TLPs
frequently (a 0ms RTT leads to a 2ms TLP timer). Although
there is a counter of transmitted TLPs, it includes both new
data and retransmissions, since both can be used in a TLP; the
count of necessary retransmissions is not easily recovered.

We adjusted our instrumentation to identify this class of
retransmission, allowing us to largely ignore them to focus in-
stead on other retransmissions when debugging performance.
TLPs may be wasteful in the common case of a DCTCP con-
nection, where losses are infrequent and RTTs short, but we

have not yet experimented with disabling it; the overhead of
sending the TLP is low and it may help in certain situations.

5.3 Metrics we monitored for sanity checks
We also monitored existing network metrics that tell us the
network state of the fleet. These included metrics from the
hosts (e.g., throughput, socket counts, RTOs, TCP memory,
CPU utilization), from switches (link utilizations, buffer uti-
lization, congestion discards, queue lengths). To this existing
set of metrics, we also added ECT and CE marked packets.
These data provided us with baseline assurances that DCTCP
was not unnecessarily throttling links, and that it was indeed
reducing buffer utilization and packet discards in switches,
and that the ECN signaling was working as expected.

We also focused on service monitoring identifying top
services in the region of rollout and proactively alerting their
oncalls to the rollout. In addition we worked on aggregating
metrics to allow both problem identification and the ability
to dig into them. The aggregations allowed users to go from
a single host to a service to the entire region to see what the
scope of an anomaly was and vice-versa from a region level
anomaly to a host facing the issue.

Another effort we undertook was to identify if the network
improvements were attributable only to DCTCP rollout or
some other parallel network change caused by say a higher
surge or users in the region. To perform this we created a
background signal using all the non-rollout regions and com-
pared it with the signal from the rollout one. We were able
to ascertain a statistically significant correlation between the
rollout of DCTCP and the improvements in the metrics.

5.4 Metrics that helped us troubleshoot issues
Troubleshooting performance is important—whenever a
change of this magnitude is made to the network, any per-
formance degradation seen by services are attributed to the
network, whether deserving or not. In such scenarios, the abil-
ity to confirm that the network is at fault, or not, can make
the difference between a successful versus an unsuccessful
deployment. There were several metrics that helped us trou-
bleshoot issues, and blame our rollout as appropriate. We list
two in this section.

Connection set up failures: For the Database issue we
discussed in 4.4.1, we noticed that connection set up failures
spiked at the time of the rollout. This metric was a fleet-wide
existing counter; it eventually led us to the root cause, when
we saw with the retransmissions data ( 5.1) that SYNs were
affected. Ultimately, we needed tcpdump to identify that the
ECT bits were missing in the SYNACK.

Hardware tagging: During the initial wave of rollouts, we
started noticing that a particular service in a few regions were
seeing increased fast retransmissions and timeouts. This led
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us to initially wonder if the service was bursty, and whether
DCTCP was unable to handle the bursty traffic. However,
NIC vendor tagging in our retransmissions data isolated the
issue to only one particular vendor, and service tagging in
the same dataset told us that other services were affected as
well, just not to the same extent. We also built tools for burst
visibility that helped us root cause the issue to a driver bug.

The general takeaway is that in a vast and heterogeneous
network such as ours, we need extensive monitoring of a
variety of network metrics. Even if most of them are not used
day-to-day, or point to symptoms rather than the cause, they
help isolate the issue and focus the effort to root cause, saving
hours or more of engineer time.

6 Kernel and driver trouble

DCTCP exposes a set of interactions with features in the
kernel and NIC driver that can lead to undesirably poor or
uneven performance. At a high level, the smaller congestion
windows of DCTCP mean that CPU-efficiency techniques
for segmentation offload (“TSO”) and reassembly offload
(“GRO”) behave a little differently, perhaps adding delay
waiting for more data to work with, or simply requiring more
operations to send the same number of packets.

Others have noticed performance issues that result from
interactions between the kernel’s typical use of Cubic, with
large windows and large backoff, and DCTCP. For example,
Misund [23] notes an interaction between DCTCP, propor-
tional rate reduction [10] and segmentation offload.

6.1 Delayed ACKs
DCTCP appeared in the Linux kernel in 2014 [7], with sub-
stantial fixes to delayed ACK handling in 2018. The central
bug was that when the sender has a congestion window of
1, the receiver did (but should not) delay its ACK [9]. The
delayed ack timeout was 40ms by default, resulting in con-
nection having a CWND of 1 stalling that long. We had to
backport this change to a significant set of hosts running an
older kernel. Although we try to upgrade to the newest kernels
whenever possible, sometimes there are specific regressions
or driver issues that give older kernels extended life.

6.2 GRO creates unfairness
In addition to issues with delayed acks, a certain vendor NIC
delayed delivering packets that it expected to be able to re-
assemble, and this delay led to wild imbalance in throughput
in small scale testing. In particular, an established test flow
would reach 91% of link rate, while a second flow would only
get 2%. Of course, the fraction of packets being ECN marked
was comparable, so one would expect the two flows to con-
verge as they would on a different NIC. With much testing,

sending small RPCs that were not delayed, and tcpdump at
both ends, we found that the NIC was applying the following
rule for its GRO. The NIC would deliver if it could reassemble
ten packets, if it saw a push bit, or after 1 millisecond.

In practice, this rule meant that flows with a CWND below
ten packets would see an extra millisecond added to their
delay, and flows having larger windows would not. This GRO
rule probably didn’t affect long RTT flows, where the 1ms
timer was relatively small. But inside the same datacenter, this
is much larger than the base RTT. This difference in effective
RTT reinforced the unfair distribution of bandwidth between
them. To fix, we had to disable hardware GRO for this NIC.
There were other alternatives (e.g., to force setting push bits
on segments that would not otherwise merit them), but the
complexity did not seem worth it.

6.3 New eBPF

In Section 3, we described how BPF provided our best means
to express policy about which connections should use DCTCP.
However, this left us some additional problems.

First, we had to fix issues with getting ECT marked on
SYN/ACKs based on the decision to use DCTCP. This was
possible (the decision is made by the BPF code before the
SYN/ACK is sent) but was not the default behavior.

Second, to give more flexibility in how DCTCP adapts to
different signals, we reimplemented DCTCP in BPF. New
features in Linux allow BPF-based congestion control, and
we can use the same logic as before to attach a BPF con-
gestion control algorithm to a new socket. However, we also
want to be able to upgrade the BPF-based congestion control
algorithm “on the fly,” replacing the algorithm used by an
existing connection. Although it isn’t practical to “upgrade”
Cubic to DCTCP (if ECN wasn’t negotiated, the signal won’t
be there), replacing one “version” of DCTCP with another
allows us to keep fewer versions in use. The key feature here
is “bpf-iter,” which allows running a loop over all sockets
in the system. With this loop, we can replace the congestion
control algorithm on every active socket. This is far better
than alternatives (drain a datacenter, terminate connections,
or wait until all the old connections disappear).

Implementing eBPF CCA. We leverage struct-ops [19],
an eBPF interface to implement DCTCP through specific ker-
nel function pointers, to create an eBPF program that provides
a tcp-congestion-ops structure [1] implementation to the
TCP subsystem. This capability allows us to manage CCAs
similar to all the other eBPF programs we already manage in
the fleet. Our DCTCP eBPF implementation closely matches
the kernel eBPF example [18].

Managing eBPF CCAs. We built NetEdit [16], an agent
that orchestrates the composition, deployment and life-cycle
management of network eBPF programs across our fleet of
servers. NetEdit supports implementation, experimentation,
testing and rollout of custom CCAs. This allows us to select
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fleetwide defaults for different RTT and also run active ex-
periments at desired scales (specific services or data center).
We push a new version of NetEdit almost every week. This
allows fast iteration on CCA changes.

7 Ongoing Work, Limitations, Enhancements

This paper up to this point has been primarily about enabling
DCTCP and making it work for in-region traffic, and enabling
ECN on ToR-switch downlinks. This was a large first step.
In this section, we describe some of the follow-on steps: en-
hancements we made to signaling, and CCA development
based on our experience with the deployment. We also list
the limitations of DCTCP, in particular for our traffic, and
ongoing and future work to mitigate the limitations.

7.1 ECN marking on other hotspots

Our focus on marking from the ToR down ignored all the
other links in the network maximizing benefit by targeting
where most congestion occurs: most services overload their
inbound network connection. However, there were a few cases
where the ToR downlink was not the major bottleneck.

The first instance was when the ToR saturated its uplinks;
we saw this situation in cases where there were several write-
heavy services concentrated on racks, or when the rack did
not have its entire capacity available due to maintenance. For
such cases, we enabled ECN on the ToR link uplinks

The second instance was when ToR downlink congestion
bled over up into the fabric: this happened when there were
several read-heavy services concentrated on a rack, with their
incoming traffic bursts synchronized at millisecond timescales.
This resulted in high contention in both the ToR buffer, as
well as the fabric switch immediately uplink of the ToR. To
mitigate these cases, we deployed ECN on the fabric switch
down links. For both this case as well as the ToR uplinks, we
reused the original ECN/DropTail thresholds, which worked
well enough. We saw a reduction in uplink queue length
and buffer watermark on the switches as well as incoming
retransmissions on the hosts.

The third—and surprising—instance was when we saw
significant packet discards on the host NIC. This happened on
the newer generation faster NICs; our hypothesis is that the
host CPU is unable to keep up with faster bursts, resulting in
the local NIC buffer overflowing. ECN on the NIC buffer is
available to us on a subset of our vendor NICs, however, only
one vendor implementation allows us to turn on this feature
without rebooting the NIC. None of the vendors provided the
means to tune the threshold—in fact, even the marking thresh-
olds are not public information. These limitations meant that
we could not deploy NIC ECN marking; however, limited
testing showed promise in reducing NIC drops when we en-
abled it on one vendor NIC with just the default threshold.

Figure 4: ECN marking on NICs reduces retransmissions.

We tested this feature on one host that was experiencing sub-
stantial NIC buffer drops. Turning on this feature reduced
incoming retransmissions by about 30% (Figure 4). As host
NICs become faster, challenging the CPU’s ability to keep
up with the incoming traffic, we expect that host-network
congestion will become a larger problem for us to resolve.

7.2 Limitations of DCTCP

DCTCP does not solve all congestion issues. Figure 1
showed that DCTCP significantly reduced retransmission
rates; it also shows that the gains are uneven across re-
gions, and there is a significant amount of retransmissions
that DCTCP is unable to solve. Some of it was due to other
hotspots in the network and NIC that we observed and in some
cases fixed (Section 7.1). A significant amount, however, is
caused by traffic and network characteristics, which DCTCP,
in its current form, is unable to solve. Our traffic is charac-
terized by short and heavy incast bursts [13]. Short bursts
do not allow the incast senders to converge, resulting in high
buffer usage even with ECN. Heavy of the incast means that
a CWND of 1, the lowest DCTCP can maintain, is too high.
Other work has tackled high-degree incast [2,14,17,21]; they
require enhanced hardware support and a new networking
stack. Our bursts can also synchronize across hosts in a ToR:
with our ToR buffers being shallow and dynamically shared,
synchronized bursts result in contention and high buffer pres-
sure on the ToR, meaning that bursts can receive variable
buffer allocation depending on the degree of synchronization.

Although DCTCP by itself is unable to solve the above
challenges, we are working on complementary systems and
better CCAs that can. One area of ongoing work is receiver-
based flow control to help senders converge faster and more
reliably [22]; this has resulted in significant wins. Buffer
tuning to manage contention is a promising area of research
as well. Ultimately though, ECN is a coarse signal which has
its limitations; we are working on using delay-based signals
that offer more responsive congestion control.

Jumbo frames. Jumbo frames are more efficient on the net-
work; however, enabling Jumbo faced challenges to enabling
DCTCP—different kernels and NICs support larger packets
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differently; there are bugs in the handling of, say, large TCP
fast open SYN packets or in handling a mixed configuration
of MTU sizes on MH NICs. We note that open questions exist
on how jumbo and non-jumbo frames interact, and whether
our empirically derived thresholds need revisiting as frames
are larger. We leave that for future work.

7.3 DCTCP implemented in BPF
We reimplemented DCTCP using the recent “bpf-cc” system,
a task made a bit easier by the software that used BPF to
enable DCTCP. This alternate implementation of the same
CCA allows us to make modifications both minor—such as
experimenting with different parameters—and major—using
the established framework of DCTCP’s response to ECN
as a foundation, but building-in a response to delay or loss
that differs slightly for our environment. Finally, our BPF
implementation of DCTCP allows us to log internal CCA
state (e.g., to log cwnd every RTT) rather than infer it from
packet capture analysis.

We ran extensive tests comparing in-BPF to in-kernel im-
plementations of DCTCP, using long flows as well as small
and large RPCs. CPU use at sender and receiver was about the
same (perhaps dominated by other parts of packet processing).
Both implementations were fair to each other, getting roughly
the same throughput alone and in contention.

8 Takeaways and Conclusion

We leave the community with a few observations about de-
ploying CCAs in a large scale production network, which we
hope will influence CCA research.

Deploying a CCA in production is not a flip of a switch.
Safely and incrementally deploying changes leads to a transi-
tion period where there is a mixture of CCAs in use. This is
not just due to hosts and network devices that have not picked
up the changes, but also due to existing connections that have
not (and might not be able to) flip over. The resultant transi-
tion period could vary depending on the complexity of the
switch as well as the nature of the connections / traffic. This
means that we have to consider performance during transition
as well—if the stable states has excellent performance, but
the (long) transition period could have significantly degraded
performance, the switch will be more complex. Much of CCA
research focuses on the stable state after the transition; in-
sights into how the transition period could affect performance
would be immensely useful to plan the deployment.

Data centers are complex and heterogeneous. CCAs
must be simple, and forgiving. The mixture of hardware
(NIC vendors, NIC speeds, switch vendors, switch ASICs,
queues), software (OS kernels, driver versions), and applica-
tions (bursty, variable RTT, latency/throughput/tail sensitive),
and the combinations thereof can be daunting—making any
planned deployment a logistical challenge. While it may be

impossible to account for every eventuality prior to deploy-
ment (indeed, we discovered a good number of issues only
in retrospect), simpler CCAs can be easier to reason about
and plan for. This means that new requirements either in the
network (ECN, network telemetry) or in the host (hardware
timestamps) need to be as minimal and simple as possible.
The tuning of the new features must also be as forgiving as
possible. Much work has gone into identifying ideal ECN
thresholds—however, those assume ideal cases where there is
no sharing with other CCAs, and the threshold search space
is continuous, and not quantized. We were unable to deploy
those ideal thresholds, instead having to do extensive testing
to find “good-enough” thresholds that resulted in reasonable,
though not ideal performance. A CCA that relies heavily on
tuned parameters without graceful degradation is harder to
deploy successfully in a large scale data center.

Expecting the unexpected. Sometimes long-deployed
(and forgotten) configurations or optimizations can be ex-
posed with new CCAs. An ideal CWND size that is only
large enough to make full theoretical use of the network link,
for example, might not be large enough to trigger the NIC
to deliver a reassembled collection of packets, resulting in
increased latency, or worse, breaking fairness. Simplicity of
CCAs can also reduce probability of bad interactions with
other components such as host and NIC optimizations, but it
may not be possible to account for every eventuality.

Hotspots may occur in unexpected places. CCAs must
have good fallbacks. CCAs moderate how concurrent flows
share a known bottlenecked resource, but the location of the
bottleneck (in-network, host-side, multi-host NICs) is not
necessarily clear. A bottleneck in an unexpected location,
which is not amenable to deploying the signal that the CCA
relies on can be problematic. For example, when we found
NIC bottlenecks, we realized that we could not deploy ECN
there; therefore packet loss in NICs continued to occur, with
DCTCP reacting suboptimally to such losses, being designed
to respond optimally to ECN and not loss.

Ultimately, a CCA that might work well analytically and
in simulation might not work well in practice—we hope that
our experience guides researchers avoid common pitfalls, and
design CCAs with an eye towards real-world deployability.
Our experience with DCTCP has also guided our own evalua-
tion of the potential of more advanced CCAs with reliance on
wider set of signals: in-network telemetry, fine grained hard-
ware timestamps, or early congestion signaling from switches.
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