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Abstract
In real-time video communication, retransmitting lost packets
over high-latency networks is not viable due to strict latency
requirements. To counter packet losses without retransmis-
sion, two primary strategies are employed—encoder-based
forward error correction (FEC) and decoder-based error con-
cealment. The former encodes data with redundancy before
transmission, yet determining the optimal redundancy level
in advance proves challenging. The latter reconstructs video
from partially received frames, but dividing a frame into inde-
pendently coded partitions inherently compromises compres-
sion efficiency, and the lost information cannot be effectively
recovered by the decoder without adapting the encoder.

We present a loss-resilient real-time video system called
GRACE, which preserves the user’s quality of experience
(QoE) across a wide range of packet losses through a new
neural video codec. Central to GRACE’s enhanced loss re-
silience is its joint training of the neural encoder and decoder
under a spectrum of simulated packet losses. In lossless sce-
narios, GRACE achieves video quality on par with conven-
tional codecs (e.g., H.265). As the loss rate escalates, GRACE
exhibits a more graceful, less pronounced decline in qual-
ity, consistently outperforming other loss-resilient schemes.
Through extensive evaluation on various videos and real net-
work traces, we demonstrate that GRACE reduces undecod-
able frames by 95% and stall duration by 90% compared with
FEC, while markedly boosting video quality over error con-
cealment methods. In a user study with 240 crowdsourced
participants and 960 subjective ratings, GRACE registers a
38% higher mean opinion score (MOS) than other baselines.
We make the source codes and models of GRACE public at
https://uchi-jcl.github.io/grace.html.

1 Introduction
Real-time video communication has become an integral part
of our daily lives [29], spanning online conferences [3, 20],
cloud gaming [11, 17], interactive virtual reality [6, 18], and
IoT applications [16, 19]. To ensure a high quality of ex-
perience (QoE) for users, real-time video applications must
protect against packet losses1. However, retransmitting lost
packets across high-latency networks is not feasible due to
stringent real-time latency requirements [57].

1In this study, we use the term “packet loss” to refer to both packets
dropped in transit and those not received by the decoding deadline. Under
this definition, a video frame could experience a high packet loss rate (e.g.,
50%) even if the actual network loss rate is low [86].
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Figure 1: Illustration of the video quality achieved by different
loss-resilient schemes, operating under the same bandwidth
budget, across varying packet loss rates. Actual experimental
results are shown in Figure 8.

Loss-resilient techniques generally fall into two categories.
First is encoder-side forward error correction (FEC), such as
Reed-Solomon codes [100], fountain codes [76,77], and more
recently, streaming codes [28, 86]. FEC incorporates redun-
dancy into data prior to transmission. With a redundancy rate
of R%—the percentage of redundant data relative to the total
data size—up to R% of lost data can be recovered. Beyond
that, the video becomes undecodable, rendering a sharp col-
lapse in video quality (Figure 1). Increasing R protects against
higher losses but also entails a higher bandwidth overhead,
which in turn reduces video quality. Thus, determining the
optimal R in advance poses a practical challenge.

The second category is decoder-side error concealment,
which reconstructs portions of a video frame affected by
packet losses, through handcrafted heuristics [63, 97, 115] or
neural networks [59,67,79,87,102]. Nevertheless, implement-
ing error concealment requires partitioning a video frame into
independently decodable units (e.g., slices [99] or tiles [64])
first, thus reducing compression efficiency. Moreover, since
the encoder is not optimized for loss resilience, the lost infor-
mation cannot be effectively recovered by the decoder alone.
As a result, the video quality tends to deteriorate rapidly with
increasing packet loss, as illustrated in Figure 1.

In this paper, we present GRACE, a loss-resilient real-time
video system designed to maintain the user’s quality of ex-
perience (QoE) across a wide range of packet losses. Our
key insight is that jointly optimizing the encoder and de-
coder under a spectrum of simulated packet losses consider-
ably strengthens loss resilience. To facilitate this joint opti-
mization, GRACE strategically employs a neural video codec
(NVC) [73], integrating neural networks into the core compo-
nents of a conventional video encoder and decoder. In contrast
to FEC, GRACE’s NVC is trained to handle diverse packet
losses, eliminating the need to predict a loss rate beforehand
and preventing the undecodable video under exceedingly high
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losses. Unlike decoder-side error concealment, GRACE jointly
trains the encoder and decoder, so that the encoder learns
to properly distribute each pixel’s information across mul-
tiple output elements in anticipation of losses, facilitating
the decoder’s frame reconstruction when packets are actually
lost. Consequently, GRACE displays a more graceful quality
degradation amid varying losses, while consistently delivering
higher video quality than previous solutions (Figure 1).

To materialize the above benefits of GRACE’s codec, our
design of GRACE addresses three system challenges.

First, to ensure loss tolerance, each packet must be inde-
pendently decodable. Existing solutions achieve this by di-
viding the frame into independently decodable units. How-
ever, this introduces a size overhead because the data in each
unit follows different distributions and thus cannot be com-
pressed efficiently. In response to this challenge, we train
GRACE’s neural encoder to regularize the values in its out-
put to conform to the same distribution, thereby reducing the
partitioning overhead. We also utilize reversible random map-
ping [8] during such partitioning, making it more amenable to
NVCs. While training GRACE under packet losses, simulating
random partitioning and packet losses is inefficient and pre-
cludes differentiability. Hence, we apply random zeroing to
the encoder’s output directly, simulating packet losses without
actually dropping packets (§3).

Second, packet losses can lead to discrepancies between the
reference frames at the encoder and decoder side, resulting in
sustained quality degradation in the decoded video stream if
synchronization is not maintained. Traditional remedies, such
as retransmission or sending a new keyframe, fall short of
seamlessly rectifying this inconsistency. GRACE introduces
an innovative protocol to adeptly realign the encoder and
decoder states without hindering video decoding. In the event
of packet loss, the decoder leverages the loss resilience of
GRACE to decode partially received packets. Simultaneously,
the decoder communicates the loss details to the encoder. This
feedback mechanism enables the encoder to swiftly adjust its
recent reference frames to match those at the decoder end,
eliminating the need for additional data transmission (§4.2).

Third, GRACE must be efficient to encode and decode video
in real-time across various devices, from laptops to mobile
phones. Existing NVCs, however, often employ expensive
neural networks, particularly for motion estimation and post-
processing. We show that by downscaling the image input for
motion estimation and simplifying post-processing, GRACE
accelerates the encoding and decoding by 4× without a no-
ticeable impact on loss resilience. Moreover, with hardware-
specific runtimes such as OpenVINO and CoreML, GRACE
attains over 25 fps on CPUs and iPhones (§4.3).

Comprehensive experiments (§5) on a diverse set of videos
and real network traces show that with the same congestion
control logic, GRACE reduces undecodable frames by 95%
and stall duration by 90% compared with state-of-the-art FEC
baselines. It also boosts the visual quality metric of SSIM by

3 dB over a recent neural error concealment scheme (§5.1).
Our IRB-approved user study with 240 crowdsourced partici-
pants and a total of 96 subjective ratings demonstrates a 38%
higher mean opinion score (MOS) for GRACE, further attest-
ing to its effectiveness. Regarding computational efficiency,
GRACE achieves more than 25 fps on popular mobile devices
(e.g., iPhone 14 Pro), meeting the real-time requirement.

Our contributions are summarized as follows. (i) We
present GRACE, which, to the best of our knowledge, rep-
resents the first effort to jointly train a neural video en-
coder and decoder under a spectrum of packet losses,
aiming to improve loss resilience in real-time video (§3).
Different from other recent ML-based real-time video sys-
tems [107, 108, 114] that use ML-based rate adaptation to
minimize packet loss, GRACE uses ML to make the video
codec itself resilient to packet loss. (ii) We build the end-to-
end video system to address the practical challenges associ-
ated with integrating a new NVC, developing optimization
techniques related to packetization, encoder/decoder state syn-
chronization, and runtime efficiency (§4).

2 Background
2.1 Real-time video coding

To help explain GRACE’s design, we first introduce some key
concepts in real-time video coding and streaming.

The sender encodes video at a specific frame rate and bi-
trate, e.g., with 25 fps (frames per second) and 3 Mbps, the
encoder generates a 15 KB frame on average every 40 ms. An
encoded video is composed of groups of consecutive frames,
called a group of pictures (GoP). Each GoP starts with an
I-frame (or key-frame), followed by multiple P-frames (or
inter-frames)2. I-frames are independently encoded without
referencing other frames, while P-frames encode only the dif-
ferences relative to previous reference frames. In real-time
video, the majority of frames are P-frames to minimize frame
sizes, so our discussion here focuses on P-frames. Figure 2
shows the workflow of P-frame encoding and decoding. Given
a new frame and a reference frame, the encoder (1) calculates
motion vectors (MVs) and residuals for each macroblock
(MB), e.g., 16×16-pixel samples, (2) transforms and quan-
tizes the MVs and residuals, (3) performs entropy encoding
on the transformed data, (4) divides the entropy-encoded data
into packets, and (5) transmits these packets with congestion
control, such as GCC [31]. Correspondingly, the receiver de-
packetizes and decodes the received data to reconstruct each
frame from the received packets.

To reduce frame delay, which denotes the time from frame
encoding to rendering, real-time video clients (e.g., WebRTC)
commonly make two choices that differentiate them from
video streaming (e.g., Netflix, ESPN Live):

2On-demand video also uses B-frames (bidirectional predicted frames),
which refer to both past and future P-frames. However, real-time video rarely
uses B-frames in order to render frames as soon as possible.
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Figure 2: A typical workflow of video frame encoding.
• Real-time video employs notably shorter (tens of ms)

buffers, as opposed to video streaming that utilizes several
seconds of playback buffer for on-demand or live content.
Thus, retransmission delay is difficult to conceal with such
short buffers, especially in high-latency networks.

• To maintain a short buffer, real-time video sends each
frame in a burst and decodes it as soon as its packets are re-
ceived. As a result, any lost packets, whether due to drops
or queuing, can affect frame decoding. In contrast, stream-
ing video is transmitted in chunks (each with hundreds of
frames) over the HTTP/TCP protocol.
Ideally, congestion control and bitrate adaptation (e.g.,

GCC [31], Salsify [45], and NADA [116]) are designed to
handle bandwidth fluctuations, thereby avoiding congestion-
induced packet losses. However, predicting bandwidth fluctua-
tions in advance is challenging, making loss-resilient methods
necessary when decoding frames under packet loss.

We define packet loss per frame as any packets not received
before the receiver is expected to decode the frame. In other
words, even if a packet is not dropped, it can still be counted
as packet loss if it arrives too late. It is important to note
that our notion of packet loss differs from network-level loss.
Even with low network loss (which typically remains below
1%), real-time video may still encounter a high packet loss
rate (e.g., over 50%) in certain frames, as corroborated by
recent research in this space [35, 36, 86].

2.2 Related work
Various loss-resilient schemes have been studied.
Forward error coding (FEC) adds redundancy at the en-
coder before the data is sent to the network. This is also
known as error-resilient channel coding. Examples include
Reed-Solomon codes, LDPC [77], fountain and rateless
codes [33,76], streaming codes [28,86], and recent ones based
on DNNs [32, 50]. There are also hierarchical and multilevel
FEC [94, 95], which organizes FEC into multiple layers and
protects each layer with different redundancies. FEC is also
used to protect frame metadata or the base layer in SVC (also
known as UEP [25,113]). However, in order to pick a suitable
rate of redundancy, they need to estimate how many packets
will be lost in advance. If the loss rate is underestimated, the
redundancy will be insufficient to recover missing packets.
On the other hand, adding excessive redundancy results in a
higher bandwidth overhead and, in turn, a lower video quality.
Postprocessing error concealment reconstructs missing data
in lost packets at the decoder. These methods generally con-

sist of two components. First, the encoded packets should
be decodable when only a subset of the packets is received.
This is accomplished through INTRA-mode macroblock en-
coding [38], slice interleaving [56], or flexible macroblock
ordering [66]. However, these approaches often compromise
the encoder’s ability to exploit redundancies across neigh-
boring MBs, as adjacent MBs are either encoded in INTRA
mode or split into different packets (in a checkerboard man-
ner [64, 66] or based on ROI detection [93]). Therefore, these
methods impair compression efficiency, causing the encoded
frame size to inflate by 10%–50% [42, 64, 74, 99].

Then, the decoder reconstructs lost data based on the re-
ceived packets, using classic heuristics (e.g., motion vectors
interpolation [63, 97, 115] and intra-block refreshing [64] in
H.264) or neural-network-based inpainting [59,67,79,87,102].
Recent work [67] use vision transformers [27, 43] to directly
predict the missing bits in the lost packets before frame de-
coding. However, due to the encoder’s lack of awareness of
the decoder’s postprocessing, each encoded packet contains
limited redundancy and information that could aid in recon-
structing missing motion vectors or residuals. As a result, the
reconstruction process is forced to guess the missing data
when a packet is lost. Even recent techniques still see a no-
table drop in video quality (e.g., PSNR drops from 38 dB to
25 dB at a 20% packet loss [81]).

GRACE takes a different approach than FEC and error
concealment. Unlike error concealment that relies only on
decoder-side postprocessing, GRACE jointly optimizes (via
training) both the (neural) encoder and decoder. Unlike FEC
that requires a pre-determined redundancy rate, GRACE’s
codec is optimized across a range of packet loss rates.

Other schemes: While there exist other techniques that might
help mitigate the impact of packet loss, their primary goals are
not loss resilience. Nevertheless, for the sake of completeness,
we discuss some notable schemes here and also quantitatively
compare GRACE against several of them in §5.

Scalable video coding (SVC) [40, 88, 89] and fine-
granularity scalability (FGS) [68, 75] aim to optimize rate-
distortion (RD) tradeoff—video quality achieved by a single
encoded bitstream under different received bitrates. SVC en-
codes a video in multiple quality layers and sends data layer
by layer. This is feasible for on-demand video [40, 72] but
in real-time video, all packets of a frame are sent together to
reduce frame delay (§2.1). When a packet loss occurs to a
base layer, it will block the decoding of any higher layers. For
this reason, SVC is rarely used to improve unicast real-time
video (though it is used in multicast video to serve users with
heterogeneous network capacities [88]).

There are a few alternatives to postprocessing error conceal-
ment. For instance, when loss occurs, Salsify [45] reverts to an
older but reliably received frame—instead of the last frame—
as the reference frame, so the decoder can safely skip a loss-
affected frame without hurting subsequent frames. However,
it needs more bits to encode the same quality than using the
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last frame as the reference frame, e.g., the P-frames between
every other frame are 40% greater in size than between two
consecutive frames. Similar limitations apply to long-term
reference frame (LTR) [112], which makes each P-frame in-
dividually decodable if the long-term reference is received,
regardless of packet loss in between or not. Voxel [83] skips
a loss-affected frame if the encoder indicates that skipping
the frame does not affect video quality. It works well for on-
demand video where B-frames can be safely skipped, and the
impact of a skipped frame will stop at the next chunk within a
few seconds. Unfortunately, neither applies to real-time video.

Recently, deep learning has been used in super resolu-
tion [61, 92, 106], SVC [40, 75], and postprocessing error
concealment based on CNNs [59, 79, 87, 102] or transform-
ers [44, 67]. Super-resolution can reduce packet losses by
sending the video in a lower bitrate and enhancing the video
quality on the receiver side. However, it still requires retrans-
missions to rectify frames impaired by packet loss. For SVC
and postprocessing error concealment techniques, the afore-
mentioned limitations inherent to these approaches remain,
despite the use of deep learning.

Loss resilience has also been studied under specific as-
sumptions, such as availability of multi-path [41, 80], early
retransmission driven by router feedback [117], low-latency
networks [85], and availability of video gaming states [52, 53,
101]. We do not make special assumptions in this work.

2.3 Neural video codec background
Our work is based on neural video codecs (NVCs), which use
learned neural networks (NNs), instead of handcrafted logic,
to encode and decode video frames [40,55,73]. Recent NVCs
have demonstrated comparable or even better compression
efficiency than traditional video codecs for two reasons:
• They leverage logical components commonly found in

traditional video codecs, such as motion estimation, warp-
ing, and transformative compression (§2.1), replacing their
handcrafted heuristics with NNs, which can learn more
sophisticated algorithms from data.

• These NVCs exhibit remarkable generalization across a
variety of video content because of training on a large
corpus of videos (e.g., Vimeo-90K [103]). This capability
to generalize is also observed in our evaluation (§5).
Despite their exceptional compression efficiency, NVCs

have received little attention so far in the context of loss
resilience. However, we believe NVCs have the potential to
achieve greater loss resilience for the following reasons.
• First, unlike traditional codecs that map each pixel (or

macroblock) to a distinct motion vector/residual, the highly
parameterized NN of NVC’s encoder can be trained to map
the information of each pixel to multiple elements in output
tensor, potentially making lost information recoverable.

• Second, the NVC’s decoder, comprising convolutional
NNs, can be trained to decode not only a direct encoder out-

put but also tensors that resemble those with perturbations
such as random noise or zeroing. In contrast, traditional
codecs might fail to decode under similar circumstances.
Nevertheless, NVCs as is still lack tolerance to packet loss.

Their standard training implicitly assumes that the encoder’s
output is identical to the decoder’s input, so it does not prepare
the NVC to handle data loss between the encoder and decoder.
Meanwhile, entropy encoding used in conventional NVCs
compresses the entire encoder output as a single bitstream,
and thus any packet loss will render it undecodeable.

GRACE is an attempt at transforming NVCs to be re-
silient to different packet loss rates. Our work is related to
an emerging line of work on deep joint source-channel cod-
ing [30, 37, 65], which trains an NVC to encode images in
a representation robust to signal noises. GRACE differs with
them on two key fronts. First, GRACE handles video frames,
which cannot be treated separately as individual images be-
cause any error in one frame can propagate to future frames.
Second, GRACE handles packet losses rather than physical-
layer signal noises, which can be naturally modeled by differ-
entiable linear transformations [30, 51].

In short, traditional error-resilient methods struggle to main-
tain video quality across a range of packet losses. Encoder-
based forward error coding (FEC) optimizes quality only for
a pre-determined maximum loss rate, whereas decoder-based
postprocessing error concealment suffers from suboptimal
quality especially at high loss rates. On the other hand, exist-
ing NVCs have the potential to tolerate data perturbations but
are not explicitly designed to handle packet losses.

3 Training GRACE’s neural video codec
This section outlines the training process of GRACE’s neural
video codec (NVC). At a high level, GRACE jointly trains the
neural encoder and decoder under a range of packet losses
to achieve enhanced loss resilience.

Basic NVC framework: Figure 3 depicts the workflow of
GRACE’s encoder and decoder (excluding entropy coding and
packetization). The encoder follows a similar logical process
as a traditional video encoder (Figure 2). It first employs a
neural network (NN) to estimate motion vectors (MVs) and
encodes them into a quantized tensor using an NN-based
MV encoder. Subsequently, the tensor is decoded back into
MVs to match those received by the decoder. Next, the en-
coder applies these MVs to the reference frame to generate
a motion-compensated frame, and uses a frame smoothing
NN to increase its similarity with the current frame before
calculating the residual differences between them. Finally,
an NN-based residual encoder encodes the residuals into an-
other quantized tensor. When the encoded MV tensor and the
encoded residual tensors are received by the decoder, they
go through the NN-based MV decoder and residual decoder
jointly trained with their respective encoders. Appendix A.1
provides more details of the tensors and NNs.

Although both the encoder and decoder of GRACE contain
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Figure 3: Workflow of GRACE’s neural video codec.
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Figure 4: Unlike traditional NVC training that assumes no
data loss between the encoder and decoder, GRACE applies

“random masking”—setting a fraction of randomly selected
elements to zeros—to the encoder’s output.

multiple steps, they can be viewed as two differentiable mod-
els. We denote the encoder by fφ (with its NN weights φ) and
the decoder by gθ (with its NN weights θ). The encoder en-
codes a frame x into a coded tensor y= fφ(x), and the decoder
decodes y into a reconstructed frame x̂ = gθ(y). Traditionally,
NVC seeks to minimize the following loss function:

Ex[ D(gθ(y),x)︸ ︷︷ ︸
Pixel error

+α· S( fφ(x))︸ ︷︷ ︸
Encoded size

], where y = fφ(x)︸ ︷︷ ︸
No data loss

(1)

Here, D(x̂,x) is the pixel-level reconstruction error of the
decoded frame x̂ (by default, L2-norm3 of x̂− x), and S(y)
is the entropy-coded data size of y in bit-per-pixel (BPP).
The parameter α governs the size-quality tradeoff: a higher
α leads to a smaller frame size, S(x), but higher distortion
(i.e., poorer quality) of the reconstructed frame x̂. As all the
functions— fφ, gθ, D, and S (approximated by a pre-trained
NN [73])—are differentiable, the NN weights φ and θ can be
trained jointly via gradient descent to minimize Eq. 1.
Simulating packet loss during training: We begin by pre-
training an NVC using Eq. 1, which we refer to as GRACE-P,
and then fine-tune it by introducing simulated packet losses in
the following manner. GRACE simulates the impact of packet
losses by randomly “masking”—zeroing selected elements—
in the encoder’s output, fφ(x), as shown in Figure 4. The
fraction of zeroed elements is dictated by a distribution,
P(y| fφ(x)), which represents the probability distribution of
the resulting tensor y after random masking fφ(x). For in-
stance, with a 33% loss rate, P(y| fφ(x)) is the probability
of y arising from the random masking of 33% of elements
in fφ(x), as illustrated in Figure 4. Formally, GRACE jointly

3Note that the L2-norm (or mean squared error) of x̂ and x is closely
related to the PSNR of x̂. To avoid this bias, our evaluation in §5 measures
the quality improvement in SSIM and subjective user studies.
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Figure 5: GRACE’s reversible randomized packetization. The
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trains the encoder and decoder NNs to minimize:

Ex[D(gθ(y),x)+α·S( fφ(x))], where y ∼ P(y| fφ(x))︸ ︷︷ ︸
Simulate packet loss

(2)

The key difference from the traditional objective in Eq. 1
is the distribution function P (highlighted in blue), which
captures the distribution of decoder input under packet loss.

To train the weights of φ and θ under the random perturba-
tions of P, we employ the REINFORCE trick [62] (commonly
used in reinforcement learning [84, 109]) to approximate the
gradient through Monte Carlo sampling. A more detailed
mathematical formulation is included in Appendix A.2.
Choosing simulated packet loss rates: To prepare GRACE’s
NVC to handle a wide range of loss rates, it is essential to
simulate such losses in training. One approach is to select
loss rates uniformly at random from [0, 100%) and apply
them to the encoder output fφ(x). However, the resulting
NVC turns out to perform poorly, especially when dealing
with low loss rates. Notably, even when high loss rates (e.g.,
over 80%) are introduced only in a small fraction of training
samples, we empirically observe a significant drop in video
quality under low loss rates while the quality improvement
under high loss rates is only marginal. This phenomenon
could be attributed to the encoder’s tendency to incorporate
more redundant information to prepare for high loss rates,
adversely affecting video quality at low loss rates. Therefore,
a practically effective distribution should cover both low and
high loss rates, with a slight emphasis on low losses. Our final
choice of loss rate distribution is described in §4.4.
Packetization during inferencing: Recall that during train-
ing, we simulate packet loss by applying random masking

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    513



rather than replicating the actual packetization and packet
dropping process. Therefore, it is important to ensure that
the impact of actual packet loss during runtime mirrors the
effects of random masking. To achieve this, GRACE employs
reversible randomized packetization as shown in Figure 5.
GRACE’s sender first splits the encoded tensor of a frame
(both the encoded MVs and encoded residual) into multiple
subtensors using a uniform random mapping. We use a re-
versible pseudo-random function to generate the mapping so
that the receiver can correctly recover the original tensor with
the same random seed. Specifically, we map the ith element to
the j = (i · p mod n)th packet at the [(i · p− j)/n]th position,
where n is the number of packets and p is a prime number.
If a packet is lost, the decoder assigns zero to each element
whose position is mapped to the lost packet. Consequently, an
x% packet loss rate has the effect of randomly zeroing x% of
the values in the encoder’s output tensor. 4 §4.1 explains how
each subtensor is losslessly compressed via entropy encoding
into the bitstream of a packet, but this lossless compression is
bypassed during training for efficiency purposes.
Why is GRACE more loss-resilient? Unlike decoder-side
error concealment, the joint training ensures that the encoder
is also aware of packet losses. Empirically, we observe that
GRACE’s encoder tends to produce more non-zero values
in its output than an NVC pre-trained on the same dataset
but without simulated packet loss. This increase in non-zero
values can be viewed as more “redundancy,” as the encoder
embeds each pixel’s information into multiple elements in
its output tensor, assisting the decoder in discerning loss-
affected elements (from intended zeros) and reconstructing
video better under packet losses. §5.4 empirically shows that
training only the decoder with simulated loss cannot reach
the same level of loss resilience (Figures 20 and 29).

4 Real-time video framework
With the training techniques detailed in §3, GRACE’s NVC
acquires the ability to withstand simulated packet losses. This
section describes the integration of this NVC into a real-time
video delivery framework: GRACE entropy-encodes the neu-
ral encoder’s output into packets (§4.1), streams frames under
packet loss (§4.2), and accelerates encoding and decoding
across various devices (§4.3).

4.1 Entropy encoding the encoder’s output
As mentioned in §3, GRACE splits the encoder’s output into
subtensors using a reversible-random function, with each sub-
tensor corresponding to an individual packet. Similar to clas-
sic codecs such as H.265 and VP9, each subtensor undergoes
lossless compression into a bitstream through arithmetic (en-
tropy) coding. An arithmetic encoder uses an underlying sym-

4That said, such reversible random packetization requires a frame con-
taining multiple packets. Therefore, GRACE’s encoder controls the packet
size such that each frame has at least 2 packets, since real-time video packets
don’t need to be as large as 1.5 KB [90] in practice.

bol distribution to compress the values in the tensor. Instead of
relying on hand-tuned heuristics (e.g., CABAC [4] in H.265),
we adopt the method described in [73], training a distribution
estimator in conjunction with the neural encoder and decoder
to better estimate the symbol distribution of each encoder out-
put. Since GRACE decodes individual packets independently,
the symbol distribution of a packet must be sent as part of the
packet to the decoder, which implies that the size overhead of
symbol distributions increases with more packets.

GRACE reduces this overhead by employing a simpler sym-
bol distribution that requires fewer bits to store within each
packet. Specifically, GRACE trains the neural encoder to reg-
ularize the distribution of values in each encoder’s output
channel (224 channels in total) to conform to a zero-mean
Laplace distribution. In doing so, the symbol distribution
only needs to store the variance for each channel while still
effectively compressing the encoder’s output tensor. As a re-
sult, the symbol distribution now requires only ∼50 bytes per
packet to store, a reduction from 40% of the packet size to
5%, without notably affecting the compression efficiency.

4.2 Streaming protocol
Basic protocol of GRACE: The encoder of GRACE encodes
new frames at a fixed frame rate. When any packet for the next
frame arrives, the decoder immediately attempts to decode
the current frame. Unless all packets of the current frame
are lost (which triggers a request for resending the frame),
the decoder will decode the current frame using whatever
packets have been received. We refer to a frame decoded using
partially received packets as an incomplete frame. However,
while GRACE can decode incomplete frames with decent
quality, using these incomplete frames as reference images
for decoding future frames causes the encoder’s and decoder’s
states to be “out of sync,” i.e., the next frame will be decoded
based on a different reference image than the one used during
encoding. This inconsistency causes error to propagate [96]
to future frames even if all their packets arrive without loss.

One strawman solution to resolve error propagation is to
synchronize the encoder and decoder on each frame. How-
ever, the encoding of each frame would be blocked until it
knows which packets are used to decode the previous frame.
This synchronization delay would render pipeline encoding,
transmission, and real-time decoding infeasible.

Optimistic encoding with dynamic state resync: GRACE
employs two strategies to prevent out-of-sync states from
blocking the encoder or the decoder.

First, the encoder optimistically assumes all packets will be
received and encodes frames accordingly, taking advantage
of GRACE decoder’s tolerance to packet losses for a small
number of frames. For instance, §5.2 shows that GRACE is
resilient against packet loss across 10 consecutive frames.

Second, when receiving an incomplete frame, the decoder,
without stopping decoding new frames, requests the encoder
to dynamically resynchronize the state in the following man-
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Figure 6: Packet loss introduces discrepancies between the
encoder’s and the decoder’s reference frames. GRACE’s state
resync efficiently rectifies these discrepancies without causing
interruptions for either the encoder or the decoder.

ner. Upon receiving a resync request, the encoder re-decodes
the recent frames starting from the incomplete frame, using
only the subset of packets received by the decoder (as indi-
cated in the resync request), to compute the latest reference
frame used by the decoder. As illustrated in Figure 6, if the
encoder is about to encode the 9th frame and learns that the
6th frame has been decoded using partially received packets,
it then quickly re-decodes frames from the 6th to the 8th. The
8th frame now aligns with the receiver’s observation and thus
is used as the reference frame for encoding the 9th frame.

A potential speed bottleneck is the re-decoding of frames
during state resynchronization (e.g., the 6th to 8th frames
in Figure 6). Fortunately, the encoder can re-decode these
frames much faster than the regular decoding process by run-
ning only the motion decoder and the residual decoder. The
insight is two-fold. First, motion estimation, motion encoding,
and residual encoding can be skipped because these frames
have already been decoded once at the encoder side, so the
re-decoding only needs to estimate the incremental changes
caused by the lost packets. Second, while skipping the frame
smoothing NN may impact the compression efficiency of the
last frame (e.g., the 9th frame in Figure 6), it only affects a
single frame since the next frame will still be optimistically
encoded. Appendix B.1 provides more details on the dynam-
ics re-decoding, and §5.4 analyzes its runtime overhead.

GRACE’s approach of optimistic encoding and dynamic
state resynchronization capitalizes on a key advantage of
GRACE’s NVC—it does not need to skip or block the de-
coding processing for loss-affected frames; instead, it can
decode them with decent quality while the encoder’s and de-
coder’s states are out-of-sync for a few frames, thus reducing
frame delay. This approach differs from NACK (negative ac-
knowledgement) in WebRTC [54], which requires blocking
the decoding of loss-affected frames, and from Salsify’s state
synchronization [45], which skips all loss-affected frames.

4.3 Fast coding and bitrate control
Fast encoding and decoding: Using a standard GPU runtime
with PyTorch JIT compiling [14], GRACE meets the latency
requirement for real-time video communication on GPUs.
As shown in §5.4, GRACE encodes and decodes 720p video
at 31.2 and 51.2 fps respectively, on an NVIDIA A40 GPU

(a) Grace-Lite’s workflow: use downscaled image for motion 
prediction and skip the frame smoothing NN.

(b) Accurate bitrate control: When the frame size is too large or 
small, only the residual requires re-encoding.

Motion estimator, MV 
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encoder
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Figure 7: GRACE adapts the NVC for efficient execution on
CPUs and accurate bitrate control.

(5× cheaper and 3× slower than A100). However, GRACE’s
NVC remains too heavy to run on laptops with CPUs and
mobile phones. To address this, we develop GRACE-Lite, a
lightweight version of GRACE that incorporates three opti-
mizations (Figure 7a): (i) motion estimation NN operates on
2× downsampled frames, speeding up the motion estimation
by 4×; (ii) frame smoothing NN is skipped; (iii) the floating
point precision in NNs is reduced from 32 bits to 16 bits,
making the inference 2× faster. These optimizations allow
GRACE to encode and decode frames on an iPhone 14 Pro at
26.3 and 69.4 fps when compiled with the CoreML [5] library,
while maintaining similar loss resiliency as GRACE (§5.4).

Accurate bitrate control: Video encoders are expected to
encode frames to match the target frame sizes. Similar to Sal-
sify [45], GRACE encodes a frame multiple times at different
quality levels but in a faster way than encoding the frame from
scratch each time (illustrated in Figure 7b). To achieve this,
GRACE trains multiple neural encoders, each with a different
α (in Eq. 2) to enable different quality-size tradeoffs. During
the training phase, adjustments are confined to the residual
encoders and decoders, leaving other NN weights fixed. Thus,
once a frame is encoded, both the motion vector and residual
are reusable, with the residual undergoing further encoding
through different encoders, each producing a different frame
size. This procedure, taking under 3 ms, can encode a frame
multiple times using residual encoders with distinct α values.
In practice, residual sizes can vary from 0.1× to 10× the MV
size, allowing GRACE to cover a wide range of bitrates (§5.2).

4.4 Implementation of GRACE

GRACE is implemented in ∼2000 lines of Python code, in-
cluding its NVC, packetization, bitrate adaptation, and state
synchronization protocol.

Training: GRACE’s NVC model architecture is based on
a recent work called DVC [73]. We fine-tune GRACE from
the pre-trained DVC model on the Vimeo-90K [103] dataset,
under the following distribution of simulated per frame packet
loss (§2.1): with an 80% probability, the loss rate is set to
0%; with a 20% probability, the loss rate is randomly selected
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from {10%, 20%, 30%, 40%, 50%, 60%} 5. By using this loss
distribution, GRACE can be resilient to a wide range of loss
rates without assuming the underlying network loss pattern.
To achieve accurate bitrate control (§4.3), we first fine-tune
an NVC with a default α (2−7) using Eq. 2. Subsequently, we
perform fine-tuning with 11 α values spanning from 2−8 to
2−15, specifically to refine the residual encoder and decoder
for bitrate adaptation. With a learning rate of 10−4, each fine-
tuning step takes about 1–2 hours on an Nvidia A40 GPU.
Delivery: We use torchac [13] for entropy encoding and de-
coding. GRACE utilizes PyTorch JIT compilation [14] when
running on GPUs, while GRACE-Lite leverages CoreML [5]
for inferencing on mobile devices. Both GRACE and GRACE-
Lite operate using 16-bit floats at runtime. GRACE uses
BPG [21] to encode and decode I-frames every 1000 frames,
and can be integrated with any congestion control (CC) al-
gorithms. Due to space limitations, we provide more details
about I-frames and CCs in Appendix B.2 and B.3.

5 Evaluation
Our key findings are as follows:
• Loss resilience: GRACE’s quality under no packet loss

is on par with H.264/H.265 and gracefully declines with
higher loss rates. Under 20–80% packet loss, GRACE im-
proves the SSIM by 0.5–4 dB compared with other loss-
resilient baselines across diverse videos.

• Better video smoothness: Under bandwidth fluctuations
in real network traces, GRACE reduces the number of video
freezes over 200 ms by up to 90%, tail frame delay by up
to 2–5×, and non-rendered frames by up to 95%. Our user
study also confirms a 38% rated score for GRACE.

• Speed: Our implementation of GRACE encodes/decodes
480p video at 65.8 fps/104.1 fps and 720p video at
33.6 fps/44.1 fps using Nvidia A40 GPU, 1.5–5× faster
than recent neural video codecs [40, 73, 91, 105]. With the
optimization detailed in §4.3, GRACE can encode/decode
720p video at 26.2 fps/69.4 fps on an iPhone 14 Pro with
marginal quality degradation.

5.1 Setup
Testbed implementation: Our testbed 2 Nvidia A40 GPUs
to run the video encoding and decoding with GRACE’s NVC
(each using one GPU). We use a packet-level network simula-
tor to compare GRACE with baselines under various network
conditions. The simulator uses a configurable drop tail queue
to mimic congestion-induced packet losses and uses a token
bucket scheme to simulate bandwidth variation every 0.1 sec-
onds. Google Congestion Control (GCC) [31], a standard
WebRTC algorithm widely used in real-time video applica-
tions, is used to determine the target bitrate of video codecs

5The packet loss rate should follow a uniform distribution covering a
continuous range of losses (e.g., [0, 60%]). However, we empirically observe
that using a discrete loss rate distribution makes the model converge faster
without sacrificing the loss resilience.

Dataset
# of

videos Length (s) Size Description

Kinetics 45 450
720p
360p

Human actions and
interaction with objects

Gaming 5 100 720p PC game recordings

UVG 4 80 1080p
HD videos (human,
nature, sports, etc.)

FVC 7 140 1080p In/outdoor video calls

Total 61 770

Table 1: Dataset description.

at each frame. It is worth noting that GCC is responsive to
bandwidth drops and packet losses, as it tends to send data
conservatively to avoid video delays and stalls caused by
packet losses. The simulator includes encoding, packetization,
rate adaptation, and decoding. We set the default frame rate
at 25 fps (on par with typical RTC frame rates [78]), though
GRACE can encode at a higher frame rate (§5.4). Instead of re-
playing stationary traffic/loss traces, the testbed can simulate
dynamic packet loss rates under real-world bandwidth fluctu-
ations. It records each decoded frame and its delay, including
encoding, transmission, and decoding. We have confirmed our
simulator’s accuracy regarding frame delay via a real-world
validation experiment in the appendix (§C.3).

Test videos: Our evaluation uses 61 videos randomly sam-
pled from four public datasets, summarized in Table 1. The
total content length is 770 seconds where each video is 10–30
seconds long, matching the setup of similar works [39,45,86].
Importantly, these videos are obtained from entirely differ-
ent sources than the training set, and they span a range of
spatial complexity and temporal complexity (detailed in Ap-
pendix C.4), as well as multiple resolutions. This diversity
allows us to assess GRACE’s average performance across dif-
ferent contents and study how content affects its performance.

Network traces: We test GRACE and the baselines on 16
real bandwidth traces, eight of which are LTE traces from
the Mahimahi network-emulation tool [9,82], and the rest are
broadband traces from FCC (July 2021) [10]. The traces are in
the format of bandwidth timeseries. The bandwidth fluctuates
between 0.2 Mbps to 8 Mbps in the traces. By default, we set
the one-way propagation delay to 100 ms and the queue size
to 25 packets. We also vary these values in §5.3.

Baselines: We employ H.265 (through FFmpeg v4.2.7) as
the underlying video codec for all baselines (except for NVC-
based ones) since H.265 is recognized with comparable or bet-
ter compression efficiency than VP8/9 and H.264 [15, 49] (as
confirmed in Appendix C.1). We compare GRACE against a
range of loss-resilient baselines that cover various approaches
outlined in §2.2 (more details in Appendix C.2).

• Forward error correction: We use Tambur [86], a state-
of-the-art FEC scheme based on streaming codes [28]. Its
redundancy rate dynamically adapts based on the mea-
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Figure 8: Video quality achieved by different schemes under varying packet loss rates at the same encoded bitrate (6 Mbps).

sured packet loss in the preceding 2 seconds. Compared
with regular FEC, streaming codes reduce the number of
non-decodable frames when transmitting an equivalent
amount of parity packets. We have also validated that Tam-
bur outperforms WebRTC’s default FEC scheme.

• Decoder-side neural error concealment: We use
ECFVI [59], an NN-based error concealment method
shown to outperform previous techniques relying on mo-
tion estimation recovery [87] or inpainting [34].6 To ensure
each packet is independently decodable, we apply flexible
macroblock ordering (FMO) [42] to split the frame into
64×64-pixel7 blocks and map them randomly to packets.
This results in a 10% increase in the encoded frame size,
in line with previous findings [64, 74, 99]. After decoding
an incomplete frame, ECFVI uses NNs to estimate miss-
ing motion vectors and enhance the reconstructed frame
through inpainting.

• Scalable video coding (SVC): We implement an idealized
SVC, designed so that when the first k layers arrive, it
achieves the same quality as that of H.265 with the same
number of received bytes. This idealized implementation
surpasses the state-of-the-art NN-based SVC [40]. We also
add 50% FEC to protect the base layer for SVC, following
a common practice in real-time video applications [60].

• Selective frame skipping: Salsify [45] skips frames af-
fected by loss at the decoder side after the encoder receives
the packet loss indication and resends a new P-frame using
the last fully received frame as a reference. Voxel [83]
employs selective frame skipping to mitigate video re-
buffering and improve the user’s QoE.
We make another idealized assumption in favor of SVC,

Salsify, and Voxel. We assume that their codec’s output bitrate
on every frame perfectly matches the target bitrate determined
by the congestion control algorithm, i.e., no overshoots or
undershoots. This idealization makes these baselines perform
slightly better than they would under real-world conditions.

Variants of GRACE: To highlight the impact of different
design choices, we evaluate GRACE-P and GRACE-D. They

6A parallel effort, Reparo [67], demonstrates effective error concealment
for a particular video type (talking head), but it lacks comparisons with any
NN-based baselines and does not provide a public codebase for testing.

7A smaller block size such as 16×16 can greatly inflate the frame
size [64, 74, 99], while a larger block size such as 256×256 hinders informa-
tion recovery upon packet loss. We empirically choose the 64×64 block size
to balance between frame size and quality.

are trained the same way as GRACE, except that GRACE-
P does not use simulated loss while GRACE-D freezes the
encoder NN weights (i.e., fine-tuning only the decoder NN
with simulated loss). They represent alternative ways to simu-
late packet losses during training. We also test GRACE-Lite,
which incorporates the optimizations described in §4.3.

Furthermore, we present the quality improvement achieved
by the state-of-the-art super-resolution (SR) model [70] when
applied to GRACE and other baselines. It is important to note
that SR can be applied to any decoded frames, making it or-
thogonal to GRACE’s design space. Details of this experiment
are provided in Appendix C.8.

Metrics: Following prior work on real-time video communi-
cation [26, 45, 47, 48, 86], we measure the performance of a
video session across three aspects.
• Visual quality of a frame is measured by SSIM. Following

recent work [45, 104], we express SSIM in dB, calculated
as −10log(1−SSIM) across all rendered frames.

• Realtimeness is measured by the 98th percentile (P98)
of frame delay (time elapsed between the frame’s encod-
ing and decoding), and non-rendered frames (either unde-
codable due to insufficient FEC protection or exceeding
400 ms after the frame is encoded).

• Smoothness of the video is measured by video stall, defined
as an inter-frame gap exceeding 200 ms, following the
industry convention [78]. We report the average number
of video stalls per second and the ratio of video stall time
over the entire video length.

5.2 Compression efficiency and loss resilience

Loss resilience: In real world, packet loss per frame (defined
in §2.1) can span a wide range from 0 to over 80% [86].
Figure 8 compares GRACE’s video quality with the baselines
under varying packet loss rates across different test video
sets. For a fair comparison, we fix the encoded bitrate of all
baselines at 6 Mbps (with actual differences under 5%) while
ensuring that GRACE’s encoded bitrate never exceeds that
of the baselines. On average, the quality of GRACE drops by
0.5 dB to 2 dB in SSIM as the packet loss rate rises from
20% to 50%, and by up to 3.5 dB when the packet loss rate
reaches 80%. These quality drops of GRACE are notably
lower than the baselines, including FEC-based and neural
error concealment schemes, at the same packet loss rates.

Figure 9 shows the average quality across all test videos
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Figure 9: Video quality of each scheme under different packet
loss rates when videos are encoded at different bitrates.
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Figure 10: Stress test of applying persistent packet loss on
consecutive frames.

when the encoded bitrates of all schemes are set to 1.5, 3, 6,
and 12 Mbps. Compared with the baselines, GRACE achieves
a more graceful and less pronounced quality decline as packet
loss increases. Figure 10 further stress tests the loss resilience
of GRACE against neural error concealment (the most com-
petitive baseline), when a 30% or 50% packet loss is applied
to 1 to 10 consecutive frames without the encoder and de-
coder synchronizing their states. Although the figure shows
that both methods experience quality degradation, GRACE
markedly surpasses the neural error concealment baseline in
these extreme conditions. Figure 11 visualizes their decoded
images after a 50% packet loss is applied to three consecutive
frames, confirming that the image decoded by GRACE has
less visual distortion.

Compression efficiency: We verify whether GRACE’s com-
pression efficiency under no packet loss is on par with H.264
and H.265, which are advanced video codecs designed for
high compression efficiency rather than loss resilience. Fig-
ure 12 groups the test videos by resolution. On low bitrates,
GRACE demonstrates similar compression efficiency as H.264
and marginally underperforms H.265 on both 720p and 1080p
videos. On high bitrates (over 3 Mbps for 720p and 6 Mbps
for 1080p), GRACE’s compression efficiency matches or even
surpasses H.265. Compared against Tambur with a persis-
tent 50% FEC redundancy, GRACE achieves a better quality-
bitrate tradeoff across the entire bitrate range.

Impact of video content on compression efficiency: To

Grace
SSIM: 12.0 dB

Error concealment
SSIM: 10.9 dB

Original frame

Figure 11: Sample images decoded by GRACE and error
concealment under a 50% packet loss on three consecutive
frames. GRACE achieves less image distortion.

(a) Resolution = 720p (b) Resolution = 1080p
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Figure 12: Quality-size tradeoff of GRACE on videos with
different resolution. Overall, GRACE is better than H.264 and
slightly worse than H.265 in terms of compression efficiency.
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Figure 13: Mean difference in SSIM (dB) between GRACE
and H.264 on videos grouped by SI and TI. At the same bitrate
(5 Mbps), GRACE achieves better video quality than H.264
on low-SI videos but lags behind H.264 on high-SI videos.

understand the impact of video content on GRACE’s com-
pression efficiency, we group the video content based on
spatial index (SI) and temporal index (TI), which are estab-
lished metrics for assessing the spatiotemporal complexity of
videos [58]. Figure 13 presents the average gain of GRACE
over H.264 in terms of SSIM for videos in each SI-TI combi-
nation, encoded at a bitrate of 5 Mbps. The results indicate
that GRACE’s compression efficiency has a higher advantage
over H.264 for videos with low spatial complexity, but this ad-
vantage diminishes as the spatial index increases. For a more
thorough understanding of GRACE’s behavior, Appendix C.5
also shows an example where GRACE performs poorly.

5.3 Video quality vs. realtimeness/smoothness
Figures 14a evaluates GRACE against baselines in terms of
average quality (SSIM) and video stall ratio (a smoothness
metric) using the network traces from the LTE dataset, under a
one-way network delay of 100 ms and a drop-tail queue of 25
packets. Although the SSIM of GRACE is slightly lower than
that of the baselines with the highest average SSIM, GRACE
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Figure 14: End-to-end simulation results over different net-
work traces, one-way delays and network queue lengths.
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significantly reduces the video stall ratio.
We repeat the test on a different dataset (FCC) under the

same network setup (Figures 14b), with a lower one-way net-
work delay of 50 ms (Figure 14c), and with a longer queue
length of 45 packets (Figure 14d). In all settings, GRACE
maintains a video stall ratio below 0.5%, whereas the base-
lines have 4–32× more video stalls, except for the error con-
cealment baseline, which yields a 3dB lower SSIM compared
with GRACE. This is because when packet loss happens,
GRACE can still decode the frame, while the baselines other
than error concealment may experience video stalls due to
either skipping frames (e.g., Salsify or Voxel) or waiting for
retransmission packets (FEC and SVC).

Figure 15 compares GRACE with the baselines using other
realtimeness and smoothness metrics, with the one-way delay
set to 100 ms and the queue length set to 25 packets over
the LTE traces. For clarity, we only include baselines with
comparable average SSIMs in this figure (excluding Voxel
and error concealment). While achieving similar video quality,
GRACE reduces the 98th percentile frame delay by a factor
of 2–5× and non-rendered frames by up to 95%. In §C.7,
we also evaluate GRACE with a different congestion control
algorithm—Salsify’s CC [45].

Figure 16 provides a concrete example of GRACE’s behav-
ior. The bandwidth drops from 8 Mbps to 2 Mbps at 1.5 s,
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Figure 16: GRACE achieves lower delay and maintains decent
visual quality during sudden bandwidth drops: its delay is
lower than both baselines while rendering more frames than
Salsify without frame skipping or packet retransmission.

lasting for 800 ms, before returning to 8 Mbps (another band-
width drop occurs at 3.5 s and lasts for the same duration).
During each drop, GRACE’s delay does not experience a sharp
increase as the baselines. Salsify is the second best owing to
its frame skipping while H.265 must wait for retransmissions.
In this experiment, both GRACE and Salsify use the same CC,
leading to similar qualities on frames not skipped by Salsify.
However, during congestion, GRACE’s quality degrades only
marginally without skipping any frames, limiting the drop of
SSIM to less than 4 dB even when more than 10 consecutive
frames encounter a packet loss of over 50%. With the assis-
tance of state resync (§4.2), GRACE’s quality resumes quickly
(within 1 RTT) after packet losses.
User study: To validate GRACE’s effectiveness, we con-
ducted an IRB-approved user study, collecting 960 user rat-
ings from 240 Amazon MTurk workers [1]. We first choose a
few genres based on the real-time video streaming use cases,
including cloud gaming, real-time sports events, daily human
activities, and video conferencing. Then, we randomly se-
lected 8 video clips from the UGC dataset [98]. These video
clips were streamed using GRACE, Salsify codec, WebRTC
with default FEC, and H.265 with Tambur. (A screenshot of
each video clip is shown in Figure 26 in Appendix.) The sam-
pled videos have a similar distribution of quality, realtimeness,
and smoothness as seen in Figure 14. Following [22], when
an MTurk user signs up for the user study, they are randomly
assigned to rate their user experience on a scale of 1–5 for
the videos delivered through different methods. Figure 17
displays the mean opinion score (MOS) for each video, con-
firming that the videos rendered by GRACE are consistently
favored by real users.

5.4 Microbenchmarking
Encoding/decoding latency breakdown: Figure 18 shows a
breakdown of the encoding and decoding delays of GRACE on
an Nvidia A40 GPU (5× cheaper and 3× slower than Nvidia
A100). GRACE encodes and decodes a 720p frame within
29.7 ms (33 fps) and 19.5 ms (51.2 fps), respectively. It can
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Figure 17: User study experiment shows that videos streamed
by GRACE are consistently favored by real users. The error
bar shows the standard deviation of the mean.
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Figure 18: Latency breakdown of GPU-based encoding and
decoding of GRACE on a 720p frame.
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Figure 19: GRACE-Lite realizes similar loss resilience to
GRACE and outperforms other baselines.

also encode/decode 480p video at 65.8 fps/104.1 fps.
This breakdown also carries several implications. First, the

fast resync logic (§4.2) requires the encoder to run the MV
decoder and residual decoder, which together only consume
6 ms on a 720p frame, allowing resync to complete with a
minimal increase in encoding delay. Moreover, GRACE may
need to encode a frame multiple times as explained in §4.3,
but the extra overhead only involves residual encoding, which
takes only 1.5 ms on a 720p frame.

Speed optimization in GRACE-Lite: With the optimizations
described in §4.3, GRACE-Lite reduces the encoding delay of
a 720 frame on iPhone 14 Pro from 314 ms to 38.1 ms, and
the decoding delay from 239 ms to 14.4 ms. We also report
GRACE-Lite’s speed on CPUs with OpenVINO compilation
in Appendix C.9. Figure 19 compares the loss resilience of
GRACE-Lite and GRACE with the two most competitive base-
lines in §5.2—neural error concealment and Tambur. At the
same packet loss, GRACE-Lite achieves slightly lower quality
than GRACE, yet it still outperforms other baselines.

Impact of joint training: Figure 20 compares GRACE with
its two variants: GRACE-P and GRACE-D, showing that both
variants have lower levels of loss resilience than GRACE due
to not jointly training the encoder and decoder. Appendix C.10
shows an example of frames decoded by the variants.
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Figure 20: Although GRACE-D and GRACE-P attain slightly
better quality than GRACE in the absence of packet loss, they
are much less resilient to loss than GRACE.

6 Limitation
The current implementation of GRACE still has several limi-
tations. First, it is not optimized enough to run at 30 fps on
very resource-constrained devices that barely sustain a classic
video codec. For instance, achieving real-time encoding and
decoding on regular CPUs (e.g., Intel Xeon Silver 4216) still
requires 32 cores (§C.9). Secondly, due to its use of NVC,
GRACE may have lower compression efficiency than tradi-
tional handcrafted codecs on some video content that deviates
a lot from the training data of NVC. For instance, its com-
pression efficiency is worse than H.26x on videos with high
spatial complexity (§5.2). In rare instances, GRACE is ob-
served to fail to accurately reconstruct original frames under
high packet losses. Third, our focus with GRACE is on unicast
video communication rather than multiparty conferencing.
We hope GRACE can inspire future work to address these
limitations. Potential avenues include democratizing GRACE
on more devices by embracing the recent advancements in
hardware [23, 24], distilling more lightweight models suit-
able for less powerful devices. We acknowledge there is not a
good solution to address GRACE’s generalization issue, which
is a problem not unique to GRACE but inherent in general
NVCs. We hope that future measurement studies may shed
light on the generalization of NVCs and contribute to their
improvement.

7 Conclusion
This paper presents GRACE, a real-time video system de-
signed for loss resilience, preserving quality of experience
(QoE) for users across diverse packet losses. GRACE enhances
loss resilience by jointly training a neural encoder and decoder
under a spectrum of packet losses. It attains video quality on
par with conventional codecs in the absence of packet loss,
and exhibits a less pronounced quality degradation as packet
loss escalates, outperforming existing loss-resilient methods.

8 Acknowledgement
We thank the anonymous reviewers and our shepherd Dongsu
Han. This project is supported by NSF CNS 2146496,
2131826, 2313190, 1901466, and UChicago CERES Center.

520    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] Amazon Mechanical Turk. https://www.mturk.com/.

[2] Aurora5 HEVC Test Results. https://www.visionular.c
om/en/putting-the-aurora5-hevc-encoder-to-the-tes
t/.

[3] Bringing Zoom’s end-to-end optimizations to We-
bRTC. https://blog.livekit.io/livekit-one-dot-zero/.

[4] Context-adaptive binary arithmetic coding. https://en
.wikipedia.org/wiki/Context-adaptive_binary_arith
metic_coding.

[5] Core ML Documentation. https://developer.apple.co
m/documentation/coreml.

[6] Features of WebRTC VR Streaming. https://flashphon
er.com/features-of-webrtc-vr-streaming/.

[7] FFmpeg streaming guide. http://trac.ffmpeg.org/wiki
/StreamingGuide.

[8] Linear Congruential Generator. https://en.wikipedia.o
rg/wiki/Linear_congruential_generator.

[9] Mamahi Cellular traces. https://github.com/ravinet/m
ahimahi/tree/master/traces.

[10] Measuring Broadband Raw Data Releases. https://ww
w.fcc.gov/oet/mba/raw-data-releases.

[11] Open Source Cloud Gaming with WebRTC. https:
//webrtchacks.com/open-source-cloud-gaming-wit
h-webrtc/.

[12] SI/TI calculation tools. https://github.com/VQEG/siti
-tools.

[13] torchac: Fast Arithmetic Coding for PyTorch. https:
//github.com/fab-jul/torchac.

[14] Torch.compile tutorial . https://pytorch.org/tutorials/in
termediate/torch_compile_tutorial.html.

[15] VP9 encoding/decoding performance vs.
HEVC/H.264. https://blogs.gnome.org/rbultj
e/2015/09/28/vp9-encodingdecoding-performance-v
s-hevch-264/.

[16] WebRTC and IoT Applications. https://rtcweb.in/webr
tc-and-iot-applications/.

[17] WebRTC Cloud Gaming: Unboxing Stadia. https:
//webrtc.ventures/2021/02/webrtc-cloud-gaming-unb
oxing-stadia/.

[18] WebRTC: Enabling Collaboration Augmented Reality
App. https://arvrjourney.com/webrtc-enabling-collabo
ration-cebdd4c9ce06?gi=e19b1c0f65c0.

[19] WebRTC in IoT: What is the Intersection Point? https:
//mobidev.biz/blog/webrtc-real-time-communication
-for-the-internet-of-things.

[20] What powers Google Meet and Microsoft Teams? We-
bRTC Demystified. https://levelup.gitconnected.com
/what-powers-google-meet-and-microsoft-teams-w
ebrtc-demystified-step-by-step-tutorial-e0cb422010f
7.

[21] Better Portable Graphics. https://bellard.org/bpg/,
2014.

[22] SENSEI: Aligning Video Streaming Quality with Dy-
namic User Sensitivity, author=Zhang, Xu and Ou,
Yiyang and Sen, Siddhartha and Jiang, Junchen. In
18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 303–320,
2021.

[23] Deploying Transformers on the Apple Neural Engine.
https://machinelearning.apple.com/research/neural-e
ngine-transformers, 2022.

[24] Harnessing the NVIDIA Ada Architecture for Frame-
Rate Up-Conversion in the NVIDIA Optical Flow
SDK. https://developer.nvidia.com/blog/harnessi
ng-the-nvidia-ada-architecture-for-frame-rate-up-c
onversion-in-the-nvidia-optical-flow-sdk/, 2023.

[25] Asma Ben Abdallah, Amin Zribi, Ali Dziri, Fethi Tlili,
and Michel Terré. H.264/AVC video transmission over
UWB AV PHY IEEE 802.15. 3c using UEP and adap-
tive modulation techniques. In 2019 International
Conference on Advanced Communication Technolo-
gies and Networking (CommNet), pages 1–6. IEEE,
2019.

[26] Doreid Ammar, Katrien De Moor, Min Xie, Markus
Fiedler, and Poul Heegaard. Video QoE killer and per-
formance statistics in WebRTC-based video communi-
cation. In 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE), pages
429–436. IEEE, 2016.

[27] Anurag Arnab, Mostafa Dehghani, Georg Heigold,
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A Details of NVC architecture and training

A.1 More details on GRACE’s NVC model
Grace uses the exact same model architecture as the orig-
inal DVC model [73]. With an RGB input image of size
C×H ×W , where H,W are the height and width of the im-
age, and C = 3 is number of channels in RGB images, the
encoder neural network will encode the image into a com-
pressed motion vector of size 128× (H/16)× (W/16) and
a compressed residual of size 96× (H/16)× (W/16). Then
those two compressed features will be quantized and con-
verted into bytesteam using entropy encoding.

When we finetune the DVC model to get our GRACE’s
loss resilient model, we train on the 90k Vimeo Dataset, with
batch size of 4, learning rate of 10−4 and learning rate decay
of 0.1, and an Adam optimizer.

A.2 Making GRACE trainable
Since P is a non-differentiable random function, the gradient
of the expectation of D in Eq. 2 cannot be directly calculated.
To address this issue, we use the REINFORCE trick [62] for
reparameterization. First, given the packet loss distribution
P(y), we can apply the differentiation property of logarithms
to get

∇φP(y) = P(y)∇φ logP(y)

Therefore, our gradient of the expectation of D(gθ(y),x)
becomes

∇φEy∼P(y)([D(gθ(y),x)])

= Ey∼P(y)([D(gθ(y),x)∇φ logP(y)]) (3)

which can be estimated using Monte-Carlo sampling ≈
1
N ∑

N
i=1 D(gθ(yi),x)∇φ logP(yi). Since in our application, the

loss is an independent and identically distributed random
variable, the gradient evaluates to either 0 or 1, hence we
propagate the gradients for the encoder only for D(gθ(yi),x)
where P(yi) = 1.

B Realtime video framework for GRACE

B.1 Fast re-encoding and re-decoding under
loss

In GRACE’s NVC, the most time-consuming components are
motion estimation NN and frame smoothing NN, taking 28%
and 42% of the total encoding time respectively. Fortunately,
we do not need to use them during resync (§4.2). When the
packet loss feedback arrives at the encoder, it takes the follow-
ing steps to generate a new reference frame to re-sync with
the decoder (Assuming the loss feedback is for 6th frame and
the encoder is about to encode 10th frame)
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Figure 21: Encoding each P-frame with a small I-patch leads
to smoother frame sizes than naively inserting I-frames.

• First, GRACE re-decodes the motion vector and residuals
based on the packet loss feedback for 6th frame. This step
needs to run the motion decoder NN and residual decoder
NN, which only takes around 18% of the encoding time.

• Second, GRACE apply the cached motion vector and resid-
uals of 7th frame on the “reconstructed” 6th frame to gener-
ate the “reconstructed” 7th frame. It applies the same logic
on 8th and 9th frame and finally gets the “reconstructed”
9th frame. We do not run frame smoothing NN since the
quality of the reference frame does not have a significant
impact on compression efficiency. Therefore, this step does
not involve any NN inference. It only needs to apply the
motion and add the residuals, which takes 1% of the en-
coding time.

• Finally, GRACE uses the “reconstructed” 9th frame as the
reference frame to encode the 10th frame. It is the same as
encoding a frame when there are no packet losses. It will
add an extra tag to the frame so that the receiver knows
which reference frame to use.

To summarize, the encoder side’s computational overhead
is usually less than 10%. The logic requires the encoder to
cache the motion vectors and residuals, but the cached value
of frame x can be dropped after receiving the packet loss
feedback of that frame.

At the receiver side, when receiving the frame with the
extra tag, it will follow the same process as the second step
above to generate the same “reconstructed” reference frame
as the encoder. Again, the overhead is negligible since it does
not require NN inference.

B.2 How GRACE handles I-frames

GRACE uses BPG [21] (also used in H.265) to encode and
decode I-frames every 1000 frames. That said, in many NVCs
(including DVC), the quality of P-frames will gradually de-
grade after an I-frame. By simply adding frequent I-frames
(e.g., every 10 frames), we can achieve similar average com-
pression efficiency with H.264 and H.265 when they use an
optimal I-frame interval. However, since I-frames are larger
than P-frames, adding too many I-frames causes frequent
spikes in frame size. Instead, GRACE uses an extra small
square-sized patch as a tiny I-frame, called I-patch, on every
P frame. We split each frame into k patches, and for a window
of k frames, each frame is sent with an extra I-patch at a differ-
ent location, so I-patch “scan through” the whole frame every

k frame. By default, k = 30 though we empirically found any
value between 10 and 30 works well. With I-patch, GRACE
does not need to send any I-frames (except the first frame).
We use BPG [21] to encode/decode the I-patch. Figure 21
shows that when k = 10, I-patch mitigates the sudden size
increase caused by I-frames.

It is worth noting that though I-patch encoding can also use
a loss-resilient NVC, we do not protect their packet loss to
simplify the system design. This is because if each patch will
see an I-patch every k frames, so even if one patch is lost, its
impact is confined to the next k frames, and empirically, even
this impact is marginal since P-frames are still delivered.

B.3 Working with congestion control
GRACE can be integrated with any existing congestion con-
trol (CC) algorithms. When combined with GRACE, CC does
not need to retransmit packets, unless no packets of a frame
are received. CC determines the sending rate of packets and
the target size of the next frame, while GRACE decides the
content in each packet. Therefore, GRACE would not change
the properties of the CC, such as fast convergence, oscillation
avoidance, and TCP friendliness. In real-time video commu-
nication, traditional CC algorithms like GCC [31] typically
mitigate packet losses by reducing bandwidth use, due to
the non-loss-tolerant nature of conventional video codecs.
These codecs necessitate retransmissions when packet loss
happens, causing frame delays and video stalls. Conversely,
GRACE is designed to handle packet losses by decoding the
partially received frames with graceful quality. This capabil-
ity allows GRACE to employ a more aggressive congestion
control strategy, which, while resulting in occasional packet
losses, enhances bandwidth utilization. An illustration of this
approach can be found in Appendix C.7, where GRACE works
with Salsify’s congestion control (Sal-CC) [45] that yields a
higher average sending rate albeit with increased packet loss.

B.4 Integration in WebRTC
GRACE is implemented with 3K lines of code, in both Python
(mostly for NVC NNs) and C++ (for frame delivery and We-
bRTC integration). The code and trained model of GRACE
will be made public upon the publication of this paper. The
integration with WebRTC is logically straightforward since
GRACE (including I-frame and P-frame encodings) exposes
similar interface as the default codec in WebRTC.

We substitute the libvpx VP8 Encoder/Decoder in WebRTC
with our GRACE implementation. When the sender encodes
a frame, it parses the image data from the VideoFrame data
structure (YUV format) into torch.Tensor (RGB format)
and feed it into our GRACE encoder, which will return the en-
coded result as a byte array. Then the encoded bytes are stored
into an EncodedImage (class in WebRTC) and sent through
the network to the receiver as RTP packets. We modify the
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Figure 22: H265 vs VP9 Encoding Efficiency on Kinetics

built-in RtpVideoStreamReceiver (class in WebRTC) so
that the receiver could flexibly decode the received packets
even when not all the packets are received. When the receiver
decides to decode the frame, it depacketizes the received pack-
ets into encoded data. Then it will use the GRACE decoder to
decode the image into RGB format and then convert it back
to YUV for displaying on the receiver side.

C Supportive details for GRACE’s evaluation
experiments

C.1 VP9 and H265 Comparison
In our paper we mainly compared with codecs in the H26x
family. Since many prior work used VPx codec, we ran a
simple experiment to show they have similar efficiency. We
randomly chose 12 videos with resolution 1280x720 from
the Kinetics dataset we used and compared encoding effi-
ciency between VP9 and H265. We configured VP9 to use
speed/quality tradeoff level 8 and set H265 to very-fast, zero-
latency, and no B-frame. We confirm that they have similar
performance as shown in Fig 22.

C.2 Baseline and testbed implementation de-
tails

We provide the extra implementation details of our baselines
here:
• Tambur: To match the implementation in Tambur’s

paper [86], we force the codec to not encode any I-frames.
Following recent work in real-time video coding [2, 7], we
use the zerolatency option (no B-frames) and the fast
preset of H.265. The command line we used to encode
a video is ffmpeg -y -i Video.y4m -c:v libx265
-preset fast -tune zerolatency -x265-params
"crf=Q:keyint=3000" output.mp4 where Q controls
the quality of the frame.

• Error concealment: We employ ECFVI [59], an NN-
based error concealment pipeline, to mitigate errors from
packet losses with H.265 encoding/decoding. When an
incomplete frame is received, it starts a 3-step process to
compensate for the errors. First, it uses a neural network

to estimate the motion vector of the missing part from the
previous N frames. Next, the missing pixel values are prop-
agated from the reference frame using the estimated motion
vector. Finally, an inpainting neural network is applied to
enhance frame quality and minimize error propagation. We
set N = 5 during our evaluation.

ECFVI operates under the assumption that packet loss
only corrupts portions of a frame, leaving the rest part
(corresponding to the arrived packets) decodable. How-
ever, as discussed in §4.1, a single packet loss typically
renders an entire frame undecodable in H.264/H.265. To
reconcile this, we use flexible macroblock ordering (FMO)
technique within the underlying H.265 video codec. This
allows different parts of a frame to be encoded and packe-
tized independently into distinct packets. In our baseline
implementation, the frame is partitioned into 64×64-pixel
blocks and randomly mapped to various packets during
packetization. This method introduces a size overhead, as
the codec cannot eliminate redundancy among packets.
Based on prior works [64, 74, 99], we account for an ad-
ditional 10% size overhead to ensure that each packet is
individually decodable.

ECFVI is chosen as the baseline for error concealment
for two main reasons: (i) Its 3-step method is recognized
as state-of-the-art within the computer vision research area.
It surpasses the prior works that only do motion estima-
tion [87] or inpainting [34]. (ii) Similar methods have
been adopted by various recent works such as [46], [69],
and [111], while ECFVI ranking as the most proficient
among them. (iii) ECFVI’s performance is also on par with
or better than other recent error concealment techniques,
including those utilizing transformers [71, 110].

• Voxel (selective frame skipping): We sort the video frames
by the SSIM drop caused by skipping the frame (in real-
time video communication, we usually cannot get the qual-
ity drop caused by skipping frames in advance. Thus, we
are making an idealized assumption that improves the base-
line). For 25% frames with the lowest SSIM drop, we use
the default error concealment method in H.264/AVC [115]
without any packet retransmission, and for the remaining
frames (which cause more SSIM drops when skipped), we
retransmit all the lost packets. We use a GoP (chunk length)
of 4 seconds, which is also used by Voxel.

• Salsify (functional codec): We implement the Salsify codec
based H.265 with the following two key features: firstly,
the encoded frame size never surpasses the target bitrate
determined by the underlying congestion control algorithm;
secondly, upon packet loss, the encoder can dynamically
select a reference frame, enabling subsequent frames to be
decoded without resending any packets.
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Figure 23: The simulated frame delay of GRACE is close to
the real world measured frame delay

C.3 Simulator validation
Our simulator runs on an Ubuntu 18.04 server with 2 Intel
Xeon 4210R CPU, and 256GB memory, with 2 Nvidia A40
GPUS. To validate that the frame delay measured in simu-
lation matches the real-world numbers, we run a real-world
emulation using GRACE. Being the same as simulation, we
use 2 Nvidia A40 GPUs, one for encoding and one for decod-
ing. The encoder process encodes the video using GRACE’s
encoder and send the encoded packets through an emulated
network. The decoder process decodes the frame using the
same logic as mentioned in §4. We compute the real-world
frame delay by calculating the difference between the en-
coding time and the decoding time of a frame. Figure 23
compares the simulated frame delay and real-world measured
frame. We use the bandwidth trace same as Figure 16. The
result validates that our simulated frame delay is accurate. It is
worth noting that we are running real encoding and decoding
process in the simulation, hence the calculated frame quality
should also be the same as using GRACE in the real world.

C.4 Distribution of video content complexity

Figure 24: Spatial information (SI) and temporal information
(TI) of test videos

To validate the test videos that we use cover different con-
tent complexities and movements, we calculate the spatiotem-
poral complexity of the video. We use Spatial Information (SI)
and Temporal Information (TI) [58], which are frequently-
used metrics to measure the spatiotemporal complexity and a
larger SI/TI means that the video has a higher spatial/temporal

complexity. The metrics are calculated by the tool [12] pro-
vided by Video Quality Experts Group (VQEG) and the result
is shown in Figure 24.

The result validates that (i) the spatiotemporal complexity
of the videos we used covers a wide range: SI is ranging
from 15 to 85 and TI is ranging from 3 to 25. (ii) Our test
videos covers all the following types: high spatial complexity
and high temporal complexity, high spatial complexity but
low temporal complexity, low spatial complexity but high
temporal complexity, and low spatial complexity and low
temporal complexity.

C.5 Illustration example where GRACE per-
forms poorly

In some rare cases, GRACE may suffer from poor quality.
Figure 25 visualizes an example of four consecutive frames
when GRACE performs poorly. As shown in the yellow box,
the frame decoded by GRACE has some notable artifacts
around the moving object, which degrades the SSIM.

C.6 Screenshot of videos we used for user study
Figure 26 shows the screenshot of the videos we used for the
user study (in §5.3)

C.7 Working with other congestion control
GRACE can also work with the congestion control algorithm
proposed in Salsify (Sal-CC) [45], which is more aggressive
than GCC. Sal-CC has a higher average sending rate, while
paying the cost of potentially having more packet losses. Fig-
ure 27 show that changing from GCC to Sal-CC increases the
average SSIM of 0.7-1.1dB for GRACE with a negligible in-
crease in video stall ratio. In contrast, the video stall ratio for
Salsify codec will increase a lot when using Sal-CC, because
Salsify codec needs to keep skipping frames for more than
one RTT when packet loss happens, which leads to frequent
video stalls.

C.8 Working with super resolution
In line with the discussion in §2.2, Super-Resolution (SR)
can supplement the receiver-side video quality. We employed
SwinIR [70], a leading SR model, in our simulation to confirm
that GRACE, like baselines, can also leverage SR benefits. Our
experiments demonstrated that SR boosts receiver-side quality
for all codecs, irrespective of the specific codec employed.
For more details, refer to Appendix C.8.

Figure 28 shows the tradeoff between quality and video
stall ratio when using SR to enhance the quality at the receiver
side. We run the simulation using LTE traces with a 100ms
one-way delay and a 25-packet queue and then use a state-
of-the-art SR model, SwinIR [70], to improve the quality of
the decoded videos. When using SR, GRACE can still have
on-par SSIM with Salsify codec and H.265 w/ Tambur: the
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Figure 25: An example where GRACE performs poorly. It shows four consecutive decoded frames where the pink brush moves
down quickly. Some artifacts in The yellow box degrade the frame quality and impact the SSIM.

(a) Sports: Football (b) Sports: Soccer (c) Gaming: Fortnite (d) Gaming: Genshin Impact

(e) Daily movement: Taekwondo (f) Daily movement: Baby in crib (g) Talking heads: indoor (h) Talking heads: outdoor

Figure 26: Summary of videos used in our user study. They span four categories: sports (a, b), gaming (c, d), daily movement (e,
f), and talking heads (g, h).

(a) One-way delay = 50ms (b) One-way delay = 75ms (c) One-way delay = 100ms (d) One-way delay = 150ms
Figure 27: End-to-end simulation result under different one-way delay. Network queue length = 25 packets

Figure 28: The quality of GRACE and baselines after super-
resolution

SSIMs are 15.8 dB, 16.4 dB, and 16.0 dB respectively. The
SSIM of SVC (15.4 dB) is still lower than GRACE even with
super-resolution. This is because packet loss can make higher
layers of SVC undecodable, resulting in lower quality. This
shows SR technique is complementary to our work, as it can
improve the quality for any codecs at the receiver side.

Encoding (ms) Decoding (ms)
720p 480p 720p 480p

GRACE-Lite 35.1 17.2 40.9 21.6

Table 2: Encoding/decoding time per frame for GRACE-Lite
on Intel CPU

C.9 Encoding/decoding time on CPU

We use OpenVINO library to run GRACE on a 32-core In-
tel(R) Xeon(R) Silver 4210R CPU. Table 2 shows the en-
coding/decoding time of a 720p/480p frame respectively. It
can encode/decode a 720p frame at 28.5 fps and 24.4 fps
respectively.
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SSIM
(dB)

% of non
rendered frames

Video stall
ratio

GRACE 15.53 0.21 0.0011
GRACE-Lite 15.01 0.22 0.0012
GRACE-D 13.91 0.24 0.0014
GRACE-P 12.53 0.33 0.0023

Table 3: End-to-end simulation shows GRACE-Lite has the
same benefits in video realtimeness/smoothness compared
to GRACE with marginal quality drop. Although GRACE-D
and GRACE-P have similar video realtimeness/smoothness
as GRACE, they suffer from low video quality.

Grace-D
SSIM: 10.7 dB

Grace-P
SSIM: 8.8 dB

Grace
SSIM: 12.0 dB

Figure 29: Comparing reconstructed image when the same
packet loss is applied to the pre-trained NVC (GRACE-P), a
variant with only decoder fine-tuned with loss (GRACE-D),
and GRACE (both encoder and decoder jointly fine-tuned).

C.10 Simulation results and visualization ex-
amples for GRACE-Lite, GRACE-P and
GRACE-D

Table 3 shows the end-to-end simulation results comparing
GRACE, GRACE-Lite, GRACE-D, and GRACE-P. We use the
LTE traces, and set the one-way-delay to 100 ms and the net-
work queue length to 25 packets. GRACE-Lite has both simi-
lar quality and realtimeness/smoothness as GRACE. Without
jointly training the encoder and decoder with loss, GRACE-P
and GRACE-D fail to achieve similar quality as GRACE.

Figure 29 visualizes the reconstructed frame of GRACE,
GRACE-P, and GRACE-D when the same 50% packet loss is
applied to the encoded tensor of the same image, demonstrat-
ing that by jointly training both the encoder and decoder under
various packet losses, GRACE delivers the best reconstruction
quality without any prominent artifacts, and achieves a high
SSIM.
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