
This paper is included in the 
Proceedings of the 21st USENIX Symposium on 

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the 
21st USENIX Symposium on Networked 

Systems Design and Implementation 
is sponsored by

Swing: Short-cutting Rings  
for Higher Bandwidth Allreduce

Daniele De Sensi, Sapienza University of Rome; Tommaso Bonato, ETH Zurich; 
David Saam, RWTH Aachen University; Torsten Hoefler, ETH Zurich

https://www.usenix.org/conference/nsdi24/presentation/de-sensi



Swing: Short-cutting Rings for Higher Bandwidth Allreduce

Daniele De Sensi
Sapienza University of Rome

Tommaso Bonato
ETH Zurich

David Saam
RWTH Aachen University

Torsten Hoefler
ETH Zurich

Abstract
The allreduce collective operation accounts for a significant
fraction of the runtime of workloads running on distributed
systems. One factor determining its performance is the num-
ber of hops between communicating nodes, especially on
networks like torus, where a higher number of hops implies
multiple messages being forwarded on the same link, thus
reducing the allreduce bandwidth. Torus networks are widely
used on systems optimized for machine learning workloads
(e.g., Google TPUs and Amazon Trainium devices), as well
as on some of the Top500 supercomputers. To improve allre-
duce performance on torus networks we introduce Swing, a
new algorithm that reduces the number of hops between com-
municating nodes by swinging between torus directions. Our
analysis and experimental evaluation show that Swing outper-
forms by up to 3x existing allreduce algorithms for vectors
ranging from 32B to 128MiB, on different types of torus and
torus-like topologies, regardless of their shape and size.

1 Introduction and Motivation

Allreduce is a collective operation used to aggregate vectors
among a set of nodes and to distribute the aggregated result
back to them. Allreduce is widely used to perform distributed
gradient aggregation when training deep learning models [10].
Studies have shown that it can account for up to 40% of the
total training time [32, 45, 51] and between 19% and 30%
of the total core hours in MPI jobs running on production
supercomputers [14].

In this work, we design a new allreduce algorithm opti-
mized for torus-like networks. Torus networks are widely
used, both on systems optimized for running machine learn-
ing (ML) workloads and on some of the top supercomput-
ers [2, 11] (e.g., Fugaku uses a 6D torus [4]). Although torus
networks are characterized by a lower bisection and global
bandwidth compared to other topologies (e.g., Clos), their
simplicity and lower cost allow running some workloads such
as ML training in a more cost-effective way, since their com-
munication is often arranged as a 3D logical torus [26].

Seen from a different perspective, torus networks trade off
a lower cost for a lower bisection bandwidth, which, however,
is enough to train most ML models efficiently [26]. This is
the reason why many systems optimized for ML training rely
on torus-like topologies. These include, for example, Google
TPUs [31] (a TPU v5p pod connects ∼ 9,000 chips on a 3D
torus [15]), Amazon Trainium devices [7] (16 chip on a 2D
torus), Graphcore IPU-POD [24] (connecting 64 chips on a
2D torus), Enflame [40] (2D torus).

Researchers proposed several allreduce algorithms [6, 29,
50], and the most performing one depends on a combination
of vector size, number of nodes, and physical topology [27,49].
Those algorithms perform a predefined number of steps and,
at each step, each node sends and receives data to and from
some predetermined nodes. Different trade-offs exist between
the number of steps to perform (more critical for allreduce
on small vectors) and the total number of bytes it transmits
(more relevant for larger allreduce). However, a third factor
that must be considered when designing a new collective
algorithm is the number of hops between communicating
nodes [38,44,49,50]. This is particularly relevant on networks
that do not provide full bisection bandwidth such as torus,
since the higher the number of hops, the higher the number
of flows sharing the same links.
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Figure 1: First three steps of the recursive doubling and Swing
allreduce algorithms on a 1D torus with 16 nodes.

We show the importance of the number of hops in the allre-
duce through an example. In Fig. 1, we show a 16 node 1D
torus (we only show a subset of the nodes since the commu-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1445



nications are symmetric). We assume minimal (i.e., shortest
path) routing and we show the communications performed
by the bandwidth-optimal recursive doubling algorithm [50]
(also known as Rabenseifner algorithm [41], which we de-
scribe more in detail in Sec. 2.3.3), and by the Swing algorithm
(that we propose in this work).

Both algorithms perform the same number of steps (we
show only the first three for simplicity). We denote with n
the number of bytes of the allreduce vector. In the first step,
in both algorithms, each node r sends n/2 bytes to node q =
r XOR 1 (and receives n/2 bytes from it). In the second step,
however, in the recursive doubling, each node r sends n/4
bytes to node q = r XOR 2 (two hops distant), whereas in the
Swing algorithm, each node still sends n/4 bytes of data, but
with the other neighbor (one hop distant).

Although both algorithms transmit the same number of
bytes, two different messages cross the same link in the re-
cursive doubling. For example, two messages cross the link
between nodes 1 and 2 and that between nodes 5 and 6. As
a consequence, in the worst case all nodes transmit data at
most at half the bandwidth of the link between 1 and 2, thus
slowing down the entire allreduce operation. Instead, in the
Swing algorithm, each node can still transmit at full band-
width because, in this example, in the second step each link
is crossed at most by one message per direction. Something
similar also happens in the third step. Indeed, when using
Swing at most two messages cross each link instead of the
four messages crossing the link between nodes 3 and 4 in
recursive doubling.

It is thus clear how even if two different algorithms transmit
the same number of bytes and perform the same number of
steps, they might have different performance, depending on
the network characteristics and the distance between commu-
nicating nodes. In this example, we have shown an extreme
case using a 1D torus. However, similar effects can happen on
any topology that does not provide full bisection bandwidth.

Although some algorithms (i.e., ring [38,50] and bucket [9,
29,44]) avoid this problem by having each node communicate
with its neighbors only, they perform more steps (linear in the
number of nodes) and are thus not well-suited for small- and
medium-sized vectors. Those are the sizes that, however, are
practically used in most machine learning [35] and HPC [14]
workloads. Indeed, larger allreduce are split into smaller ones
to overlap better computation and communication, especially
more when using 3D parallelism in machine learning train-
ing [10].

This work makes the following contributions:

• We design a new allreduce algorithm called Swing, which
performs a logarithmic number of steps and transmits the
minimal number of bytes while reducing the distance be-
tween communicating nodes compared to other known al-
gorithms designed for small- and medium-sized vectors
(Sec. 3 and Sec. 4).

• We evaluate Swing on different torus and torus-like topolo-
gies (e.g., HammingMesh [26] and HyperX [3,20]), by com-
paring it with the best state-of-the-art algorithms (Sec. 5).
Our evaluation shows that Swing outperforms the other ex-
isting algorithms for allreduce on vectors ranging from 32B
to 128MiB on different torus-like topologies, and regardless
of their shape and size. We show that Swing outperforms
the best-known algorithm up to 2.2x on square torus with
4,096 to 16,384 nodes and up to 3x on rectangular tori and
HyperX with 4,096 nodes.

2 Background

2.1 Targeted Collectives
We briefly introduce the reduce-scatter and allgather collec-
tives since for medium and large vectors, Swing allreduce
algorithm executes a reduce-scatter followed by an allgather
(similarly to the Rabenseifner algorithm [41]). In the reduce-
scatter, the compute nodes reduce vectors (one per node) using
a reduction operation (e.g., addition) and shard the resulting
vector across all the nodes. In the allgather, each node pro-
vides a vector that they concatenate and distribute to all the
nodes.

If the vector contains a number of elements larger or equal
than p, the nodes can run the allreduce as a reduce-scatter
followed by an allgather [50]. I.e., they aggregate vectors com-
ing from all the nodes and distribute back the resulting vector.
Although for space reasons we mainly target the allreduce,
Swing can also be used for performing reduce-scatter and
allgather collectives, as well as any other collective operation
where recursive doubling or binomial tree can be used (e.g.,
broadcast and reduce) [49].

2.2 Notation and Model
We consider D-dimensional tori of size {d0,d1, . . . ,dD−1},
and we denote with p the number of nodes in the torus, i.e.,
p = d0 · d1 · . . . · dD−1. We assume the collectives run on p
nodes, that ranks are mapped to nodes linearly and, without
loss of generality, to have one process (or rank) per node. We
assume that each node in the network has 2 ·D ports, that
each link is bidirectional, and that each node can send 2 ·D
messages and receive 2 ·D messages concurrently (one send
and receive per port). We also assume the network forward
packets using minimal adaptive routing, and that does not
have any hardware support to accelerate collective operations
(e.g., in-network aggregation [6, 18, 23]).

To support the description of the different algorithms, we
model their performance with the commonly used latency and
bandwidth model [5, 16, 39]. We model the communication
time T (n) to send n bytes in a point-to-point communication
as T (n) = α+ nβ, where α represents the latency (i.e., the
time for the first byte to reach the destination), and β the time
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NAME DESCRIPTION
D Number of torus dimensions

d0, . . . ,dD−1 Size of each dimension
n Size of the vector to reduce
p Number of nodes in the network
Λ Latency deficiency
Ψ Bandwidth deficiency
Ξ Congestion deficiency

δ(s) Number of hops between 2 communicating nodes at step s
ρ(s) ∑

s
i=0 −2i

π(r,s) The node with which node r communicates at step s

Table 1: Variables and functions used in our modeling.

to transmit a single byte (it can be seen as the inverse of the
bandwidth). When modeling collective operations involving
data reduction, researchers also consider an additional γ term
to model the aggregation cost. To avoid burdening the no-
tation, we do not model this term explicitly since Swing is
no worst than the other algorithms in that regard and most
implementations overlap the aggregation with the communi-
cation [37, 52].

Collective operations involve multiple communication
steps. Previous works proved that the allreduce requires at
least log2 p steps and the transmission of at least 2 p−1

p n ≈ 2n
bytes of data [9]. Hence, the optimal allreduce time can be
modeled as T (n) = α log2 p+β2n. However, because each
node has 2D ports, bandwidth-optimal algorithms distribute
the data equally across all the ports [9,26,29,44], and we can
model the allreduce time as T (n) = α log2 p+ β

n
D In prac-

tice, however, algorithms have some deficiency compared to
optimal, either in the latency or the bandwidth terms (or in
both).

We consider three different type of deficiencies: i) latency
deficiency (Λ) i.e., how much the latency is higher than the
optimal; ii) algorithmic bandwidth deficiency (Ψ), i.e., how
many more bytes does the algorithm transmit; iii) congestion
bandwidth deficiency (Ξ) i.e., what is the bandwidth slow-
down caused by multiple messages of the same collective
being forwarded on the same link (as discussed in Sec. 1).
We can see deficiencies as multiplicative factors that denote
how much an algorithm is distant from the optimal (e.g., a
latency deficiency of one means that the algorithm is latency
optimal), and we can thus model the allreduce time as:

T (n) = log2 p ·α ·Λ+
n
D

β ·Ψ ·Ξ (1)

For brevity, we refer to Ψ as bandwidth deficiency and to
Ξ as congestion deficiency. While Λ and Ψ only depend on
the algorithm, the congestion deficiency Ξ depends on the
network. To simplify the notation and the discussion, in the
following, we are only going to model the three deficiencies Λ,
Ψ, and Ξ. We summarize the variables we use in our modeling
in Table 1.

2.3 State-of-the Art Algorithms
In the following, we review and model the main allreduce
algorithms for multidimensional torus, and we summarize
in Table 2 their deficiencies, as well as those of the Swing
algorithm.

2.3.1 Hamiltonian Rings

Ring allreduce algorithm [38, 50] runs a reduce-scatter fol-
lowed by an allgather. Each node splits its data into p equally
sized blocks. For both the reduce-scatter and the allgather,
the algorithm performs p− 1 steps. Nodes are arranged in
a ring, and at each step, each node sends a block to its right
neighbor and receives a block from its left neighbor. Because
the algorithm performs 2(p−1)≈ 2p the latency deficiency
is Λ = 2p

log2 p .
The algorithm sends ≈ 2n bytes (n in the reduce-scatter

and n in the allgather). On multiport networks (assuming
2D ports), it splits the data into 2D parts (of n/2D bytes
each) and runs one ring algorithm on each part (each sending
and receiving to and from a different port). Since it sends a
minimal number of bytes and uses all the ports, the algorithm
has no bandwidth deficiency (Ψ = 1).

Moreover, because each node only communicates with
neighbors on a 1D torus, the algorithm does not have con-
gestion deficiency since each link is used by at most one
communication in each direction. In the version optimized for
the 2D torus, the four rings that run in parallel are mapped into
two edge-disjoint Hamiltonian cycles (one per direction) [26]
so that each link is still used by at most one communication
per direction (thus Ξ = 1). To our knowledge, this algorithm
does not work for D > 2. Moreover, the algorithm can build
the two edge-disjoint Hamiltonian cycles on an r×c 2D torus
only if r = c · k, k ≥ 1 and the greatest common divisor be-
tween r and c−1 is 1, which limits the applicability of the
algorithm.

2.3.2 Latency-Optimal Recursive Doubling

The latency-optimal recursive doubling algorithm [50] exe-
cutes log2 p steps (thus it has a latency deficiency Λ = 1). At
each step s (we denote steps starting from 0), each node r
sends its vector to node q = r XOR 2s (assuming p is a power
of 2) and receives q’s vector, which aggregates with its own
before moving to the next step. When running on a torus, if
the size of each dimension is a power of two, it can keep a
shorter distance between communicating nodes by commu-
nicating in a different dimension at each step, as shown in
Fig. 2.

Each node transmits n log2 p bytes of data. To our knowl-
edge, no multiport versions of this algorithm exist, and we
model its bandwidth deficiency as Ψ = D log2 p. Each node
communicates with D nodes at distance 2i (one per dimen-
sion), with 0 ≤ i < log2 p−1

D . For this algorithm, the number
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Figure 2: Example of recursive doubling on a 4x4 torus. Wrap-
around links are not shown.

ALGORITHM LAT. DEF. (Λ) BAND. DEF. (Ψ) CONG. DEF. (Ξ)
D=2 D=3 D=4

RING 2p
log2 p 1 1

REC.DOUB. (L) 1 D log2 p 2D D√p
REC.DOUB. (B) 2 2D 2D−1

2D−2

BUCKET
2D D√p
log2 p 1 1

SWING (L) 1 D log2 p 4
3 D D√p

SWING (B) 2 1 1.19 1.03 1.008

Table 2: Algorithms deficiencies on D-dimensional torus with
D ≥ 2. (L) and (B) stands for latency-optimal and bandwidth-
optimal (-optimized for recursive doubling) respectively.

of messages forwarded on the most congested link is equal
to the distance between communicating nodes1. We can thus
estimate the congestion deficiency as the sum of the dis-
tance between communicating nodes over all the steps, i.e.,

Ξ = D∑

log2 p−1
D

i=0 2i ≤ 2D D
√

p.

Non-power-of-two If the size of a dimension is not a power
of two, some extra steps are needed. One possible solution
consists in reducing the number of nodes to the largest power-
of-two p′ < p [8,12]. Before starting the allreduce, each node
in the range (p′, p−1) sends its data to a node in the range
(0, p′ − 1). Then, the first p′ nodes run the allreduce and,
when completed, send the reduced data to the nodes in the
range (p′, p−1). This algorithm increases all the deficiencies
compared to the case where p is a power of two, but we do
not model this explicitly for brevity.

2.3.3 Bandwidth-Optimal Recursive Doubling

The classic bandwidth-optimal recursive doubling algo-
rithm (also known as Rabenseifner algorithm [50]) performs
an allreduce as a reduce-scatter followed by an allgather.
The reduce-scatter and the allgather use recursive doubling
(each performing log2 p steps). Differently from the latency-
optimal algorithm, each node divides the data into p blocks
{b0, . . . ,bp−1}, each of size n

p .

1The only exception to this is the last step in each dimension because
each node can reach its peer with two different minimal paths. For example,
in Fig. 2, in step 2 node 0 can send half of the packets directed to 2 to the
right and half to the left on the wrap-around link (not shown). However, this
is negligible for large enough networks.

At each step, the reduce-scatter halves the size of the trans-
mitted data and doubles the distance between communicat-
ing nodes. Thus, each node transmits n bytes of data in the
reduce-scatter. The allgather works similarly but reverses the
communication pattern, doubling the size of the transmitted
data at each step and halving the distance between communi-
cating nodes. The allreduce executes 2 log2 p steps (Λ = 2),
and transmits 2n bytes of data.

Sack et al. optimized the algorithm for torus networks [44],
similarly to what we described for the latency-optimal algo-
rithm, to reduce its congestion deficiency to Ξ = 2D−1

2D−2 for
D > 1 [44]. However, to our knowledge, no multiport ver-
sions of this algorithm exist, and its bandwidth deficiency is
Ψ= 2D. Hence, for torus networks we consider this algorithm
as bandwidth-optimized rather than bandwidth-optimal.

Non-power-of-2 If the number of nodes p is not a power
of 2, the algorithm performs some extra steps [42, 50] that in-
crease the latency and reduce the bandwidth (because transmit
extra data). Allreduce implementations can use either sim-
ilar techniques like those described for the latency-optimal
recursive doubling or more sophisticated ones like the 3-2
elimination technique [42] (which increases the bandwidth
deficiency to 3/2). However, we found no reference of adap-
tations to torus networks.

2.3.4 Bucket Algorithm

To simplify the exposition, we first describe the algorithm for
a a×a 2D torus (with a ·a = p) [9]. Each node runs a ring
reduce-scatter with the other a− 1 nodes on the same row.
This requires a−1 steps, and each node transfers n a−1

a bytes.
Then a ring reduce-scatter with the other a−1 nodes on the
same column, but only on the data already reduced at the
previous step (of size n

a ). Then, each node runs an allgather
with all the nodes on the same column and then with all those
on the same row.

On a D−dimensional torus, the algorithm performs D
reduce-scatter followed by D allgather (each on D

√
p nodes

on a square torus). Because it runs 2D D
√

p steps, the latency

deficiency is Λ =
2D D√p
log2 p . To use all the 2 ·D ports, the algo-

rithm splits the data into 2 ·D parts and concurrently runs
2 ·D bucket algorithms (one for each part) [29, 44]. Since the
algorithm sends the minimal number of bytes and uses all the
ports evenly, the bandwidth deficiency is Ψ = 1. Each of the
2 ·D bucket algorithms starts from a different dimension and
direction so that, at each step, each link is used by at most one
ring per direction (i.e., the congestion deficiency is Ξ = 1).

2.3.5 Other Approaches

Topology-Specific Algorithms Researchers proposed sev-
eral allreduce algorithms [9,30,33,41,43,49], some of which
optimized for specific topologies [6, 22, 36]. In this work, we
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focus on those explicitly designed for torus networks, since
they are characterized by a lower congestion deficiency.

Automatic Generation of Collective Algorithms Some
approaches use linear programming formulations for finding
the best collective algorithm given a network specification
and the size of the collective [13, 48]. However, this requires
solving an NP-hard problem that grows exponentially with
scale. Finding a solution for 128 nodes requires up to 11
hours [48], and a new solution might need to be found when
changing the number of nodes or the size of the collective.
This makes generating collective algorithms for large systems
like the 9,000 nodes Google’s TPU v5p pod [15] challenging
or even impossible. On the contrary, Swing can seamlessly
run on any number of nodes. Moreover, unlike Swing, some
of these solutions do not explicitly model the congestion
deficiency.

Topology Reconfiguration and In-Network Compute
Other solutions improve allreduce performance by re-
configuring the network topology according to the specific
traffic pattern [51]. Swing is orthogonal to these approaches
and, by reducing the network congestion, can make the ex-
pensive network re-configurations less frequent. Last, some
algorithms exploit in-network compute capabilities of pro-
grammable switches [17, 21, 34, 46] to aggregate data directly
in the network, reducing network traffic and improving per-
formance. However, unlike Swing, these solutions require
specific switches to be deployed in the network, whereas
Swing can seamlessly run on any network.

3 Swing Design

By analyzing the algorithms we described, we observe dif-
ferent tradeoffs. The latency-optimal recursive doubling has
the lowest latency deficiency. It is thus more suited to small
allreduce, where the number of steps executed by the algo-
rithm, rather than the total number of transmitted bytes, dom-
inates the runtime. On the other hand, ring and bucket algo-
rithms are characterized by the lowest bandwidth and con-
gestion deficiency, and we expect them to perform better on
large allreduce. The bandwidth-optimized recursive doubling
lies somewhere in between since it has a higher bandwidth
and congestion deficiency but a lower latency deficiency and
would perform better for medium-sized vectors.

With the Swing algorithm, we aim at designing an al-
gorithm with a congestion deficiency Ξ lower than the
bandwidth-optimized recursive doubling algorithm by reduc-
ing the distance between communicating nodes. We also aim
to reduce bandwidth deficiency Ψ by using all the 2D avail-
able ports. To simplify the exposition, we first discuss the de-
sign of the bandwidth-optimal Swing algorithm on a 1D torus,
assuming the number of nodes p is a power of 2 (Sec. 3.1).

Then, we extend it to any number of nodes (Sec. 3.2), and
describe its design for tors with more than one dimension
(Sec. 4).

3.1 Algorithm Design
3.1.1 Bandwidth-optimal Algorithm

We describe in the following the design of the Swing algo-
rithm, and we formally prove its correctness in Appendix A.
The bandwidth-optimal Swing algorithm runs a reduce-scatter
followed by an allreduce. In the reduce scatter, at step s (start-
ing from 0), each node r communicates with a node π(r,s)
such that:

π(r,s) =

{
r+ρ(s) mod p, if r is even
r−ρ(s) mod p, if r is odd

(2)

Where ρ(s) = ∑
s
i=0(−2)i = 1−(−2)s+1

3 . This selection of
the communicating peer leads to a communication pattern
like the one shown in Figure 1 for a 16 nodes 1D torus. We
observe how, at each step, the communicating peer of each
node swings from left to right and vice versa (hence the al-
gorithm’s name). Intuitively, unlike recursive doubling, each
node reaches distant nodes in fewer hops by short-cutting the
ring.

More precisely, at each step, each node communicates with
a node at a distance δ(s), with:

δ(s) = |ρ(s)|=
∣∣∣ s

∑
i=0

−2i
∣∣∣= 2s+1 − (−1)s+1

3
≤

≤ 2s+1 +1
3

< 2s +
1
3

Because δ(s) is always a natural number, we have δ(s)≤ 2s

(it is strictly smaller for s > 1). Hence, Swing has a lower
congestion deficiency than recursive doubling because of the
lower distance between communicating nodes (we estimate
precisely the congestion deficiency in Sec. 4).

For simplicity, we first describe the reduce-scatter algo-
rithm using only one port and extend it to use all the 2D
ports. In the reduce-scatter each node splits data into p blocks
{b0,b1, . . . ,bp−1}, each of size n

p . Each node r runs log2 p
steps, communicating at each step s with the node π(r,s) and
halving the size of the transmitted data. At the end of the
reduce-scatter, we want each node r to have the fully aggre-
gated block br.

To do so, data transmitted from r to q includes the block
bq, plus all the blocks that q will transmit to other nodes in
the subsequent steps. The allgather works similarly, but each
node selects its peer in the reverse order, thus communicating
first with the more distant ones. In the first step, each node r
sends its block br, doubling the transmitted data’s size at each
step (data transmitted from r to q includes all the blocks that r
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gathered until step s). Because the algorithm performs 2log2 p
steps, its latency deficiency is Λ=

log2 p
2 . Because it transmits

the minimal number of bytes and uses all the ports (as we
will show in Sec. 4), its bandwidth deficiency is Ψ = 1. We
estimate the congestion deficiency in Sec. 4 when describing
the algorithm for torus with more than one dimension.

We summarize the algorithm in Listing 1 for reduce-
scatter (the algorithm for allgather is analogous). The function
get_rs_idxs computes the indexes of the data blocks that
a given node r must send at step step, and relies on the
function pi we defined in Eq. 2. Then, the reduce_scatter
function executes log2 p steps, and at each step, computes the
bitmaps blocks_s and blocks_r denoting the blocks of data
that must be sent and received. Last, it sends and receives
those blocks.

def get_rs_idxs(r, step, p, blocks):
if step >= log2(p): return
for s in range(step, int(log2(p))):
peer = pi(r, s, p)
# Set to 1 the node I directly reach
blocks[peer] = 1
# and those that it will reach
get_rs_idxs(peer, s+1, p, blocks)

def reduce_scatter(r, p, data):
for s in range(0, int(log2(p))):
blocks_s = blocks_r = [0]*p
dest = pi(r, s)
get_rs_idxs(r, s, p, blocks_s)
get_rs_idxs(peer, s, p, blocks_r)
# Send blocks where blocks_s[i]=1,
# recv blocks where blocks_r[i]=1
sendrecv(dest, data, blocks_s, block_r)

Listing 1: Swing reduce-scatter pseudocode.

We can transmit non-contiguous data using, for example,
MPI indexed datatypes. However, because communicating
non-contiguous data can introduce overhead [25, 47], in the
allreduce, we logically remap the blocks (i.e., without any
actual memory movement) so that each node sends contiguous
data. Indeed, even if the algorithm shuffles the block in the
reduce-scatter, they are eventually placed again in the proper
order in the buffers by the allgather. Moreover, by sending
contiguous data, we also guarantee that the algorithm works
with non-commutative reduction operators [42, 49].

3.1.2 Latency-optimal Algorithm

The latency-optimal Swing algorithm uses the same commu-
nication pattern as the bandwidth-optimal one, but instead
of running a reduce-scatter followed by an allgather, at each
step each node exchanges its entire vector with that of its peer
(similarly to the latency-optimal recursive doubling). The
algorithm only requires log2 p steps (Λ = 1) but transmits
n · log2 p bytes (Ψ = D log2 p because the algorithm uses all

the ports). We estimate the congestion deficiency in Sec. 4
when describing the algorithm for torus with more than one
dimension.

3.2 Non-power-of-two Nodes

When p is even but not a power of 2, some nodes can receive
the same block of data twice (one of which in the last step,
see Appendix A.2). Thus, in that case, it is enough for each
node not to send the same data block twice. Because no extra
data is sent compared to the power of two cases, deficiencies
do not increase.

If p is odd, we run the algorithm on p− 1 nodes, while
node p−1 at each step sends (p−1)/2s of its blocks to the
corresponding (p−1)/2s nodes (and receiving from those its
block). We show this through an example in Fig. 3 for a 1D
torus with 7 nodes (we only show the first two steps). The
first 6 nodes run the algorithm for even nodes as usual. At
step 0 the last node sends (and receives) n

7 bytes to nodes 0, 1,
and 2. At step 1, the last node sends n

7 bytes to node 3 and 4,
and in the last step n

7 bytes to node 5. This slightly increases
the bandwidth deficiency (by a 1/p additive factor).

Step 0

Step 1

0 1 2 3 4 5 6

n/2 bytes

n/7 bytes

0 1 2 3 4 5 6

n/4 bytes

n/7 bytes

Figure 3: First 2 step of the Swing algorithm on a 1D torus
with 7 nodes.

4 Design for Multidimensional Tori

In Sec. 3.1, we described the design of the Swing algorithm
for 1D torus. We now discuss how to extend it to square
(Sec. 4.1) and non-square (Sec. 4.2) torus with more than one
dimension.

4.1 Square Tori

Like the recursive doubling algorithms optimized for tori (dis-
cussed in Sec. 2.3.2 and Sec. 2.3.3), in the Swing algorithm
(both the latency- and the bandwidth-optimal) each node com-
municates on one dimension at a time. Formally, at step s,
each node communicates on the dimension ω(s) = s mod D.
We define with σ(s) = ⌊ s

D⌋ the step of the algorithm rela-
tive to a specific dimension. For example, on a 2D torus, the
third step of the algorithm is the second step executed in the
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first dimension (i.e., because we count steps starting from 0,
σ(2) = ⌊3/2⌋= 1).

We denote the coordinates of a node with (a0,a1, . . . ,aD−1).
Then, at step s, each node communicates with a node with
the same coordinates, except for the coordinate aω(s). If aω(s)
is even, the coordinate aω(s) is then replaced with (aω(s) +
δ(σ(s))) mod dω(s) (if odd, we flip the sign before δ(σ(s))).

To use all the 2 ·D ports, Swing splits the data into 2 ·D
parts and runs one allreduce on each. To avoid increasing the
congestion deficiency, we must guarantee that, at each step,
each of these 2 ·D collectives use different links. Swing runs
D of these collectives (that we call plain collectives), each
starting from a different dimension, using the algorithm de-
scribed above. Swing runs the remaining D collectives (which
we call mirrored collectives) with the same approach but start-
ing from the opposite direction than that of the corresponding
plain collective. By doing so, each of the 2 ·D allreduce uses
a different port at each step.

Plain Collectives Mirrored Collectives

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4: First step of the Swing algorithm on a 4x4 torus.

We show this through an example in Figure 4 on a 4×4
torus by showing the first step of the Swing algorithm. Node
0 runs a plain collective on the horizontal dimension exchang-
ing data with node 1, and one in the vertical dimension with
node 4. The two mirrored allreduce inverts the directions,
exchanging data with node 3 in the horizontal dimension and
node 12 in the vertical one.

Whereas both latency and bandwidth deficiencies are un-
affected by the number of dimensions, congestion deficiency
decreases with the number of dimensions due to increased
bisection bandwidth. Intuitively, the more dimensions the
torus has, the more communications the algorithm does with
nodes at a closer distance before moving to higher distances.
Because Swing halves the data size at each step, when a node
needs to communicate with a distant node, data size becomes
smaller and is thus less affected by congestion.

We can model the bandwidth term of the Swing allreduce
as:

n
2D

β

log2 (p)−1

∑
s=0

δ(σ(s))
2s+1

I.e., at each step s Swing halves the size of the data and,

because the distance between communicating nodes at step
s is δ(σ(s)), there is at least one link shared by δ(σ(s)), pro-
portionally increasing the time to transmit one byte.

We can estimate the congestion deficiency by dividing this
quantity by (nβ)/D. Instead of deriving a hardly readable
closed form, we report in Table 2 the values for different
dimensions and for p → ∞ (since the congestion deficiency
increases with p). If D ≥ 3, the Swing algorithm has a conges-
tion deficiency Ξ < 1.003 (i.e., lower than 3%). To estimate
the latency-optimal version’s congestion deficiency, we sum
the distances over all the steps, similar to what we did in
Sec. 2.3.2 for the latency-optimal recursive doubling algo-
rithm. I.e.:

Ξ = D

log2 (p)−1
D

∑
s=0

δ(s)≤ 4
3

D D
√

p

We want to remark that the state-of-the-art latency-optimal
and bandwidth-optimized recursive doubling algorithms de-
scribed in Sec. 2.3.2 and Sec. 2.3.3 only use one port. In
principle, we could extend them to use 2D ports by using the
same approach we used for Swing, running D plain and D mir-
rored collectives. However, as we show in Sec. 5.1, they will
perform strictly worse than Swing. Indeed, while mirroring
decreases their bandwidth deficiencies, their congestion defi-
ciencies are still higher than that of Swing due to the higher
distance between communicating nodes.

4.2 Non-Square Tori
If not all the dimensions have equal size, the algorithm com-
pletes all the steps in one dimension while there are still steps
to execute in other dimensions. If dmin is the smallest dimen-
sion, for the first D · log2(dmin) the algorithm behaves exactly
like in a dmin × . . .× dmin torus. After that, no data is sent
anymore on that dimension, and the algorithm proceeds on
the remaining ones. However, from that point on, it does not
use all the available ports.

Indeed, since data is not transmitted anymore into one of
the dimensions, the ports on that dimension are not used. If
dmin is large enough, this has a limited impact because the size
of the transmitted data decreases after each step. We show
this through an example in Fig. 5 on a 2×4 torus where to
not clutter the figure, we report only the communications per-
formed by node 0. In step 2 (the last step), all the 4 collectives
communicate on the horizontal dimension since each node
has already reached all the nodes in their column.

While there is no difference in latency and bandwidth de-
ficiency, the congestion deficiency increases compared to a
square torus. In practice, it will be somewhere between that
of an equivalent 1D torus (in the worst case) and of a per-
fectly square D-dimensional torus with the same number of
nodes. The actual congestion deficiency depends on the rela-
tive differences between the dimensions. We denote with dmin

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1451



0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Step 0 Step 1 Step 2

Figure 5: Multiport Swing collective on a 2x4 torus.

the smallest dimension and with dmax the largest one and we
consider, as a worst case, a dmin ×dmin × . . .×dmax torus.

The algorithm uses all the ports for the first D · log2(dmin)
steps and behaves as it runs on a D-dimensional torus with
dD

min nodes. After that, it used only two ports for the remaining
steps, behaving as it runs on a 1D torus, but starting from
step s = log2 dmin and on data of size n

2·2D log2 dmin
= n

2dD
min

. We
denote the congestion deficiency of this second phase as:

ΞQ =
1

2 ·dD
min

log2(dmax)−1

∑
s=log2 dmin

2s+1 − (−1)s+1

3 ·2s+1−log2 dmin
≈

≈ 1
6 ·dD

min

log2(dmax)−1

∑
s=log2 dmin

2log2 dmin =

=
(log2 (dmax/dmin))

6 ·dD−1
min

(3)

We can then approximate the congestion deficiency for
rectangular tori by summing the one for square tori to the
one in Eq.3 (that is 0 for square tori). Generally, the higher
the ratio between the largest and the smallest dimension, the
more steps the algorithm executes not using all the available
2D ports. Nevertheless, we show in Sec. 5.2 that Swing still
outperforms state-of-the-art algorithms by up to 3x, except
on very large allreduce (≥ 128MiB).

5 Experimental Evaluation

We evaluate the performance of the Swing algorithm on sev-
eral torus and torus-like networks by comparing it with the
best state-of-the-art algorithms described in Sec. 2.3. We im-
plemented all these algorithms in the Structural Simulation
Toolkit (SST [1]), a packet-level network simulator. We sim-
ulate networks with 400Gb/s links with 100ns latency and
300ns of per-hop packet processing latency [19, 28].

Since each node has 2D ports, the maximum injection band-
width of a node is 2 ·D ·400Gb/s. Also, in all the plots, we
show the goodput, i.e., how many bytes are reduced per time
unit. Because the allreduce needs to send at least twice the
number of bytes in the vector [9], the peak goodput is half the
injection bandwidth (i.e., D ·400Gb/s).

In the following, we analyze the performance on 2D square
(Sec. 5.1) and rectangular tori (Sec. 5.2), higher-dimensional
tori (Sec. 5.3), and other torus-like topologies (Sec. 5.4). Even-
tually, we summarize the results (Sec. 5.5).

5.1 Performance on 2D Square Torus
In Fig. 6, we show the performance evaluation on a 64x64 2D
torus with 4,096 nodes. In the main plot, we show the good-
put of the allreduce for different vector sizes, with each line
representing a different algorithm. For the Swing algorithm,
for each size we only report the best between the latency-
and bandwidth-optimal versions, and we annotate the point
where we switch from the latency-optimal to the bandwidth-
optimal algorithm with a large dot. We do something similar
for recursive doubling as well.
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Figure 6: Goodput of allreduce algorithms on a 64x64 2D
Torus topology with 4,096 nodes. The small plot in the bottom
left reports runtime for small allreduce (ranging from 32B
to 32KiB). The runtime for 32B allreduce is annotated using
the same one-letter labels as in the main plot. The top left
inner plot shows the goodput gain of Swing compared to the
best-known state-of-the-art algorithm, and the letters on top of
each datapoint denote the name of the best-known algorithm.

The zoomed-in plot in the bottom left shows the runtime
of each algorithm for allreduce on small vectors (from 32B
to 32KiB). We also denote the runtime for 32B allreduce for
each algorithm, using the same one-letter labels used in the
main plot. Because the runtime of the ring algorithm for small
vectors is orders of magnitude larger than the other algorithms,
it is always out of scale (the time is nevertheless annotated on
the top of the small plot).

Last, the top left plot shows, for each allreduce size, the
goodput gain of Swing compared to the best-known algorithm
as a function of the allreduce size. For example, a 100%
gain denotes Swing is 2x faster than the best state-of-the-art
algorithm. The letter at each data point represents the name
of the best-known algorithm.

For completeness, in this plot, we also show our improved
version of recursive doubling, which uses all the ports (de-
noted as Mirrored Recursive Doubling) using the same plain
and mirrored allreduce technique used by Swing (and de-
scribed in Sec. 4). Swing consistently outperforms our mir-
rored recursive doubling at any size due to the lower conges-
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tion deficiency, and we thus exclude it from the comparison
and from the subsequent results.

By analyzing the results, we observe that Swing outper-
forms all the other allreduce algorithms for vectors ranging
from 32B to 32MiB due to the lower latency deficiency com-
pared to the ring and bucket algorithms and the lower band-
width deficiency compared to the latency-optimal recursive
doubling algorithm. We observe more than 2x improvement
over the recursive doubling algorithm for 2MiB allreduce.

The bucket algorithm performs better than Swing starting
from 128MiB due to its lower congestion deficiency, which
compensates for the higher latency deficiency on large vec-
tors. This is instead not the case for the ring algorithm, char-
acterized by a higher latency deficiency than the bucket algo-
rithm. Moreover, we observe that on 512MiB, Swing achieves
around 77% of the peak goodput, which is what we would
expect from our modeling. Indeed, a congestion deficiency of
1.19 on a 2D torus (see Table 2) means Swing can reach at
most 81% of peak goodput.

By analyzing the two small inner plots, we observe up to
50% improvement for small vectors (≤ 32KiB) compared
to the latency-optimal recursive doubling algorithm. This is
partly due to the lower congestion deficiency, but mostly to
the shorter distance between communicating nodes, which
reduces the latency α (although we did not explicitly model
it so as not to burden the notation). We observe the highest
goodput gains (around 120%) for 2MiB vectors. This is in-
deed the sweet spot where the recursive doubling algorithm
performs poorly, and the performance of the bucket and ring
algorithms is still severely affected by their higher latency
deficiency.

5.1.1 Scaling

We then analyze the performance of Swing on 2D torus of
different sizes. We show in Fig. 7 the goodput gain of Swing
over the best-known algorithm at each allreduce size and for
networks ranging from 64 to 16,384 nodes. We observe that
Swing outperforms state-of-the-art algorithms regardless of
the network size, for up to 32MiB allreduce.

Moreover, we can see that the maximum Swing gain in-
creases when increasing the network size. Indeed, the larger
the network, the larger the impact of latency deficiency on
performance. As a consequence, both the bucket and ring al-
gorithm performance decreases when increasing the number
of nodes (and the Swing gain increases).

Nevertheless, the bucket algorithm outperforms Swing for
large vectors (≥ 128MiB). Indeed, when increasing the net-
work size, Swing congestion deficiency increases. However,
as estimated in Table 2 and as shown in the figure, on 2D
torus, we expect at most a negative gain of around 20% (i.e.,
a peak bandwidth of around 80%) regardless of network size.
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Figure 7: Swing goodput gain on square torus networks rang-
ing from 64 to 16,384 nodes.

5.1.2 Bandwidth Impact

To analyze Swing performance for different network band-
widths, we show in Fig. 8 the goodput gain for 8x8 torus
networks with bandwidth ranging from 100 Gb/s to 3.2 Tb/s.
We observe consistent gains over the best-known state-of-the-
art algorithm regardless of the network bandwidth.

For low bandwidths, the relative impact of bandwidth and
congestion deficiencies on performance is higher, and the
gain of Swing over recursive doubling for small messages
increases. At higher bandwidth, the relative impact of conges-
tion deficiency is lower, and the maximum gain of Swing for
small allreduce decreases. At the same time, however, Swing
is not outperformed anymore by the bucket algorithm for large
allreduce. For example, on 3.2 Tb/s networks, Swing outper-
forms all the other algorithms even for 512MiB allreduce.
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Figure 8: Swing goodput gain on 8x8 torus networks with
network bandwidth ranging from 100 Gb/s to 3.2 Tb/s.
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5.2 Performance on Rectangular Tori

As discussed in Sec. 4.2, the congestion deficiency of the
Swing algorithm increases if the torus dimensions are not
all equal, proportionally to the ratio between the sizes of the
largest and smallest dimension. The ring algorithm is instead
unaffected by the shape of the torus, because the Hamilto-
nian rings span over all the nodes (as long as the conditions
discussed in Sec. 2.3.1 are satisfied).

On the other hand, the shape of the torus negatively im-
pacts the bucket algorithm’s latency deficiency. Indeed, if
some torus dimensions are larger than the others, some of the
2D concurrent collectives might move from dimension i to
dimension i+1, whereas there are still collectives running on
dimension i+1. We show this through an example in Fig. 9,
where at step 1, one bidirectional ring moves from the vertical
to the horizontal dimension while the other bidirectional ring
is still running.

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Step 0 Step 1

Figure 9: First steps of the Bucket algorithm on a 2x4 torus.

This is usually detrimental to performance, and it is better
if all the collectives synchronously move from one dimen-
sion to the next one [44]. Thus, each step is completed only
after all the collectives running on the largest dimension are
completed. Hence, if dmax is the size of the largest dimension,
the latency deficiency becomes Λ = 2D·dmax

log2 p . Bandwidth and
congestion deficiencies are instead unaffected. In a nutshell,
this means that the latency deficiency of the bucket algorithm
is the same as that for a dmax ×dmax · · ·×dmax torus.

For these reasons, we show in Fig. 10 the goodput of the dif-
ferent algorithms for different torus networks, all with 1,024
nodes but with different rectangular shapes. First, we observe
that, as expected, the ring algorithm is unaffected by the shape
of the torus, and outperforms both the bucket and Swing algo-
rithms for allreduce larger than 512MiB. On the other hand,
the latency deficiency of the bucket algorithm increases pro-
portionally to the ratio between the largest and the smallest
dimensions, reducing its performance for small and medium
vectors. This is visible, for example, by analyzing how the
goodput for large allreduce decreases when moving from a
64x16 to a 256x4 torus.

Last, Swing performance decreases compared to a square
torus due to its higher congestion deficiency for rectangular
torus networks. Nevertheless, we observe that Swing still
outperforms the other algorithms up to 32MiB regardless of
the network shape (up to 3x on the 128x8 and 256x4 torus).
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Figure 10: Goodput on 2D torus with 1,024 nodes and differ-
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5.3 Performance for 3D and 4D Torus
As discussed in Sec. 4 and summarized in Table 2, the perfor-
mance of the allreduce algorithm for multidimensional torus
also depends on the number of dimensions. Thus, we evaluate
the performance of the different allreduce algorithms on 82,
83, and 84 torus networks.
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Figure 11: Goodput on higher-dimensional torus networks:
2D 8x8, 3D (8x8x8), and 4D (8x8x8x8).

We report the evaluation result in Fig. 11. We do not include
the Hamiltonian ring algorithm in the 3D and 4D torus results
since it only works for 2D torus networks. When increasing
the number of dimensions, the goodput gain of Swing in-

creases because, as shown in Table 2 and discussed in Sec. 4,
the congestion deficiency drops to 3% on 3D torus and to
0.8% on 4D torus. Consequently, for 3D and 4D torus net-
works, Swing outperforms by up to 2x all existing algorithms
on allreduce ranging from 32B to 2GB.

5.4 Performance on Torus-Like Topologies

Some topologies like HammingMesh [26] and HyperX [3,20]
extend torus by adding additional links, thus increasing the
network bisection bandwidth. Seen from a different perspec-
tive, those extra links allow distant nodes to communicate
crossing fewer hops, decreasing Swing congestion deficiency.

5.4.1 Performance on HammingMesh

HammingMesh [26] groups nodes into square boards. Each
board is a 2D mesh, and nodes on the same column (or row)
located at the edge of the boards are connected together using
fat trees. Due to its higher performance and flexibility com-
pared to a torus a similar topology is used, for example, to
interconnect TPUv4 devices [31]. Because of the extra links,
the congestion deficiency of Swing on a HammingMesh is
lower than that on a 2D torus. Moreover, for a fixed number
of nodes, having smaller boards increases the number of extra
(fat tree) links and, thus, decreases the congestion deficiency.
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Figure 12: Goodput on a 4,096 nodes Hx2Mesh.

We show in Fig. 12 the performance of the different algo-
rithms for a Hx2Mesh network with 4,096 nodes (2x2 boards
arranged in a 32x32 configuration). For such configuration,
Swing outperforms the state-of-the-art algorithms at any size,
up to 2.5x for 2MiB allreduce. Moreover, because of the lower
congestion deficiency, we observe how the peak Swing per-
formance is higher compared to a 2D torus with the same
number of nodes (Fig. 6). Last, we also observe a runtime
reduction for all the algorithms for small vectors, since nodes
on the same board on HammingMesh are connected through
PCB traces, with lower latency than optical network cables.
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In Fig. 13 we instead report the results for a HammingMesh
with the same number of nodes (4,096), but using 4x4 boards
(4x4 boards arranged in a 16x16 configuration). This con-
figuration is a middle point between the torus topology and
the Hx2Mesh since it has more extra links than a torus, but
fewer than a Hx2Mesh. Due to fewer extra links compared
to Hx2Mesh, on Hx4Mesh Swing has a higher congestion
deficiency, as we can see starting from 128MiB allreduce.
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Figure 13: Goodput on a 4,096 nodes Hx4Mesh.

5.4.2 Performance on 2D HyperX

Last, we report in Fig. 14 the performance on a 4,096 2D
HyperX topology [3] (which can be seen as a HammingMesh
with 1x1 boards [26]). HyperX connects each node to every
node in the same row and column. Because in Swing each
node communicates only with nodes on the same row (or the
same column), on HyperX Swing does not experience any
congestion deficiency. We indeed observe from the plot that
Swing outperforms all the other algorithms at any allreduce
size. Moreover, the maximum goodput gain increases from
2.5x in Hx2Mesh and Hx4Mesh, to 3x in HyperX.
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Figure 14: Goodput on a 4,096 nodes HyperX.

5.5 Summary

Last, we summarize all the presented results in Fig. 15, where
we report the distribution of Swing goodput gain over the best
algorithm at each message size for the different scenarios we
analyzed. We show data for allreduce sizes up to 512MiB
since these are the sizes practically used in existing HPC [14]
and machine learning workloads [35] and larger allreduce are
usually split into smaller ones to overlap communication and
computation better.

For each box, the triangle shows the median across the
allreduce sizes. The left and right sides of the box represent
the first (Q1) and third (Q3) quartile, respectively. The left
whisker denotes the smallest point larger than Q1−1.5 ·(Q3−
Q1), whereas the right whisker the biggest point smaller than
Q3+ 1.5 · (Q3−Q1). Empty dots outside the whiskers are
considered outliers.
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Figure 15: Summary of Swing goodput gain on different
topologies.

First, by observing the performance on square torus net-
works, we see that Swing median and maximum goodput gain
increases with the network size (going from 8x8 to 128x128
torus). As discussed in Sec. 5.1, the maximum negative gain
also increases with network size, but is at most around 20%
and only occurs for large allreduce (≥ 128MiB).

For rectangular torus networks, Swing median and max-
imum goodput gain increase proportionally to the ratio be-
tween the maximum and minimum-sized dimension (i.e., go-

1456    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



ing from 64x16 to 256x4 torus), up to 3x for 128x8 torus. For
256x4 torus, Swing performs around 60% worse than the ring
algorithm on 512MiB allreduce.

Increasing the network bandwidth has a positive effect on
Swing goodput gain. Although the maximum goodput gain
decreases, for higher bandwidths, Swing outperforms all the
state-of-the-art algorithms at any allreduce size. Regardless
of the bandwidth, the median Swing goodput gain across
different allreduce sizes stands around 25%.

Swing goodput gain also increases with the number of di-
mensions (moving from 8x8 to 8x8x8x8 torus) since each
node has additional one-hop distant nodes. Because in the
reduce-scatter nodes communicate first with their neighbors,
and halve the data size at each step, Swing can further reduce
the transmitted data size before nodes need to communicate
with more distant ones. On one side, this increases the maxi-
mum goodput gain up to 2x. On the other side, it outperforms
all the other algorithms at any size.

Last, Swing provides consistent performance gains even
on other torus-like topologies such as HammingMesh and
HyperX. When comparing HammingMesh with a torus with
the same number of nodes (i.e., 64x64), we observe higher
goodput gains on HammingMesh, due to the extra links com-
pared to the torus, which helps in reducing Swing congestion
deficiency. Also, on both Hx2Mesh and HyperX, Swing out-
performs the other algorithms regardless of the allreduce size.

Overall we observe a median goodput ranging between
20% and 50%, and a maximum goodput gain of 3x. This
underlines the advantages of using the Swing allreduce al-
gorithm on torus and torus-like networks of any shape and
number of dimensions and at any network bandwidth.

6 Discussion

Extension to Other Collectives Although in this work we
focus on allreduce (and, indirectly, on reduce-scatter and all-
gather), a similar approach can be adopted for other collective
operations. Namely, Swing can replace the recursive dou-
bling algorithm for all those collectives where it is used (e.g.,
broadcast and reduce).

Routing Impact In all our experiments, we used minimal
adaptive routing. I.e., packets are forwarded on the least
congested shortest path. Because in all the analyzed algo-
rithms, each node only communicates with others on the same
row/column, traffic is evenly distributed across links. Sending
packets on non-shortest paths would unnecessarily increase
network traffic and decrease performance.

Swing Performance on Full-Bandwidth Topology On
full-bandwidth topologies (e.g., non-blocking fat trees), both
Swing and recursive doubling will not have any congestion
deficiency, and we expect them to have the same performance.

7 Conclusions

Due to the relevance of torus networks in high-performance
machine learning systems, in this work, we presented Swing,
a new allreduce algorithm for torus networks. To motivate
Swing design, we modeled the latency, bandwidth, and con-
gestion deficiencies, of Swing and of the best state-of-the-art
algorithms. Our modeling highlights the shortcomings of ex-
isting allreduce algorithms for torus networks, especially for
small- and medium-sized allreduce.

We then presented the Swing design. Swing performs a
logarithmic number of steps and transmits a minimal num-
ber of bytes. To reduce the impact of the torus low bisection
bandwidth, Swing shortcuts the torus, reducing the distance
between communicating nodes and, thus, the congestion defi-
ciency. Last, we extensively evaluated Swing performance and
compared it against the best state-of-the-art algorithms, for
different node counts, network bandwidths, shapes, number of
dimensions, and topologies. Our evaluation shows improve-
ments up to 3x on all practically used allreduce sizes.
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A Correctness Proof

In this section we first prove the correctness of the Swing algo-
rithm when the number of nodes is a power of two (Sec. A.1)
and then extend it for an arbitrary number of nodes (Sec. A.2).

A.1 Power of Two Number of Nodes
For clarity reasons, we prove the correctness of the latency-
optimal algorithm (both the latency- and bandwidth-optimal
algorithms perform the same communication pattern, al-
though nodes transmit different data). To prove the algo-
rithm’s correctness, we need to prove that the data transmit-
ted by each node eventually reaches all the other nodes. For
example, on a 1D torus with p nodes, at step 0, node 0 com-
municates with node 1 (which aggregates the received data
with its own). At step 1, node 0 communicates with node
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−1 mod p = p−1, whereas node 1 communicates with node
2. Thus, we can say that at step 1 the data sent from 0 reached
nodes {1,2, p− 1} (2 has been reached indirectly through
node 1).

Because the number of reached nodes doubles at each step,
and because we perform log2 p steps, the data sent from any
given node would eventually reach p− 1 nodes. We need,
however, to prove that those p−1 nodes are distinct (i.e., that
the data sent by each node reach every other node exactly
once and is thus never aggregated twice). To do so, we need
first to prove a few lemmas.

Lemma A.1. ρ(s) and δ(s) are odd ∀s ∈ N.

Proof. (−2)i is odd for i = 0, and even for i > 0. The sum of
even numbers with an odd number is odd.

Lemma A.2. If r is even, π(r,s) is odd, and vice versa.

Proof. An even node r communicates at step s with node
π(r,s) = r+ρ(s) mod p. Because p is a power of two (thus
even), and ρ(s) is odd (Lemma A.1), π(r,s) is odd. Vice versa,
odd nodes communicate with even nodes.

If a node r communicates at step s with a node q = π(r,s),
and q communicates with a node z = π(q,h) at step h > s, we
say that s indirectly reached node z. Because even nodes only
communicate with odd nodes (and vice versa), if r is even,
we can rewrite:

z =

q=π(r,s)︷ ︸︸ ︷
(r+ρ(s) mod p)−ρ(h) mod p︸ ︷︷ ︸

π(q,h)

= r+ρ(s)−ρ(h) mod p

I.e., the sign behind ρ(s) alternates between positive and neg-
ative, starting from positive. In general, an even node r can
reach through a sequence of k steps {s0 < s1 < s2 < .. . <
sk−1} a node q, with:

q = r+ρ(s0)−ρ(s1)+ρ(s2)− . . . mod p =

= (r+
k−1

∑
i=0

−1i
ρ(si)) mod p

The same applies if r is odd, by replacing −1i with −1i+1.

Lemma A.3. Even nodes reach (directly or indirectly) odd
nodes through an odd number of steps k. Odd nodes reach
(directly or indirectly) even nodes through an odd number of
steps k.

Proof. This stems from Lemma A.2. If r is even and k is odd,
then q = (r+∑

k−1
i=0 −1iρ(si)) mod p is odd because ρ(s) is

always odd. Similarly, if r is odd and k is odd, q is even.

Lemma A.4. Given k integers {e0 < e1 < .. . < ek−1}, with
ek−1 ≤ log2(p)−1, then −p < ∑

k−1
i=0 (−2)ei < p.

Proof. We have ∑
k−1
i=0 (−2)ei ≤ ∑

k−1
i=0 2ei < 2ek−1+1 ≤ p. Simi-

larly, ∑
k−1
i=0 (−2)ei ≥−∑

k−1
i=0 2ei >−(2ek−1+1)≥−p.

Theorem A.5. On a 1D torus, if a node r at step s communi-
cates with node π(r,s) (defined in Eq. 2), it will reach (directly
or indirectly) all the other p−1 nodes in log2(p) steps (with
p power of two).

Proof. We need to prove that, a unique sequence of k steps
{s0 < s1 < .. .sk−1} exists by which a given node r reaches
a node q. We prove this by contradiction, and we will prove
it by assuming that r is even and q is odd (the proof for
the other cases is analogous and only requires changing the
signs before the ρ terms). Assume that there are two different
sequences of steps {s0 < s1 < .. .sk−1 ≤ log2(p)− 1} and
{t0 < t1 < .. . th−1 ≤ log2(p)−1} of k and h steps respectively
(both k and h are odd from Lemma A.3), so that:

q = r+ρ(s0)−ρ(s1)+ρ(s2)− . . .+ρ(sk−1) mod p =

= r+ρ(t0)−ρ(t1)+ρ(t2)− . . .+ρ(th−1) mod p
(4)

By expanding the first of the two sequences we have:

q = r+
s0

∑
i=0

(−2)i −
s1

∑
i=0

(−2)i + . . .+
sk−1

∑
i=0

(−2)i mod p

= r+
s0

∑
i=0

(−2)i +
s2

∑
i=s1+1

(−2)i + . . .+
sk−1

∑
i=sk−2+1

(−2)i mod p

By expanding similarly the second assignment in Eq. 4, we
have that the two sequences exist if:

s0

∑
i=0

(−2)i + . . .+
sk−1

∑
i=sk−2+1

(−2)i ≡

≡
t0

∑
i=0

(−2)i + . . .+
th−1

∑
i=tk−2+1

(−2)i (mod p)

(5)

From Lemma A.4, we know that both sides are in the range
(−p, p). Thus, the two sides are congruent only if: i) they have
the same sign and are equal, or; ii) they have different signs,
and by summing p on the negative side, we get the positive
side. Since each side is the sum of distinct powers of −2, case
i) is only possible if the two sequences of steps are equal.
To prove that case ii) is impossible, let us consider the case
where the left side is negative (the other case is analogous).
Because p = 2a for some a ∈ N, and because 2a = (−2)a (if
a is even2), Eq. 5 becomes:

s0

∑
i=0

(−2)i + . . .+
sk−1

∑
i=sk−2+1

(−2)i +(−2)a =

=
t0

∑
i=0

(−2)i + . . .+
th−1

∑
i=tk−2+1

(−2)i

2If a is odd, p = 2a = (−2)a+1 +(−2)a, and the same considerations still
hold.
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However, because both sides are sums of distinct powers of
−2, they can be equal only if the two sequences of steps are
equal, which implies that there must be a ti such that ti = a.
This is impossible because the number of steps can be at most
equal to log2(p)−1 = a−1.

We thus proved by contradiction that there are no two se-
quences of steps leading to the same node and that, at each
step, each node reaches only nodes that it did not already
reach.

A.2 Non-Power of Two Number of Nodes
The correctness proof in Sec. A.1 assumes p is a power of 2
(needed by the last part of Theorem A.5). If p is not a power
of 2, the theorem only holds until the second-last step. If p′

is the largest power of 2 smaller than p, in the second last
step, the data sent by each node reached p′−1 nodes. Thus,
we need to guarantee that in the last step: i) no nodes receive
data it already received; ii) each node reaches the remaining
p− p′− 1 nodes. To guarantee property i), it is enough for
each node to pre-compute the blocks bi it will send at each
step and if it would send a block twice, send that only in the
last step.

To guarantee property ii), it is enough to prove that π(r,s) =
π(g,s)⇔ g = s. Indeed, if no two nodes reach the same node
in the last step, then each node has reached each other node
once. First, if r and g are both even, we need to prove that r+
ρ(s) ≡ g+ρ(s) (mod p). This implies r − g ≡ 0 (mod p).
However, because we have r < p and g < p, this is only
possible if r = g. The proof for odd r and g is analogous.
Then, if r is even and g is odd, we have r+ρ(s) ≡ g−ρ(s)
(mod p), which implies 2ρ(s) ≡ g− r (mod p). However,
we know from Lemma A.1 that ρ(s) is always odd, and thus
2ρ(s) is even. Because r is even and g is odd, g− r is odd.
Thus, if p is even, this can only hold for r = g.

When p is even but not a power of 2, it is enough for each
node not to send the same data block twice, thus not increasing
the deficiency compared to the power of two case.

Last, if p is odd, we might have π(r,s) = π(g,s) even if r ̸=
g, and also Lemma A.2 does not hold anymore. Consequently,
some nodes might not reach all the nodes and, at a given
step, might receive data from more nodes simultaneously,
thus decreasing the performance. For this reason, we run the
algorithm on p−1 nodes, with the "odd" node sending data
directly to each of the other nodes.
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