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Abstract
Visual Simultaneous Localization and Mapping (SLAM)

presents a promising avenue for fulfilling the essential per-
ception and localization tasks in autonomous driving sys-
tems using cost-effective visual sensors. Nevertheless, exist-
ing visual SLAM frameworks often suffer from substantial
cumulative errors and performance degradation in compli-
cated driving scenarios. In this paper, we propose VILAM,
a novel framework that leverages intelligent roadside infras-
tructures to realize high-precision and globally consistent
localization and mapping on autonomous vehicles. The key
idea of VILAM is to utilize the precise scene measurement
from the infrastructure as global references to correct errors
in the local map constructed by the vehicle. To overcome the
unique deformation in the 3D local map to align it with the
infrastructure measurement, VILAM proposes a novel elas-
tic point cloud registration method that enables independent
optimization of different parts of the local map. Moreover,
VILAM adopts a lightweight factor graph construction and
optimization to first correct the vehicle trajectory, and thus
reconstruct the consistent global map efficiently. We imple-
ment the VILAM end-to-end on a real-world smart lamppost
testbed in multiple road scenarios. Extensive experiment re-
sults show that VILAM can achieve decimeter-level local-
ization and mapping accuracy with consumer-level onboard
cameras and is robust under diverse road scenarios. A video
demo of VILAM on our real-world testbed is available at
https://youtu.be/lTlqDNipDVE.

1 Introduction

Visual SLAM utilizes video streams from cameras as input,
reconstructs the 3D map of the unknown environment, and
simultaneously determines the position and orientation of
cameras with respect to their surroundings [5, 10, 13, 38]. It
holds the potential to enable the critical perception and local-
ization tasks required in autonomous driving systems [6, 44],

∗Corresponding author.

especially in challenging environments characterized by the
absence of traffic semantics, the lack of high-precision local-
ization and prior driving maps, or where the road surroundings
undergoes frequent structural changes. However, as an online
localization and mapping paradigm, visual SLAM systems
are vulnerable to cumulative drift caused by inherent sensor
noises of commodity cameras as well as errors from the fea-
ture point extraction and matching algorithms [23]. A recent
study [45] shows that current visual SLAM systems can yield
up to 75m of cumulative drift after mapping 2.6km on real
roads. A similar result is also shown in our real-world case
study where a state-of-the-art visual SLAM algorithm [4]
exhibits a drift of over 10m in map construction after a 400m
drive on a campus road. Such drift not only leads to significant
deviations in vehicle localization but also causes inconsisten-
cies in the constructed 3D map, posing a substantial challenge
to the reliability of autonomous driving systems.

To address these challenges, existing studies propose to em-
ploy loop-closures [4, 46] or integrate high-precision GNSS
locations [5, 7] as global references for error correction. How-
ever, loop-closure methods require the presence of looped
paths in vehicle trajectories, which is uncommon in au-
tonomous driving situations. GNSS-based methods rely on
centimeter-level accuracy GNSS-RTK equipment that can
cost up to $4,000 per suite [1] and the availability of GPS sig-
nals. Such limitations present significant barriers for adoption
in a variety of application scenarios, such as self-parking in un-
derground garages or autonomous driving in urban canyons.

In this work, we exploit intelligent roadside infrastructure
as a promising solution for enhancing vehicular SLAM. In-
telligent roadside infrastructures, equipped with LiDARs and
compute units, are increasingly available not only on public
roads [8] but also in places like campuses [20] and parking
lots [11, 35]. In particular, LiDARs are being progressively
deployed on roadside infrastructures due to their decreasing
prices in recent years [2]. Thanks to their stationary nature,
infrastructures can obtain accurate localization and measure-
ments of the environmental structure, which can serve as
reliable references to correct the cumulative drift in vehic-
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ular SLAM. By opportunistically exploiting the references
from infrastructure nodes along the road, vehicles can achieve
high-performance visual SLAM over long-distance driving
without looped paths or GNSS devices.

This paper proposes VILAM, the first infrastructure-
assisted vehicular SLAM system that harnesses LiDAR mea-
surements from distributed roadside infrastructure in real time.
In designing VILAM, we address several key challenges. First,
due to the cumulative drift in visual SLAM, the local map con-
structed by the vehicle suffers irregular deformation, making
its alignment with global references challenging. We address
this challenge by devising a novel elastic alignment approach,
which optimizes each part of the local map independently to
maximum overlap with global references. Second, roadside
infrastructures may be installed sporadically on roadways.
Therefore, merely aligning the local map with the global ref-
erences is insufficient for obtaining a consistent global map.
VILAM adopts a novel factor graph optimization method to
infer the global map efficiently based on the local map and the
alignment results. Third, the vast volume of raw LiDAR point
clouds makes it challenging to share with passing vehicles.
Meanwhile, dynamic objects such as vehicles and pedestri-
ans can significantly deteriorate the scene measurements on
the infrastructure. VILAM proposes a lightweight solution,
which removes the low-occupancy segments of the accumu-
lated point cloud based on the mobility of objects and reduces
the redundancy and amount of 3D points to be shared while
ensuring the accuracy of the static scene measurement. Lastly,
VILAM does not require high-end sensors or localization de-
vices on vehicles. This facilitates a new mapping paradigm
for autonomous driving, especially beneficial in environments
lacking pre-loaded HD maps.

We have implemented VILAM end-to-end on a smart lamp-
post testbed, spanning multiple real-world road scenarios. We
collect a new dataset that covers a total of 17.6km of driving
trajectories with 44 infrastructure nodes in five typical road
scenarios. Our extensive evaluation shows that VILAM ex-
hibits a localization error within 0.5m and a mapping error
within 0.7m, which are less than 15% and 40% of the er-
rors of state-of-the-art baselines, respectively, even when the
coverage of roadside infrastructure is as low as 20%. More-
over, VILAM only transmits compact scene measurements at
around 236KB per frame, which reduces the data volume by
about 90× and 17× compared with raw and down-sampled
point clouds, respectively. Lastly, VILAM achieves an end-to-
end system latency within 350ms for global map correction
while updating the local map and vehicle localization at 15Hz.
A demo video of VILAM on our real-world testbed is avail-
able at https://youtu.be/lTlqDNipDVE.

2 Related Work

Visual SLAM. Visual SLAM is a specialized branch of
SLAM that utilizes visual sensor data, typically from one

or multiple cameras, to perform simultaneous mapping and
localization. Existing visual SLAM methods [3, 7, 27, 49]
build visual maps of 3D distinctive points by aggregating the
extracted features from the input images. However, due to the
noisy sensor measurements and the errors of feature match-
ing, such methods suffer from cumulative errors over a period
of exploration. Some works [4, 28, 38] utilize loop closure
detection to eliminate such errors, which is not reliable in au-
tonomous driving scenarios as vehicles rarely revisit the exact
same locations in a short time. Some studies [17, 29, 48] con-
struct globally consistent maps by merging the SLAM maps
from multiple agents. However, they require the agents to fre-
quently communicate with others and create overlapped maps
actively. This requirement complicates the deployment of
such methods in autonomous driving, where latency and com-
putational efficiency are paramount. Other works [7, 25, 37]
eliminate the cumulative errors by incorporating global con-
straints, such as global positioning from GNSS sensors. How-
ever, high-precision RTK-GNSS units are highly expensive,
while the consumer-grade GNSS measurement is insufficient
to effectively correct cumulative errors in SLAM. Further-
more, these methods tend to fail in environments where GNSS
signals are not available, such as underground parking lots
and urban canyons.
Camera-LiDAR Fusion. Previous research [32, 34, 42, 52]
explore the fusion of camera images and LiDAR point clouds,
with a focus on leveraging the strengths of these two sensors
to enhance the perception abilities of autonomous vehicles
across diverse scenarios. However, these fusion approaches
assume that the camera and LiDAR are mounted together
on the vehicle and are precisely calibrated. Therefore, they
cannot cope with the unique fusion problem in infrastructure
vehicle cooperative systems, where the LiDAR and cameras
are typically separated, and the relative positions constantly
change as the vehicle moves. Some studies [30, 39] can re-
solve the relative offset between the camera and LiDAR by
registering camera images to LiDAR point clouds, thereby
accomplishing sensor data fusion. However, the applicability
of these methods is often challenged as their performance
relies on the number of feature correspondences between the
image and point cloud pair. Due to the significant difference
in sensor perspectives between vehicles and infrastructure,
there are generally fewer corresponding features.
Infrastructure-assisted Localization and Mapping. The uti-
lization of smart roadside infrastructure to assist autonomous
vehicles is an emerging paradigm [33, 47]. Previous works
have utilized wireless communication devices like WiFi [19]
and UWB [15] on the infrastructures to achieve vehicle local-
ization. However, roadside devices can only provide vehicles
with approximate single-point location information, making
it challenging to aid vehicles in map construction tasks. Some
studies [22, 31] utilize pre-installed visual indicators, such as
QR code markers, as references for vehicle localization. How-
ever, their effectiveness diminishes as the distance between
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(a) The real-world test scene and the test vehicle.

(b) Trajectory estimated by visual SLAM.

Figure 1: A motivational case study. (a) An example scenario
where the test vehicle drives through a long road. (b) The
errors of the vehicle’s trajectory estimated by visual SLAM
without correction and the GPS localization samples.

the vehicle and the marker increases, making them unreli-
able for practical driving scenarios. Some studies [16, 18, 43]
achieve vehicle localization by aligning the semantic cor-
respondences observed collectively by both infrastructure
and vehicles, thereby accomplishing perception fusion. These
studies predominantly focus on localization within the per-
ception range of a single infrastructure and the construction
of local maps. Moreover, to ensure alignment accuracy, these
studies usually require the equipping of high-precision Li-
DAR on both vehicle and infrastructure sides.

3 Background and Motivation

3.1 Preliminaries of SLAM Systems
SLAM technology constructs a 3D feature point map of an
unknown environment while simultaneously determining the
vehicle’s localization within the map using onboard visual-
inertial sensors, such as cameras and IMUs. Practical SLAM
systems exhibit considerable diversity in their implementa-
tions, yet most systems typically consist of the following three
modules:

Tracking. The tracking module goes through several key
steps. First, it detects 2D feature points within the current
image frame. Each point corresponds to a 3D map point m
in the environment and has a feature descriptor f. Then, these
feature points are matched with those in a previous keyframe
[50] according to the similarity of f, establishing associations
between the current frame and the keyframes. By combin-
ing information on the feature associations and IMU mea-
surements, this tracking module computes the relative pose
between the current frame and the keyframe. This process
constantly updates the vehicle’s localization w.r.t the starting
position.

Local Mapping. This module continuously collects track-
ing results from each individual image frame within a local
sliding window. It then leverages Bundle Adjustment [4] to
construct a 3D feature point map and estimate the vehicle’s
trajectory within that window. The feature point map is repre-
sented as a set of 3D map points and their feature descriptors:
M =

{
(m j ∈ R3, f j)

∣∣ j < N
}

, where m j is the 3D coordinates
of the jth map point, and f j is the corresponding feature de-
scriptor. N denotes the total number of landmarks in the map.
The estimated vehicle trajectory is a sequence of transforma-
tion matrices T = {T0,T1, · · · ,Ti, · · ·}. Ti = (Ri, ti) ∈ SE3
is the estimation of the vehicle’s pose at time i, where Ri
and ti denote the rotation and translation components of the
pose, respectively. Note that M and T are generated in the
local coordinate frame, whose origin is the starting point of
the SLAM. In practical driving scenarios, M and T are typi-
cally approximated to the global coordinate frame using the
vehicle’s initial localization as the starting point.

Error Minimization. This module rectifies the accumu-
lated errors in the estimated map and constructs a consistent
global map. These errors mainly stem from factors like the
sensor noises as well as feature mismatching during tracking
and are integrated into the map frame-by-frame, eventually
leading to an offset in the map. Most methods employ Loop
Correction [23] to minimize such errors. When vehicles re-
visit a previously traversed area, the module identifies key
features in the current frame, matches them with those stored
in the map from previous visits, and then detects if a loop path
exists. It then performs adjustments on the map points and the
estimated trajectory to ensure consistency on the loop path,
thereby mitigating accumulated errors. Some methods also
utilize periodic global positional information, such as GNSS
locations [5,25,37], to limit the growth of accumulated errors.

3.2 Limitations of SLAM

SLAM technologies can encounter unique challenges in au-
tonomous driving scenarios. To illustrate these challenges, we
present a motivating case study highlighting the limitations
of SLAM in the context of autonomous driving.

We conducted a test drive using a vehicle along a campus
road of around 450m, as depicted in Fig. 1(a). The test vehicle
is equipped with a RealSense camera, a consumer-level GPS
receiver, and a high-precision RTK unit. We employ ORB-
SLAM3 [4], a state-of-the-art visual SLAM algorithm widely
adopted in both research and industry, to process vehicle cam-
era images. Fig. 1(b) presents a comparison between the
vehicle trajectory estimated by ORB-SLAM3 and the ground
truth trajectory recorded by the high-precision RTK unit. Ini-
tially (e.g., within the first 100m), the estimated trajectory
closely aligns with the ground truth. However, as the vehicle
continues to drive, a noticeable offset occurs. As discussed in
Sec. 3.1, this offset is attributed to accumulated errors from
the tracking module. In driving scenarios, due to the pres-
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Figure 2: The architecture of VILAM. The orange and blue boxes denote infrastructure and vehicle operations, respectively.

ence of dynamic objects and the rapid perspective changes
caused by high driving speed, incorrect feature associations
between consecutive frames can lead to more severe pose
estimation errors than in robotic applications. Lacking exter-
nal supervision, these errors accumulate over time, leading to
increasingly significant deviations in the vehicle’s trajectory.
For example, as shown in Fig. 1(b), when the trajectory length
exceeds 400m, the offset can exceed 10m.

While Loop Correction can minimize the cumulative er-
rors, it requires the vehicle to revisit previously traversed
locations frequently to establish loop constraints. Such an
approach might be practical in small-scale indoor localization
scenarios. However, autonomous vehicles often travel long
distances, and their trajectory planners aim to minimize re-
dundant routes. Consequently, the commonly seen trajectory
of the vehicles is as shown in Fig. 1(a). This characteristic
reduces the frequency of loop closure opportunities compared
to other SLAM applications like indoor robotics. Additionally,
road and traffic conditions can change rapidly in autonomous
driving scenarios. Conventional loop closure methods may
struggle to handle dynamic objects and changing environ-
ments. For those methods that utilize global positioning to
mitigate accumulated errors, Fig. 1(b) shows that consumer-
level GPS cannot consistently provide accurate localization
(with an average error exceeding 5m). In certain scenarios
(such as underground parking garages), vehicles can even fail
to obtain GNSS signals for extended periods. Therefore, a
significant gap remains between existing visual SLAM tech-
nologies and the vision of applying SLAM in autonomous
driving.

4 System Design

4.1 System Overview
As discussed in Sec. 3.2, visual SLAM technology faces sub-
stantial challenges in driving scenarios due to significant map-
ping errors in complex traffic environments and the unrelia-

bility of error correction methods. This work addresses these
challenges by utilizing intelligent roadside infrastructure to
enhance vehicle SLAM. The stationary nature of the roadside
infrastructure enables it to obtain accurate measurements of
the environmental structure and global localization, which
serve as reliable references to correct the accumulative errors
in visual SLAM. By receiving and exploiting such references
when continuously passing infrastructure nodes, vehicles can
achieve high-performance SLAM over extensive distances in
the absence of looped paths or precise global localization.

We propose VILAM, the first infrastructure-assisted vehi-
cle SLAM system that harnesses LiDAR measurements from
distributed roadside infrastructures as global references to en-
hance visual SLAM on the vehicle in real time. Fig. 2 shows
the overview of VILAM. Specifically, VILAM consists of one
module on infrastructure and three modules on the vehicle.

On the infrastructure side, the infrastructure measure-
ment extraction module (Sec. 4.3) periodically extracts a
lightweight scene representation from the accumulated infras-
tructure LiDAR point clouds. By filtering out dynamic objects
and merging redundant points, it obtains a high-quality yet
compact measurement of the environmental structure. This
refined measurement, along with the infrastructure’s location,
are utilized as global references and broadcast to all nearby
vehicles.

On the vehicle side, the local map construction (Sec. 4.2)
module employs existing visual SLAM modules based on
the onboard sensor to keep constructing an initial 3D local
map. To be compatible with diverse visual SLAM frame-
works, it extracts three types of data that are common to most
of the existing approaches: the feature point map, the his-
torical vehicle localization (i.e., the vehicle trajectory), and
the visibility relationship between them, for the following
processing with the infrastructure measurement. Once the ve-
hicle receives the global reference from the infrastructure, the
vehicle-infrastructure alignment (Sec. 4.4) module aligns the
local feature point map with the infrastructure measurement
to correct the overlapped part of the local map and the latest
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vehicle trajectory. In particular, we devise a novel elastic align-
ment approach to address the deformation in local 3D maps
that renders conventional rigid-oriented point cloud registra-
tion methods ineffective. Finally, the global map correction
(Sec. 4.5) module leverages the corrected part of the vehicle
trajectory to amend the historical vehicle trajectory and the
entire feature point map. This module adopts a novel factor
graph-based representation to encode only the lightweight
vehicle trajectory and the alignment results. By optimizing
the factor graph to iteratively correct the historical trajectory,
it can infer a consistent global map efficiently based on the
visibility relationship between the vehicle trajectory and the
initial feature point map. To minimize compute overhead, the
local map construction module runs continuously to update
the local map and vehicle trajectory. Concurrently, the vehicle-
infrastructure alignment and global map correction modules,
triggered by global references from the infrastructure, oper-
ate in parallel. This parallel processing strategy guarantees
efficient computation and timely updates for the map and
localization.

4.2 Local Map Construction
We employ the tracking and the local mapping modules from
visual SLAM frameworks (see Sec. 3.1) on the vehicle to
continuously estimate the vehicle localization and construct
an initial local map based on the camera image sequences.
However, existing visual SLAM frameworks exhibit diverse
designs due to varying sensor configurations and feature ex-
traction methods [4, 38, 53], resulting in a multitude of map
representations and data formats. To ensure robust compatibil-
ity across these visual SLAM frameworks, VILAM carefully
extracts three data types: (i) The initial 3D feature point map
M . (ii) The estimated vehicle trajectory T . (iii) The visibility
relationship C between M and T . This visibility relationship
indicates that a feature point in M can be observed by the
vehicle at different positions along T , denoted by a set of
tuples as

C =
{
(i, j,u,v)

∣∣Ti ∈ T ,m j ∈ M , u,v ∈ Z
}

(1)

where the tuple (i, j,u,v) indicates that the map point m j
can be observed by vehicle at pose Ti, and this observation
corresponds to a 2D feature point (u,v) on the camera image
captured at Ti. These three types of data are common to most
existing visual SLAM pipelines, depicting all the map point
information in the initial local map and the spatial-temporal
relationships between them.

4.3 Infrastructure Measurement Extraction
This module runs on each roadside infrastructure node to
generate an accurate 3D measurement of the surrounding en-
vironment with precise localization, utilizing the data from
the LiDAR on the infrastructure. This measurement is a set of

points processed from LiDAR point clouds over a period of
time. Thanks to the precise nature of LiDAR and the immov-
able location of the infrastructure, these points have global
coordinates with errors within millimeters. Therefore, mea-
surements from infrastructure distributed along the vehicle
trajectory can serve as ideal global references to assist visual
SLAM.
Measurement Extraction. LiDAR point clouds can be highly
dynamic in traffic scenarios due to moving objects such as
vehicles and pedestrians. Points belonging to moving ob-
jects may not have correspondences in the 3D local map
constructed by the vehicle and thus cannot be used as global
references for visual SLAM. Existing methods [14] for filter-
ing moving objects, which typically use deep neural networks,
can cause substantial computation overhead. Inspired by [24],
we design a lightweight approach to eliminate the dynamic
points, utilizing the accumulated point cloud over a period of
time. Moreover, such accumulated point clouds have higher
resolution to achieve a more accurate measurement of the en-
vironment structure. Specifically, we accumulate the LiDAR
frames over a time period (e.g., 5 seconds) as a dense point
cloud. We then voxelize this point cloud into voxel grids and
calculate the occupancy of each grid (i.e., the number of points
located in that grid). Static objects are present at consistent
positions across all the LiDAR frames so the corresponding
voxels have higher occupancy, and vice versa. Therefore, we
filter out the points in voxels with low occupancy and merge
the rest of the points to the center of each voxel, thus obtaining
an accurate but extremely compact measurement of the static
scene. Finally, we estimate the planar feature (i.e., the param-
eter of the tangent plane) for each point in the remaining point
cloud and combine it as the feature of this point. Note that
planar features not only are presented in the structures like
roads and walls, but also can be extracted by differentiation
from curved surfaces such as tree trunks. We denote the final
point set from the kth infrastructure node as Pk.
I-V Transmission. Given that Pk comprises only informa-
tion regarding static scenes around the infrastructure, it can
maintain consistency over a period of time. This allows for
low-frequency measurement extraction on the infrastructure
and a one-shot operation to transmit the measurement from
the infrastructure to each vehicle. This approach substantially
diminishes the computational and communication overhead
on the infrastructure. Moreover, the measurement of an in-
frastructure node can be broadcast to all passing vehicles, en-
hancing the scalability of this infrastructure-assisted SLAM
framework.

4.4 Vehicle-Infrastructure Alignment

When the vehicle passes an infrastructure node, there is usu-
ally a significant overlap between the field of views of the
sensors on the vehicle and the infrastructure, which means
that the LiDAR measurement from the infrastructure (i.e., Pk)
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and the corresponding part of the vehicle’s local map (i.e., M )
depict the same scene. Since Pk and M are both represented
by 3D point sets with real-world coordinates, by aligning M
to the global reference Pk, the vehicle can correct the errors
in the overlapped part of M and the corresponding part of
vehicle trajectory T . We denoted these local map and vehicle
trajectory segments as M̃ and T̃ , respectively.

Conventional point cloud alignment algorithms, also known
as point cloud registration, are predicated on the rigid-body
assumption of point clouds, making them ill-suited for this
alignment task. These algorithms assume a rigid-body trans-
formation relationship between M̃ and Pk, suggesting that
the misalignment for each map point m j in M̃ is uniform.
However, as discussed in Sec. 3.1, M is accumulated frame-
by-frame during the visual SLAM process on the vehicle,
with errors from both feature point extraction and vehicle
pose estimation being integrated and compounded in M . As
a result, the misalignment distribution between each segment
of M̃ and the corresponding segment in Pk is not uniform.

To address this issue, we design an elastic point cloud
registration approach. Our key idea is to optimize each part of
M̃ independently to achieve maximum overlap with Pk after
alignment. This optimization is conducted based on two types
of constraint: geometry constraint and visibility constraint.
As illustrated in Fig. 3, the geometric constraint restricts the
points in M̃ to their closest planes in Pk, while the visibility
constraint further optimizes the position of each point in the
plane using its coordinates from different viewpoints on the
trajectory.
Geometry Constraint. We first associate each map point
m j with a plane in Pk by searching its nearest plane feature
(n j,q j) estimated during infrastructure measurement extrac-
tion (see Sec. 4.3), where n j represents the plane’s normal
vector and q j denotes the plane’s center. The distance from
m j to the plane can be calculated by:

dgeo(m j) = (m j −q j)
T ·n j (2)

which denotes the misalignment between m j and its cor-
responding object in Pk. Therefore, we aim to minimize
dgeo(m j) across the map segment M̃ to constrain all the map
points closer to Pk.
Visibility Constraint. The geometry constraint can locate
m j to a plane but cannot determine its position within the
plane. We propose to utilize the vehicle’s visibility of m j at
different positions on T̃ to further constrain its coordinate.
As discussed in Sec. 3.1, a map point m j can be observed by
the vehicle from different locations on the trajectory, which
is represented by the visibility relationship C . We project
m j back to the images captured at these locations. If m j is
accurate, its projection point should be consistent with the
corresponding 2D feature point. We calculate the distance
between them by:

rvis(m j, T̃ ) = ∑
i

∥∥∥π
(
(Ti)

−1m j
)
− (u,v)T

∥∥∥ (3)

where π(·) denotes the projection function and (i, j,u,v) ∈
C . Therefore, minimizing rvis(m j, T̃ ) provides another con-
straint on the map points to ensure their consistency from
different viewpoints on the vehicle trajectory.

By combining the two types of constraints across all map
points, we formulate the point cloud alignment of M̃ and T̃
as an optimization problem:

T̃ ∗,M̃ ∗ = arg min
T̃ ,M̃

∑
j

∥∥∥[dgeo
rvis

]∥∥∥2

2
(4)

where we leverage 2-norm to combine dgeo and rvis as they
can be approximated as the normal and radial distances be-
tween m j and the groundtruth, since dgeo are usually parallel
to the direction of the vehicle due to the depth estimation error,
while the rvis are within the image plane, which is usually per-
pendicular to the vehicle direction. Given the high dimension
of the optimization variables (there can be thousands of map
points in M̃ ), we employ the sparse Levenberg-Marquardt
algorithm [40] to solve this optimization problem.

4.5 Global Map Correction
After the alignment, we have the latest part of the initial lo-
cal map and the vehicle trajectory corrected (i.e., M̃ ∗ and
T̃ ∗) based on the global references from the infrastructure.
Ideally, if the roadside infrastructure nodes are densely dis-
tributed with their field of view covering the entire road, an
accurate global map can be simply obtained by stitching all
the corrected map segments. However, given the complexity
of real-world road environments and the varied density of
roadside infrastructure distribution, it is challenging for road-
side sensors to achieve comprehensive coverage of roadways.
Therefore, we need to utilize M̃ ∗ and T̃ ∗ to correct the his-
torical part of M and T and obtain a consistent global map.
However, directly conducting the correction on M may incur
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Figure 4: Illustration of the factor graph construction and optimization. The nodes and factors denote the poses along the original
vehicle trajectory and the trajectory corrected with global references, respectively. By optimizing this factor graph, VILAM can
efficiently correct historical and upcoming vehicle poses.

significant compute overhead since numerous map points in
M have to be adjusted one by one based on M̃ ∗. To address
this challenge, we adopt a factor graphed-based representation
to encode only the original vehicle trajectory T and its cor-
rected part T̃ ∗. By optimizing this lightweight factor graph,
we can obtain the corrected historical trajectory and then infer
the entire feature point map efficiently based on it.

Specifically, Fig. 4 shows the construction and optimization
of the factor graph. The nodes in the graph denote the 3D
poses along the original vehicle trajectory T , and the binary
edge Bi+1

i between two neighbor nodes represents the relative
pose transformation between them. For the trajectory segment
T̃ corrected by the global references from the infrastructure,
the corrected coordinate T∗

i acts as the factor of the node Ti.
We aim to optimize the value of nodes without factors based
on all the binary edges and the factors. It can be described by
the following optimization problem:

T ∗ = argmin
T

∑
Ti∈T

∥∥∥E
(

Ti+1,TiBi+1
i

)∥∥∥2
+ ∑

T∗
i ∈ ˜T ∗

∥∥∥E
(

Ti,T∗
i

)∥∥∥2

,

(5)
where E(·, ·) calculates the errors between two poses. This
problem can be efficiently solved by the incremental factor
graph optimization method [21], which iteratively corrects
each node value under the constraints of its connected edges
in a propagation manner. After such optimization processing
over the entire graph, we obtain the entire corrected trajectory
T ∗. Utilizing the visibility relationship C between the trajec-
tory and the feature points in M , we can infer the map points
based on T ∗ and finally reconstruct a consistent global map.

5 Testbed and Dataset

Testbed. Fig. 5 (a) and (b) show the setups of the roadside
infrastructure and the test vehicle in the real-world. Each
roadside infrastructure is equipped with two Livox Horizon
LiDARs installed at a height of 3.5m, covering both sides of
the facility in a rear-facing configuration. It should be viable
to apply VILAM’s idea to 3D cameras on the infrastructure,
and we have left this to future work. Additionally, it has an
Nvidia Jetson TX2 computing module with Wi-Fi, capable
of simple local information processing and communicating

LiDARLiDAR

WiFiWiFi
TX2TX2

LiDAR
LiDAR

WiFi
TX2

LiDAR

Camera

LiDARRTK

(a) Roadside infrastructure. (b) Test vehicle.

(c) Test scenarios.

InfrastructureInfrastructureInfrastructure

Figure 5: A real-world smart infrastructure testbed deployed
in diverse scenarios for data collection and system evaluation.

with the vehicle. The vehicle is equipped with a Realsense
D455 camera (with built-in IMU). The camera is only used to
collect raw images and IMU measurements, without depth in-
formation. The on-vehicle computing/communication unit is
a laptop with an AMD Ryzen 2.90GHz CPU and an NVIDIA
RTX 2060 GPU. Additionally, the test vehicle is equipped
with a Livox HAP LiDAR and an Asense ins570d RTK-GNSS
receiver for ground truth collection. Specifically, we repeat-
edly scan the roads with LiDAR and merge the point clouds
offline using an existing mapping system [41] to create the
ground-truth map. The vehicle’s ground-truth trajectory is
obtained by aligning the point cloud frames captured by the
LiDAR with the ground-truth map.
Real-world Dataset. We collect an extensive real-world
dataset across five typical scenarios using our infrastructure
and vehicle testbeds, as shown in Fig. 5(c). Table 1 details
the data collected in each scenario. Each of these scenarios
poses challenges for existing visual SLAM systems: (i) In
the open roads and campus scenarios, there are few closed
loops in the vehicle trajectories. (ii) The industrial park and
underpasses have limited GNSS signal coverage (∼ 60%),
which is completely absent in the underground parking facil-
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Table 1: Summary of the test scenarios, where "Traj." repre-
sents the vehicle trajectories, "GPS" represents the coverage
of GNSS signals in the scenario, "Infra." represents infras-
tructure.

Scenario Traj. length Images GPS Infra. nodes
Open Road 6.6 km 45.1 k ~90% 13

Campus 1.3 km 15.4 k ~80% 8
Industrial park 5.9 km 40.2 k ~60% 9
Underpasses 0.4 km 3.6 k ~60% 4

Underground parking 3.4 km 33.0 k 0% 10

ity. The average infrastructure coverage across all scenarios
is around 60%. We quantify the infrastructure coverage by
calculating the proportion of the vehicle’s ground-truth trajec-
tory positions that fall within the infrastructure’s point cloud.
The inter-infrastructure node distance lies between 20m and
170m. The vehicle’s average speed is 5m/s (up to 10m/s)
due to the speed limits in most test scenarios. In summary,
our dataset covers a total of 17.6km in driving trajectories, in-
cluding 137.3k image frames captured by vehicles and 55.2k
point cloud frames from 44 infrastructure nodes. This research
has been granted IRB approval.

6 Evaluation

6.1 Evaluation Setup and Metrics

6.1.1 Experiment Setup

On the infrastructure side, the data rate of the LiDAR point
cloud is 10 fps. We utilize a 5-second point cloud sequence for
measurement extraction and set the voxel grid size to 0.5m.
On the vehicle side, for the local map construction task, we
configure the vehicle camera to capture images at a data rate
of 15 fps and IMU measurements at 200 fps. We set the image
resolution to 768x480. For the V-I alignment task, we set the
length of the local map segment to 30m.

6.1.2 Evaluation Metrics

APE, ARE and RTE. We employ Average Positioning
Error (APE) and Average Rotation Error (ARE) [36] to
evaluate the absolute accuracy of the trajectory estimated
by the SLAM algorithm. Specifically, APE quantifies the
translational discrepancies between the estimated trajec-
tory and the ground truth trajectory at each frame: APE =
1
n ∑

n
i

∥∥∥Et

(
trans(Test

i ), trans(Tgt
i )

)∥∥∥, where n denotes the
frame number. Similarly, ARE measures the rotational dis-
crepancies between the estimated and the ground truth trajec-
tory: ARE = 1

n ∑
n
i

∥∥∥Er

(
rot(Test

i ),rot(Tgt
i )

)∥∥∥. Furthermore,
we leverage the Relative Trajectory Error (RTE) from the
KITTI Benchmark [12] to compute the degree of trajectory
drift over time.
Chamfer Distance. We adopt the Chamfer Distance (CD)
to assess the difference between the point cloud map X con-
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Figure 6: An end-to-end evaluation in the underground park-
ing scenario. Above: the vehicle trajectory and infrastructure
locations in the test scene. Middle: the error of the estimated
vehicle localization during the driving trace. Bottom: the final
map quality along the vehicle trajectory.

structed by the SLAM algorithm and the ground truth map
Y . CD is computed by summing the squared distances be-
tween nearest neighbor correspondences of two point clouds:
CD(X ,Y ) = ∑x∈X miny∈Y ||x− y||22 +∑y∈Y minx∈X ||x− y||22.

6.1.3 Baselines.

We implement three state-of-the-art visual SLAM algorithms
as baselines. OpenVINS [13] is a conventional local mapping
framework without error minimization. ORB-SLAM3 [4]
and GVINS [5] employ loop-closures and GNSS locations,
respectively, as global constraints to correct the cumulative
drift. VILAM can incorporate all these algorithms within the
local map construction module. However, due to the diverse
GNSS coverage across different test scenarios, we adopt ORB-
SLAM3 in VILAM’s implementation for evaluation unless
otherwise noted.

6.2 End-to-end System Evaluation
We evaluate the end-to-end system performance of VILAM
in real-world scenarios described in Table 1. Fig. 6 illus-
trates the performance of VILAM in the Underground Park-
ing scenario. A video clip of the complete localization and
mapping result of the test vehicle is available at https:
//youtu.be/lTlqDNipDVE. In the upper subfigure, the grey
background represents the floorplan of the parking lot ex-
tracted from the ground truth map, the red line depicts the
driving trajectory, and the yellow dots represent the locations
of the infrastructure nodes. The node is numbered in the

1838    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://youtu.be/lTlqDNipDVE
https://youtu.be/lTlqDNipDVE


Table 2: Trajectory accuracy comparison of VILAM with existing SLAM methods across various scenarios. The unit of the APE
metric is meters.

Method Open roads Campus Industrial park Underpasses UDG parking All Scenarios
APE RTE APE RTE APE RTE APE RTE APE RTE APE RTE

OpenVINS [13] 8.170 3.54% 10.406 9.92% 4.772 1.48% 11.30 6.71% 6.144 3.37% 8.158 5.01%
OpenVINS + VILAM 0.355 1.46% 0.493 3.93% 0.380 0.60% 0.347 3.04% 0.294 0.71% 0.373 1.94%

ORB-SLAM3 [4] 5.745 2.91% 2.646 2.45% 2.556 1.60% 3.568 3.85% 3.278 2.06% 3.558 2.58%
ORB-SLAM3 + VILAM 0.351 1.87% 0.427 1.75% 0.296 1.16% 0.359 2.63% 0.219 0.76% 0.330 1.63%

GVINS [5] 2.456 3.37% 1.710 3.52% 3.505 2.41% 4.219 3.69% 4.059 2.78% 3.190 3.15%
GVINS + VILAM 0.403 2.30% 0.354 2.38% 0.325 0.65% 0.340 3.13% 0.249 0.42% 0.335 1.77%

order the vehicle passes by. The middle subfigure shows
the real-time localization accuracy (APE) of VILAM. The
numbered vertical lines represent the moment the vehicle
encounters an infrastructure node. We observe that, in the
areas between infrastructures, there is a slight upward trend
in the localization error. The error is corrected once the ve-
hicle passes an infrastructure and optimizes its local map
through V-I alignment. The lower subfigure shows the trajec-
tory estimated by VILAM and the accuracy of the constructed
map. We color-code the vehicle trajectory using the map-
construction error (Chamfer Distance) of the corresponding
region. It can be seen that, with global map correction, the
error distribution of the map maintains consistent uniformity
in both infrastructure-covered and uncovered regions. We
further evaluate the impact of the coverage of infrastructure
deployment on VILAM’s performance in Sec. 6.6.

6.3 Performance of VILAM
6.3.1 Trajectory Estimation

As mentioned in Sec. 4, VILAM tracks the vehicle by
associating image frames to derive the vehicle trajectory.
Therefore, the accuracy of the estimated trajectory indicates
VILAM’s continuous real-time localization performance. Ta-
ble 2 presents a comparison of trajectory accuracy between the
baselines and VILAM implementations based on them across
five testing scenarios. The results show that all VILAM imple-
mentations outperform the corresponding baseline algorithms.
Specifically, OpenVINS exhibits substantial errors (i.e., over
8.1m on average) in all scenarios. ORB-SLAM3 and GVINS
enhance accuracy by introducing global constraints but still
have significant errors, especially in scenarios that lack loop
paths (e.g., open roads and underpasses) and GNSS coverage
(e.g., underground parking), respectively. In contrast, VILAM
achieves an APE within 0.4m and an RTE within 2% on av-
erage across all scenarios while demonstrating robustness to
the algorithms used in the local map construction module.

Fig. 7 shows a further evaluation of the benefits of the
VILAM framework exploiting global references from road-
side infrastructure. "Baseline" and "VILAM " refer to the
original baseline algorithms and the VILAM implementa-
tions using these algorithms in the local map construction
module, respectively. "w/ Landmark" and "w/ Infra." indi-
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Figure 7: Performance im-
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cates the modified baseline algorithms. "w/ Landmark" cor-
rect SLAM by utilizing the detected infrastructure positions
from vehicle-side images as reference landmarks. "w/ Infra."
correct the SLAM results by directly integrating the point
clouds from the infrastructure through a conventional point
cloud registration method [26]. We can find that simply uti-
lizing information from the infrastructure can improve the
performance of the baseline algorithms. However, such im-
provements are minor for ORB-SLAM3 and GVINS, as they
utilize loop detection and GNSS to correct some errors, re-
spectively. In contrast, VILAM significantly outperforms "w/
Infra." and "w/ Landmark" across all three basic algorithm
implementations, achieving over an 80% reduction in APE.
This is because VILAM’s elastic alignment approach over-
comes the deformation in the local map, thereby significantly
improving alignment accuracy. Moreover, the global map cor-
rection module of VILAM utilizes the alignment results to
optimize both the historical map and the real-time localization
results. We delve further into the performance of these two
modules in Section 6.5.

6.3.2 Map Quality Evaluation

In this section, we evaluate the quality of the map constructed
by VILAM. Like mainstream SLAM methods, VILAM builds
a 3D feature point map, primarily used for vehicle relocaliza-
tion by reusing the map. Therefore, we mainly focus on the
accuracy of the reconstructed map points’ coordinates and the
overall consistency of the map.

Fig. 8 compares the CD between the estimated map of
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Figure 9: Visualization of the trajectory and the 3D feature
point map estimated by VILAM. Above: the infrastructure
locations and the estimated vehicle trajectory by VILAM.
Bellow: the bird-eye view of the 3D map built by VILAM,
where colors(blue to red) indicate different point heights.

VILAM / baseline SLAM and the ground-truth map. The
higher the CD, the greater the error of the estimated map. As
autonomous driving perception tasks primarily focus on road
information and relocalization tasks mainly concern off-road
three-dimensional structure and texture features, we divide
the map points into two main categories: road and Off-road
structure. Consistent with the trajectory evaluation results,
baseline methods incorporating global constraints such as
loop-closing or GNSS (ORB-SLAM and GVINS) exhibit an
improvement over approaches relying solely on Local Map-
ping. However, the overall map accuracy of these methods
still falls short when compared to the ground truth. VILAM
addresses this limitation through its global map correction
module. By effectively integrating corrections from multi-
ple infrastructure-based VI-Alignment with the factor graph,
VILAM enhances global consistency and improves map accu-
racy. We visualize the point cloud map constructed by VILAM
in Fig. 9. Due to the high accuracy and consistency of the
map, the structures of buildings around the road are clearly
discernible.

6.4 System Overhead
System Latency. In Fig. 10, we present the end-to-end la-
tency distribution of VILAM throughout a driving trace. Here,
"Local Map" represents local map construction, and "Global
Map" represents global map correction . The infrastructure-
related tasks, namely I-V Transmission, V-I alignment, and
global map correction, are only triggered when the vehicle
encounters an infrastructure. VILAM operates with minimal
computational overhead during intervals without infrastruc-
ture coverage, as only the local map construction task re-
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Table 3: The average size and transmission time of the shared
data measured on an 802.11ac network. PC denotes "Point
Cloud", and SSR denotes "Static Scene Representation."

Data type Trans mode Sync Size Time
Raw PC Continuous Required 21.1 MB 3.93s

Downsampled PC Continuous Required 4.1 MB 0.78s
VILAM SSR Single-shot – 236.3 KB 0.04s

mains active. A detailed timeline as the vehicle passes through
one of the infrastructures is illustrated in Fig. 11. Thanks to
VILAM’s concurrent design, local map construction is not
blacked by the infrastructure-related tasks. This ensures it
outputs continuous vehicle localization based on previously
corrected maps, maintaining real-time system performance.
It is critical for downstream tasks that require real-time lo-
calization, such as trajectory planning. The average latency
for infrastructure-related tasks is about 0.35s, ensuring a near
real-time correction of both the map and localization after the
vehicle passes through an infrastructure.
I-V Transmission. We further evaluated the data transmis-
sion overhead associated with the vehicle’s acquisition of
point clouds from infrastructure. The results are presented in
Table. 3. When directly streaming a raw point cloud sequence
(about 100 frames) to the vehicle, the data transfer volume
exceeds 20MB, and it is also burdened by a considerable
transmission latency. After performing voxel downsampling
on each point cloud frame, the number of points is reduced,
yet the final data volume still surpasses 4MB. This can be
attributed to the fact that points in each frame contain redun-
dant measurements of static structures within the scene. As
discussed in Sec. 4.3, VILAM addresses this by merging the
points of static structures across multiple frames, effectively
eliminating redundancy. Consequently, the final transmitted
Static Scene Representation requires a mere 236KB of data.
Influence of Infrastructure Measurement Precision. In
Sec. 4.3, the voxel grid size influences the size and precision
of the extracted representation, which in turn affects the la-
tency of I-V transmission and the subsequent performance of
the V-I alignment. As illustrated in Fig. 12, when the voxel
size is increased, more redundant points occupying the same
spatial location are merged, leading to a consistent reduc-
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tion in the size of the representation and thereby significantly
decreasing the transmission latency. Meanwhile, the latency
of V-I alignment only reduces at first. This reduction is due
to the decreased point number after the voxel grid partition,
resulting in faster neighboring searches during alignment.
However, when the voxel size exceeds about 0.7m, this la-
tency reduction plateaus because the reduced precision of
the representation at larger voxel sizes means that the joint
optimization process requires more time to converge. The
green bars in Fig. 12 depict the influence of voxel size on the
accuracy of the V-I alignment. There is a slight degradation
in the accuracy with the voxel size increases. In our practical
implementation, we set the voxel size to 0.5m, which strikes
a balance by ensuring lower latency without compromising
accuracy.

6.5 Micro Benchmarks
Performance of V-I Alignment. The result of the V-I align-
ment directly influences the accuracy of the global constraints
that VILAM derives from the infrastructure. In this section,
we provide a detailed evaluation of the performance of V-I
alignment. We compare the following two registration ap-
proaches with the proposed V-I alignment method. 1) image-
to-point (I2P): The continuous frame images acquired by the
vehicle near an infrastructure are sequentially registered with
the infrastructure point cloud. 2) Point-to-point (P2P): Align
the vehicle’s local map with the infrastructure point cloud
using 3D point cloud registration algorithms.

As shown in Table. 4, CorrI2P [39] exhibits large overall
error. This is mainly attributed to the significant perspective
difference between the vehicle’s camera and the infrastruc-
ture’s LiDAR. Consequently, few feature correspondences are
matched between the vehicle camera images and the infras-
tructure point cloud, leading to lower registration accuracy
and poor robustness. P2P approaches, on the other hand, uti-
lize the entire local point cloud map from the vehicle side,
efficiently improving the number of corresponding features
and enhancing the completeness of the perception perspec-
tive compared to the I2P method. However, as described in
Sec. 4.4, the local map exhibits deformations due to cumula-

(a) Infrastructure PC (b) SLAM Local Map

(c) Fast-GICP Result (d) V-I Alignment Result

Figure 14: Visualization of the registration between the vehi-
cle local map and the infrastructure measurements.

Table 4: Performance of the proposed elastic alignment
method and conventional registration algorithms. "VILAM
VIA" denotes the V-I Alignemnt module of VILAM, "I2P"
represents image-to-point cloud registration algorithm, and
"P2P" represents point cloud-to-point cloud registration algo-
rithm.

Method Type APE (m) ARE (◦) Time (s)
CorrI2P [39] I2P 1.74 ± 0.65 10.31 ± 2.29 2.98
MAC [51]

P2P

1.57 ± 0.27 8.71 ± 2.36 0.65
Fast-GICP [26] 1.36 ± 0.34 9.07 ± 2.19 0.13

S-ICP [9] 1.07 ± 0.39 7.39 ± 1.85 0.61
VILAM 0.31 ± 0.08 2.29 ± 0.52 0.24

tive errors. Rigid body-based registration methods, such as
MAC [51] and Fast-GICP [26], struggle to accurately align
most regions of the local map to the infrastructure measure-
ment. Taking Fast-GICP as an example, as depicted in Fig.
14 (c), only the starting region of the local map matches well
with the infrastructure point cloud. Yet, there is a significant
deviation towards the end of the local map (highlighted by
the grey rectangle).

S-ICP [9] introduces a scale factor into the rigid-body reg-
istration model, which helps alleviate errors caused by the
rigid-body assumption and achieve lower APE. The proposed
V-I alignment further divides the local map into fine-grained
fragments, allowing each region of the local map to align
better with the infrastructure measurement, as shown in Fig.
14 (d). This significantly reduces APE and ARE, with only
a slight increase in calculation delay. Furthermore, the con-
current design of VILAM ensures that it does not impact
the real-time performance of the overall system, making this
latency negligible.
Performance of Global Map Correction. In this section, we
evaluate the influence of the global map correction module
on mapping consistency. We perform ORB-SLAM3, VILAM
without global map correction, and the full VILAM setup on
the data trace and assessed the resultant trajectory accuracy.
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The result is presented in Fig. 13. As the vehicle’s driving time
increases, the trajectory error of ORB-SLAM3 demonstrates
a continuous growth trend due to the absence of global con-
straints. In the case of VILAM without global map correction,
only the trajectories near the infrastructure are corrected by
V-I alignment. The trajectory errors persistently escalate for
the gap areas between the infrastructures, resulting in abrupt
error shifts at the subsequent infrastructure points (e.g., the
APE at the 2nd minute in Fig. 13). Although the APE without
global map correction is substantially reduced compared to
the baseline SLAM methods, such inconsistencies seriously
degrade the map quality. Upon integrating the global map
correction module, the overall APE remains within a low
range.

6.6 Robustness Analysis

Infrastructure Coverage. As observed in Sec. 6.2, the accu-
racy of VILAM can be affected by the coverage of infrastruc-
ture, i.e., the proportion of the area that infrastructure LiDARs
can perceive. We evaluate VILAM under varying infrastruc-
ture coverage in an underground parking garage. Specifically,
we place mobile poles equipped with LiDARs at different in-
tervals to simulate varied infrastructure coverage. The results
are depicted in Fig. 15. Although the error escalates as the
coverage diminishes, VILAM significantly outperforms the
baseline even with extremely low infrastructure coverage (i.e.,
the average APE is kept around 0.5m at 20% infrastructure
coverage). This demonstrates VILAM’s robustness to diverse
infrastructure setups in the real world.
Environmental Dynamics. We compare the performance of
VILAM with and without static scene extraction under differ-
ent traffic conditions. The results in Fig. 16 show that the error
of VILAM without static scene extraction increases signifi-
cantly under heavier traffic, while the CD of VILAM remains
under 1m across all the traffic conditions. This evaluation
confirms VILAM’s robustness to environmental dynamics.
Delayed I-V Transmission. During the transmission of the
extracted Static Scene Representation from the infrastructure
to the vehicle, connectivity issues or transmission errors may
delay VILAM from timely accessing the infrastructure’s in-

formation for map correction. To evaluate the influence of the
delayed time on VILAM’s performance, we manually set la-
tency at the infrastructure side to simulate transmission delays.
The result is shown in Fig. 17. The delay time is measured
from the moment when the vehicle is closest to the infrastruc-
ture. Interestingly, for V-I alignment, moderate transmission
delays can actually enhance alignment accuracy. This benefit
arises as the vehicle constructs a more extensive local map
during the delayed time, leading to a larger overlap with the
infrastructure point cloud. However, as the delay time further
increases, the cumulative error of the local map intensifies,
leading to a reduction in V-I alignment accuracy. Meanwhile,
the overall trajectory precision of VILAM is relatively imper-
vious to delayed times. A noticeable trajectory error increase
occurs only when the vehicle entirely misses the current in-
frastructure’s measurement. The global map correction V-I
alignment can leverage this information to maintain a consis-
tent trajectory as long as the vehicle eventually receives the
infrastructure measurement and undergoes V-I alignment.

7 Conclusion

In this paper, we present VILAM, the first system that lever-
ages distributed roadside infrastructures to accomplish high-
precision and globally consistent localization and mapping for
autonomous vehicles. We implement VILAM end-to-end and
evaluate its performance across various challenging driving
scenarios. The experiment results show that VILAM effec-
tively enhances the performance of existing SLAM methods
in terms of localization accuracy, map consistency, and system
robustness.
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