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Abstract
Video codecs are essential for video streaming. While tradi-
tional codecs like AVC and HEVC are successful, learned
codecs built on deep neural networks (DNNs) are gaining pop-
ularity due to their superior coding efficiency and quality of
experience (QoE) in video streaming. However, using learned
codecs built with sophisticated DNNs in video streaming
leads to slow decoding and low frame rate, thereby degrad-
ing the QoE. The fundamental problem is the tight frame
referencing design adopted by most codecs, which delays the
processing of the current frame until its immediate predeces-
sor frame is reconstructed. To overcome this limitation, we
propose LiFteR, a novel video streaming system that operates
a learned video codec with loose frame referencing (LFR).
LFR is a unique frame referencing paradigm that redefines
the reference relation between frames and allows parallelism
in the learned video codec to boost the frame rate. LiFteR has
three key designs: (i) the LFR video dispatcher that routes
video data to the codec based on LFR, (ii) LFR learned codec
that enhances coding efficiency in LFR with minimal impact
on decoding speed, and (iii) streaming supports that enables
adaptive bitrate streaming with learned codecs in existing
infrastructures. In our evaluation, LiFteR consistently out-
performs existing video streaming systems. Compared to
the existing best-performing learned and traditional systems,
LiFteR demonstrates up to 23.8% and 19.7% QoE gain, re-
spectively. Furthermore, LiFteR achieves up to a 3.2× frame
rate improvement through frame rate configuration.

1 Introduction

The video streaming industry has grown rapidly in recent
years, with revenues of $72.2 billion in 2021 and expected
to reach $115 billion by 2026 [20]. To achieve high-quality
video streaming with minimal bandwidth usage, an essential
component is the video codec, which compresses the video
data while maintaining its visual fidelity.

Traditional codecs, such as AVC (x264) [57], HEVC
(x265) [52], and MPEG-2 [33], are widely used and built

on handcrafted modules such as block-based motion estima-
tion, discrete cosine transform, and entropy coding. Recently,
learned codecs, built entirely on deep neural network-based
modules and end-to-end optimized, have been introduced and
have demonstrated superior coding efficiency, i.e., the ability
to encode videos with low bitrates while maintaining video
quality [2, 25, 38, 39, 62, 63]. As a result, learned codecs have
the potential to offer a better quality of experience (QoE) in
video streaming.

Despite the potential, the use of existing learned codecs
in video streaming faces major limitations. The complicated
neural processing incurs a slow decode speed at the video
player, causing a low frame rate and QoE during video play-
back. Our results (§2) show that, on a GPU, the frame rate
of systems using learned codecs is still one magnitude lower
than that of systems using traditional codecs on a CPU. On
many hardware configurations, learned codecs cannot reach a
real-time frame rate for smooth streaming. While the QoE in
systems using traditional codecs is mainly affected by slow
video downloads, we discover that those using learned codecs
can suffer additionally from slow decode speed.

The root cause of this limitation is the tight frame refer-
encing (TFR) principle that has been in use for decades in
traditional video codecs. This principle encodes and decodes
each frame by referencing the immediate predecessor frame.
For example, frame#1 is referenced by frame#2, and frame#2
is referenced by frame#3. It minimizes the difference be-
tween the current frame and the reference frame and makes
coding efficient. However, the processing of the current frame
must be delayed until the processing of its reference frame is
completed. As traditional codecs are highly optimized in com-
putation complexity [52, 57], they can work with TFR with a
reasonable frame rate. In contrast, TFR incurs an unaccept-
able frame rate in learned codecs with computation-intensive
deep neural networks (DNNs). The frame dependency un-
derlying TFR also impedes the possibility of parallel frame
processing.

Aiming at improving the frame rate and achieving high
QoE in video streaming, we propose to operate the learned
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(c) Learned codecs rebuffer and stall.

Figure 1: The potential and limitation of applying learned codecs in video streaming systems.

codec with loose frame referencing (LFR). In contrast to
TFR, the reference of a frame in LFR only needs to be a
temporally close frame, instead of the immediate predecessor.
The rationale is that similarity exists between temporally close
video frames, which are not necessarily adjacent. As such,
frames with the same reference can be processed in parallel,
which improves the frame rate of learned video codecs. More
importantly, the similarity between a frame and its reference
with LFR still preserves the coding efficiency.

As TFR has been the de facto design for both traditional
and learned codecs that maximizes coding efficiency, imple-
menting LFR in video streaming presents three challenges.
First, optimally balancing the coding efficiency and decod-
ing speed with LFR is non-trivial. Additionally, the reference
frames in LFR could lead to significant memory consump-
tion. Second, the existing architecture of the learned codec
cannot handle the degradation in coding efficiency caused by
LFR. Third, the existing streaming infrastructure is compati-
ble with the learned codec regarding bitrate adaptation, frame
rate configuration, and buffer level.

We design LiFteR, a novel on-demand video streaming
system that leverages a learned codec with LFR, to address
the above challenges. First, we introduce the LFR video
dispatcher that routes frames to the learned codec iteratively.
It strikes a balance between coding efficiency and decoding
speed by defining frame dependency based on a binary tree
and pre-order traversal. The memory consumption of it is
constrained by processing frames in a GOP on a per-tree
basis. Second, we design a unique LFR learned codec. It
improves coding efficiency by exploiting the inter-frame
correlation presented by LFR with self-attention. More
importantly, it imposes minimal impact on the frame rate due
to highly parallelized motion estimation. Finally, we adopt
bitrate-adaptive training, frame rate configuration, and an
enhanced adaptive bitrate (ABR) algorithm to bridge the gap
between learned codecs and modern streaming infrastructure.

We compare LiFteR to video streaming systems built on dif-
ferent traditional codecs (x264 and x265) and learned codecs
(DVC [39] and RLVC [63]). Results show that LiFteR consis-
tently outperforms other streaming systems on different GPU
capabilities and network conditions. Compared to the best-
performing baselines using learned and traditional codecs,

LiFteR achieves up to 23.8% and 19.7% QoE gain, respec-
tively. We also demonstrate the capability of LiFteR to boost
system frame rate by up to 3.2× via LFR on everyday GPUs.
In summary, the contributions of this work are as follows.

• We identify the limitations of applying learned codecs
in video streaming and propose the LFR paradigm.

• We build LiFteR to showcase a practical system through
the design of the LFR video dispatcher, the LFR learned
codec, and streaming supports for the learned codec.

• We evaluate LiFteR to demonstrate its multi-fold benefits
in frame rate, video quality, and rebuffer rate.

2 Background and Motivation

Adaptive video streaming has been predominantly used. At
the server, a video is segmented and encoded into different
bitrates in advance. A client-side ABR algorithm [51, 61]
adaptively downloads video segments of the appropriate bi-
trate level based on network conditions. The received seg-
ments are then decoded for playback. Studies have shown that
the QoE of video streaming [51] is primarily determined by
video quality Q, measured by PSNR, and playback smooth-
ness, measured by the rebuffer rate R (the rebuffer duration
divided by the video session duration). Therefore, the QoE
metric can be formally defined as in Equation 1.

QoE = Q− γR, (1)

where γ is a parameter balancing Q and R. The value of γ in
this paper is chosen according to BOLA [51].

2.1 Advantages of Learned Codecs
Video codecs play a crucial role in ensuring QoE in video
streaming by improving the trade-off between video qual-
ity and bitrate. Though, traditional codecs like x264, x265,
and MPEG [33, 52, 57] have been widely utilized in video
streaming, the advancement in deep learning allows learned
codecs [2,38,39,63] to challenge the dominance of them. Un-
like traditional codecs, learned codecs implement the codec
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pipeline with DNN modules instead of handcrafted modules.
These DNN modules are trained end-to-end to optimize video
quality and bitrate.

In Figure 1(a), the coding efficiency of two learned codecs
(DVC [39] and RLVC [63]) is compared to three presets,
i.e., veryslow (s), medium (m), and veryfast (f), of traditional
codecs, i.e., x264 and x265. For instance, x264f represents
the codec x264 using the veryfast preset. The comparison
is performed on the UVG dataset [42] with the same group
of pictures (GOP) size as specified in §4. Each point on the
figure represents a rate-distortion trade-off for a codec, where
bits per pixel (bpp) is the rate metric and PSNR is the distor-
tion metric. A rate-distortion curve closer to the top-left side
of the figure indicates higher coding efficiency, thus demon-
strating the superiority of learned codecs. For example, DVC
achieves a similar PSNR (38.73 dB) as x265s (38.68 dB), the
best-performing traditional codec, while reducing the bpp by
almost half (0.55 vs. 1.05 bpp). Similarly, RLVC improves
the PSNR by 1 dB compared to x265s (39.22 dB vs. 38.20
dB) with a similar bpp (0.57 vs. 0.59 bpp).

2.2 Learned Codecs Are Slow In Decoding

Despite the benefits of learned codecs, they exhibit a rela-
tively low decode frame rate due to the computation over-
head of DNNs, which may lead to rebuffering or stall and
affect QoE in video streaming. For simplicity, we will use the
term “frame rate” whenever referring to the decode frame rate
throughout the remainder of this paper. To assess such im-
pacts, we developed a video streaming prototype with various
traditional and learned codecs (see §5 for a detailed setup).
Our rate adaptation algorithm was BOLA [51], a widely used
industrial-level ABR algorithm. We used the UVG [42] and
MCL-JCV [56] video datasets, along with 1,000 traces from
the FCC broadband network data [23] to emulate the stream-
ing environment. The video client utilizing traditional codecs
and learned codecs was run on an Intel Core i9-8950HK CPU
and an NVIDIA GTX 1080 Ti GPU, respectively.

Figure 1(b) shows that, despite the advantage of the
hardware, the frame rates of systems using learned codecs
remain one order of magnitude lower than traditional codecs.
It is worth noting that the “veryfast” preset in x265 typically
yields a faster frame rate compared to the “medium” and
“veryslow” presets. However, the impact of presets may vary
based on distinct video contents and configurations, such as
quantization parameters and resolution. Consequently, scenar-
ios may arise where x265f does not achieve a faster frame rate
than x265m and x265s, as depicted in Figure 1(b). Figure 1(c)
compares the QoE of systems via rebuffer rate and stall rate
(the number of segments that cannot be played immediately
after its previous segment, divided by the total number of
segments). The rebuffer rates of DVC (0.15) and RLVC
(0.75) are drastically higher than those of traditional codecs,
indicating the videos are freezing 15% and 75% of the time.
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Past FutureRefer to

Figure 2: The frame processing dependency in today’s codecs.
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Figure 3: The canonical pipeline of learned codecs. This
iterative pipeline means DNN processing at timestamp t is
dependent on that at timestamp t −1.

The stall rate of 1.0 for both learned codecs implies that video
playback freezes for every segment, as the decoding frame
rate is lower than the target frame rate of the source of 30 fps.

2.3 Preliminary Analysis of Learned Codecs

Background. Similar to traditional codecs, a video is divided
into GOPs in learned codecs for encoding/decoding. Typically,
the processing of a GOP starts from an I frame (intra-coded)
that can be processed by an image codec. As depicted in Fig-
ure 2, all other frames in the GOP are P frames (predicted) and
undergo predictive coding with the immediate predecessor
frame as the reference frame, i.e., TFR. An alternate imple-
mentation inserts additional B frames (bi-directional) between
I frame and P frames, referencing past and future frames [62].
Still, the fundamental frame referencing of I and P frames of
such an implementation follows TFR.

The canonical pipeline for encoding a P frame at timestamp
t, t = 1,2, ..., with learned codecs, is illustrated in Figure 3
(top), involving four DNN-based modules: motion estimation
(MotEst), motion encoder/decoder (MotEnc/MotDec), mo-
tion compensation (MotCmp), and residual encoder/decoder
(ResEnc/ResDec). Initially, MotEst estimates the motion, a
vector representing the displacement of each pixel, based on
the current frame (Raw Frame t) and the reference frame
(Reconstructed Frame (t −1)), the reconstructed immediate
predecessor frame. MotEnc compresses the raw motion data
into bitstreams and MotDec decompresses bitstreams into the
reconstructed motion, representing the motion received by the
video decoder. MotCmp then generates the predicted frame
based on the reconstructed motion and the reference frame.
The raw residual data between the predicted and raw current
frame is then calculated via subtraction and processed by Res-
Enc and ResDec into the reconstructed residual. Finally, the
reconstructed residual and the predicted frame are added to
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produce the reconstructed current frame (Rec. Frame t). The
decoding process partially follows the encoder pipeline in
Figure 3 (top) that produces the current reconstructed frame
(Rec. Frame t) from the bitstreams of the motion and residual.
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Figure 4: DNNs for decoding save time via parallelism.

The need and potential of parallelism. Unlike heavily-
engineered modules in traditional codecs that can run fast
enough to support real-time encoding/decoding, the sophis-
ticated DNN modules in learned codecs are inherently slow.
As a result, even a single iteration in Figure 3 pipeline can be
time-consuming, resulting in a low frame rate.

Parallelism, which accelerates DNN by processing multiple
instances of data simultaneously in a batch, is a potential
solution for improving the frame rate of learned codecs, by
processing frames in parallel. To demonstrate the potential
of parallelism, we isolate DNN modules for decoding, i.e.,
MotCmp, MotDec, and ResDec, from learned codecs. Then,
we separately measure the mean processing time per frame
of these DNN modules for different batch sizes, ranging from
1 to 16 frames, on NVIDIA GTX 1080 Ti and RTX 2080
Ti. Figure 4 demonstrates the average processing time per
frame when the batch size is one, the case with TFR, can be
significantly improved by adopting a larger batch size. When
the batch size increases from one to four, the speed of the
motion compensation modules can be boosted by 74% and
71% on NVIDIA GTX 1080 Ti and RTX 2080Ti, respectively.
Parallelism is infeasible with TFR. Parallelism requires
that the processing of different frames t = 1,2, . . . is inde-
pendent. For existing learned codecs with TFR, DNN pro-
cessing of modules like MotDec, MotCmp, and ResDec at
timestamp t happens after the reconstructed frame t −1. The
reconstructed frame t −1, produced by DNN modules Mot-
Dec, MotCmp, and ResDec, happens after DNN processing
of MotDec, MotCmp, and ResDec at timestamp t −1. As a
result, the processing of MotDec, MotCmp, and ResDec at
timestamp t depends on the processing at timestamp t −1, as
illustrated in Figure 3 (bottom). Such a dependency contra-
dicts parallelism.

2.4 Intuition and Challenges

Intuition. Our intuition is that frame similarity exists not
only between adjacent frames but also between non-adjacent,
temporally close frames. By leveraging the temporally close

frames for reference in video coding, i.e., loose frame refer-
encing (LFR), multiple frames can share the same reference
frame. Therefore, these frames with the same reference can be
processed in parallel, improving the frame rate. Meanwhile,
the similarity between a frame and its reference, a temporally
close frame preserves coding efficiency.
Challenges. Designing a learned video streaming system with
LFR presents three main challenges:

1. Processing pipeline: It remains a question of how to con-
figure LFR that 1) optimally balances the coding efficiency
and decoding speed and 2) minimizes the memory usage
due to buffering multiple reference frames.

2. Learned codec: LFR, by its design, introduces a larger
difference between the raw and reference frames than TFR.
The existing learned codec design cannot handle such
discrepancies.

3. Streaming infrastructure: The existing video streaming
infrastructure is incompatible with learned codecs, which
exhibit different behaviors from traditional ones.

3 LiFteR Overview

The overview of LiFteR is illustrated in Figure 5, which com-
prises offline and online stages. In the offline stage, we con-
struct the LFR learned codec (§3.2), a unique codec design
that mitigates the impact of LFR by using an elastic compres-
sion component (§3.2.2) and maintains the decoding speed
through highly-parallelized motion estimation (§3.2.1). Then,
the codec is trained and configured before being deployed on
the media server and the client.

After deployment, the server utilizes the LFR video dis-
patcher (§3.1) to route the raw video to the video encoder iter-
atively based on LFR. The LFR video dispatcher balances cod-
ing efficiency and decoding speed with a dependency graph
(§3.1.1) and constrains memory usage via a frame iterator
(§3.1.2). The video encoder compresses the raw video dis-
patched by the LFR video dispatcher into video segments
of different bitrates, ready for Dynamic Adaptive Streaming
over HTTP (DASH).

During the online stage, the client employs an ABR algo-
rithm to download video segments with appropriate bitrates
from the media server. These downloaded segments are routed
to the decoder by the LFR video dispatcher and reconstructed
into video frames. To integrate LiFteR into existing ABR
streaming infrastructures, we build streaming supports that
enable adaptive bitrate in training (§3.3.1), frame rate config-
uration (§3.3.2), and the enhanced ABR algorithm (§3.3.3).

3.1 LFR Video Dispatcher
LFR video dispatcher models frame processing dependency
with the dependency graph (§3.1.1). Driven by the depen-
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Figure 5: Overview of the video streaming pipeline in LiFteR.
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dency graph, it iteratively feeds frames to codec (§3.1.2).

3.1.1 Dependency Graph

In the dependency graph, each vertex with a unique positive
integer label corresponds to a video frame processed at a
particular timestamp, and the directed edge represents the
dependency, pointing from a reference frame to the to-be-
processed frame. Traversing the dependency graph is equiva-
lent to processing video frames, which starts from a visited
vertex representing the I frame. Then, graph traversal proceeds
in iterations until all vertices are visited. In each iteration, we
can visit vertices pointed by directed edges starting from vis-
ited vertices in previous iterations. The visited vertices in
the same iteration represent frames that can be processed in
parallel. As this paper focuses on the dependency of I and P
frames (Figure 2) where a frame with a smaller timestamp
is typically processed earlier, we constrain this dependency
graph such that the end of a directed edge has a larger index
than the start. We aim to minimize two metrics when deciding
the shape and labeling of indices in the dependency graph.

1) Reference cost: The sum of the difference in indices be-
tween the end and start of directed edges, which indicates
the difference between the frames and their reference in
video coding and relates to coding efficiency.

2) Reference depth: The maximum depth of a vertex, which
indicates the number of iterations needed to process all
frames and relates to parallelism.

Shape: binary tree. It is challenging to balance the reference
cost and depth. The dependency graph representing TFR has
the shape of a chain. In Figure 6 (top), we provide a visual rep-
resentation of the chain while also labeling index differences
between frames and their references. Iterations are colored
differently for clarity. The chain displays a low reference cost
of 6 and a high reference depth of 6. Alternatively, we con-
struct the dependency graph as a one-hop tree in Figure 6
(middle), which represents a fully parallelized way where all
P frames reference the same I frame. This tree boasts a small
reference depth (1) but has a high reference cost (21).

Our insight is that the binary tree as the dependency graph
effectively balances the reference cost and depth. First, unlike
the chain, the reference depth in a binary tree increases slowly
with the number of vertices in the tree in a logarithmic manner.
Second, in contrast to the one-hop tree, the reference cost is

more constrained as one frame is used at most twice for frame
referencing. While N-ary trees (N = 2,3, . . .), e.g., the 3-ary
tree, may have similar properties as the binary tree, as the first
effort to explore frame dependency with a tree, we focus on
the binary tree for simplicity.
Labeling: pre-order traversal. The derivation of the depen-
dency graph is essentially finding the Minimum Spanning
Tree (MST) in the particular shape of the binary tree, termed
Minimum Spanning Binary Tree (MSBT), within a dense
graph. Assuming there are N frames, the dense graph consists
of N vertices indexed by 0,1, . . . ,N −1. In this dense graph,
there exists an edge between every pair of vertices, whose ab-
solute difference in indices is the edge weight. It is important
to minimize the reference cost in labeling.

Naively, we can construct the MST by leveraging the well-
known Prim’s algorithm to add vertices and edges in the
dense graph into a tree starting with the vertex 0. However,
the derived MST would have the shape of the chain like Fig-
ure 6 (top) instead of the binary tree. To tackle this problem,
we modify the Prim’s algorithm by skipping the addition of
vertices and edges that 1) cause the MST to have a depth
that is higher than a complete binary tree of N vertices, i.e.,
⌈log2(N +1)⌉ and 2) cause one vertex to have more than two
children. The resulting algorithm is equivalent to assigning
frame indices (from small to large) to vertices of a binary
tree via pre-order traversal. Intuitively, this algorithm greedily
minimizes the reference costs of both children of any vertex.
Theoretical analysis. Figure 6 (bottom) illustrates the de-
pendency graph with a binary tree and pre-order traversal.
Such a tree results in a reference depth (2) that is consider-
ably smaller than that of the chain while using only half the
reference cost of the one-hop tree, i.e., 6. In Figure 7, we
delve further into how the reference cost and depth change
as the number of frames in a GOP increases. The number
of frames is expressed as a function of the full binary tree
depth D. Our analysis reveals that the binary tree strikes a
better balance between the frame rate (reference depth) and
the coding efficiency (reference cost) and displays a more
pronounced advantage when processing more frames.

3.1.2 Frame Iterator

With the dependency graph, a straightforward way is to in-
clude all frames of a GOP in it. However, a GOP can have
a large number of frames, which requires processing more
frames in parallel than a system can afford. To scale to arbi-
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trary GOP sizes, we process frames in a GOP on a per-tree
basis, as illustrated in Figure 8, where each tree is processed
with three steps: slice, map, and iterate.

P2 P3 P4 P5P1 P6 P7I P8 P9 P10 P11
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P1 P4

P2 P3 P5 P6

P6

P7 P10

P8 P9 P11
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1. Slice subGOP subGOP

3. Iterate(#1,#2)

Figure 8: Video processing on a per-tree basis.

Slice: Frames within a GOP (excluding the I frame) are sliced
into non-overlapping, consecutive subGOPs, each contain-
ing N sequential frames. Here, N is the subGOP size, which
equals the number of non-root vertices in a full binary tree.
For instance, full binary trees of depth D = 2,3,4 correspond
to subGOP sizes N = 2D −2 = 2,6,14.
Map: Frames in each subGOP are mapped to the binary
tree via pre-order traversal as shown in Figure 8. The root
of a tree is the latest I or P frame preceding a subGOP. The
reference of each frame is determined as the frame at its parent
vertex. It is worth noting that the last subGOP might not have
enough frames to fill all vertices in the full binary tree, which
marginally affects the functionality of our approach.
Iterate: To achieve parallelism in the video encoding/decod-
ing, the frames are processed level by level iteratively in the
tree. The processing of frames at the same level of the tree
is parallelized. For example, the codec first processes frames
that reference the tree root (I frame), such as P1 and P4 in
Figure 8. Then, it processes frames (P2, P3, P5, and P6) that
reference the previously processed frames (P1 and P4).
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Figure 9: Design of LFR Learned Codec.

LFR learned codec (Figure 9) replaces motion estimation
in canonical learned codec (Figure 3) with highly-parallelized
motion estimation (§3.2.1) and encodes/decodes motion/resid-
ual of one or multiple frames via elastic compression compo-
nent (§3.2.2).

3.2.1 Highly-parallelized Motion Estimation

In Figure 8, the processing of frames at the lower level (e.g.,
two frames at level 1 of the tree) are less parallelized than
those at the higher level (e.g., four frames at level 2), which
hinders the decoding speed. The fundamental problem is that
DNN modules in the learned codec, i.e., motion estimation
and compensation, rely on the reconstructed version of the
reference frame(s).
Frame approximation. The key intuitions are that 1) the raw
and reconstructed frames are similar and 2) motion estimation
is performed only on the encoder. Therefore, it is possible
to approximate (replace) the reconstructed reference frames
with the raw reference frames with the same index in motion
estimation. As such, the processing of all frames (e.g., frames
P1, P2, ..., and P6 in Figure 8), relying on only raw frames,
are parallelized. Such approximation allows us to speed up
motion estimation, motion encoder, and motion decoder. More
importantly, the coding efficiency is negligibly affected due
to the frame similarity.

3.2.2 Elastic Compression Component
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As shown in Figure 10, the elastic compression component
(ECC) comprises an encoder and a decoder. Following ex-
isting efforts on learned codecs [39, 63], the encoder utilizes
a convolutional neural network (CNN) to transform the raw
motions or residuals, into high-level features. Then, quanti-
zation and entropy encoding [58] are performed to compress
quantized features into more compact bitstreams. In reverse,
the decoder adopts entropy decoding to convert the bitstreams
to quantized features, and a CNN to transform the features to
the same shape as the raw motions or residuals. However, as
the difference between a frame and its reference is increased
by LFR, the coding efficiency could be compromised.
Inter-frame layer. We make two key observations. First,
LFR expands the frame dimension of the input to DNN mod-
ules from one to multiple. The expanded dimension presents
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inter-frame dependency in video coding that does not ex-
ist in existing learned codecs [38, 39, 63]. Such dependency
presents an opportunity to enhance coding efficiency. Second,
the self-attention module [55] is a generic learner of depen-
dency adopted in numerous video-related tasks [9, 26, 44, 46]
for spatial and temporal dependency.

Based on these observations, we design the inter-frame
layer (IFL) that leverages inter-frame dependency in LFR
with self-attention. The IFL involves sequentially connected
sub-inter-frame layers (subIFL). Each subIFL is constructed
with inter-frame, intra-frame, and feedforward blocks. Given
common practice, the IFL is placed after CNN in the encoder
and before CNN in the decoder.

The input dimension of the subIFL is F×C×H×W , where
F , C, H, and W represent the number of input frames, the
number of channels, and the height and width of the feature,
respectively. The output of the subIFL has the same dimen-
sion as its input. The inter-frame and intra-frame blocks ex-
ploit inter-frame and intra-frame dependency with a reshape
function and the multi-head Attention (Attn) [55]. The input
of Attn has three dimensions (batch× sequence× f eature),
which correlates data in the sequence dimension, with no
correlation along the batch dimension. We reshape the in-
put to shapes HW ×F ×C and F ×HW ×C for inter-frame
(F) and intra-frame (HW ) dependency, respectively. The last
block converts the input shape to BHW ×C and applies a
multi-layer perceptron (MLP) consisting of two linear neural
network layers to refine features.

3.3 Streaming Supports

We integrate our system into existing streaming infrastruc-
ture through bitrate-adaptive training (§3.3.1), frame rate
configuration (§3.3.2), and enhanced ABR algorithm (§3.3.3).

3.3.1 Bitrate-adaptative Training

To leverage ABR algorithms that require multiple bitrates of
the same segment, a learned codec must be configurable to
encode and decode videos at different compression levels,
which correspond to different trade-offs of bitrates and dis-
tortion. However, a typical learned codec cannot adjust the
trade-offs of bitrates and distortion as easily as traditional
codecs with the quantization parameter (QP) [52,57]. A naive
approach that prepares different versions of the codec of dif-
ferent compression levels is memory-consuming.
Compression-level embedding. To attain similar rate adapt-
ability with learned codecs, we adopt a compression-level
embedding approach [48]. In this approach, the compression
level is treated as an input, in addition to video frames, to the
learned codec. Specifically, multiple compression levels l = 1,
2, ..., are converted into one-hot vectors, spatially tiled, and
concatenated to the input of DNN modules. This approach al-
lows the trade-off of bitrates and distortion to be conveniently

adjusted by changing the input, without storing multiple ver-
sions of the codec. Meanwhile, this approach minimally de-
grades the coding efficiency compared to a canonically trained
learned codec.

3.3.2 Frame Rate Configuration

When working with a specific hardware platform, it is critical
to attain a targeted frame rate. For canonical learned codecs,
adjusting the frame rate may require compressing and retrain-
ing DNNs in the learned codec, which is time-consuming.
SubGOP probing. In LiFteR, this can be easily achieved by
configuring the subGOP size. Specifically, we probe the target
hardware with the LiFteR decoder using different subGOP
sizes. Based on the frame rates achieved at various subGOP
sizes, we select the smallest one that surpasses the targeted
frame rate, e.g., 30 fps. Choosing a subGOP size than what
is needed is not recommended, as it would consume more
GPU resources while offering only marginal enhancements
to coding efficiency (Figure 18).

3.3.3 Enhanced ABR Algorithm

The buffer level is a critical factor in the decision-making pro-
cess of adaptive bitrate (ABR) algorithms, such as BOLA [51],
which adjusts video quality according to network conditions.
In video streaming systems, the buffer level represents the
duration of video frames in the playback buffer. A low buffer
level indicates low network bandwidth, causing the ABR al-
gorithm to download segments of lower bitrates to avoid re-
buffering. Conversely, a higher buffer level triggers the ABR
algorithm to download segments of higher bitrates. However,
for learned codecs, the buffer level does not accurately re-
flect network conditions and may mislead ABR algorithms
for learned codecs. For instance, when the decoding rate of
frames equals the consumption rate, the playback buffer re-
mains almost empty, as each decoded frame is immediately
consumed. This is likely to happen with learned codecs whose
decoding rate is more comparable to the consumption rate
than traditional codecs. As the buffer level is low, the ABR al-
gorithm may download segments of low bitrates, even though
the network bandwidth is abundant, leading to wastage.
Virtual buffer. To tackle this issue, we introduce the virtual
buffer. It captures the length of received but unwatched seg-
ments, irrespective of whether they are stored in the replay
buffer. By utilizing the level of the virtual buffer instead of the
actual buffer level in the ABR algorithm, we avoid potential
conservative decision-making by the ABR algorithm.

4 Implementation

Model choices and streaming configuration. We implement
motion estimation using convolutional neural networks [47]
and motion compensation using a warping function and an
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interpolation network [39]. As per [9], we configure the atten-
tion mechanism’s number of heads and each head’s channel
number to 8 and 64, respectively, and the number of sub-
inter-frame dependencies (subIFL) to 12. During training,
we set the subGOP size to six, which we empirically find to
be sufficient for the high coding efficiency and frame rate of
LiFteR. We utilize BOLA [51], an industrial-level ABR algo-
rithm [19], as the ABR algorithm in LiFteR, which decides
the bitrate every time the system tries to download a segment.
The segment and GOP size are set to 5s following [21].
Training. We jointly optimize our model using the Vimeo-
90k dataset [60]. In this dataset, every training sample consists
of seven images, with the first image being the I frame (k = 0)
and the remaining images being P frames (k = 1, ...K). K
corresponds to the number of P frames in a GOP during
training. The I frame is encoded and decoded using an image
codec, Better Portable Graphics (BPG) [7], while the learned
codec compresses the P frames on a per-tree basis. We scale
the training images’ resolution to 256 × 256. We use the
Adam optimizer [31] with a learning rate of 10−4, which is
reduced by a factor of 10 after convergence until 10−6. Our
loss function L is defined as follows.

L =
K

∑
k=1

E
l
[λlD(xk, x̂k

l)+ v̂k
l + r̂k

l ]. (2)

We set λl = 256,512,1024,2048,4096,8192,16384 at differ-
ent compression levels l = 0,1, ...,6, which cover bitrates
from 1 Mbps to 16 Mbps. The estimated bits per pixel (bpp)
of the motion or residual for the compression level l is de-
noted by v̂k

l or r̂k
l . The distortion, measured by mean square

error (MSE), between the raw frame xk and the reconstructed
frame at compression level l, x̂k

l , is denoted by D(xk, x̂k
l). In

training, the compression level l in each sample is randomly
and iteratively generated, following ELFVC [48].

5 Evaluation

We evaluate LiFteR regarding streaming performance, coding
efficiency, and adaptability. Our highlights are

1. LiFteR achieves superior QoE compared with systems
using learned and traditional codecs across different
GPUs and network conditions (Figures 11-14).

2. LiFteR improves the rate-distortion trade-off of learned
and traditional codecs (Figure 16).

3. LiFteR maintains a real-time frame rate across differ-
ent GPUs (Figure 15) and improves the frame rate by
adapting the subGOP size (Figure 17).

4. The component designs of LiFteR show effectiveness in
contributing to the overall gain (Figures 18-22).

5.1 Methodology

Hardware setup. We conducted our experiments on Linux
desktops featuring various NVIDIA GeForce GPUs and
CPUs, which are listed in Table 1. The learned codecs are
executed on all three Linux desktops, “1080”, “2080”, and
“3090”. Although the traditional codecs always run on “2080”,
the choice of the three hardware platforms has a minimal
impact on the QoE for them.

Table 1: Hardware setup.

Name GPU CPU
1080 GTX 1080 Ti Intel Core i9 @ 2.90GHz
2080 RTX 2080 Ti Intel Core i7 @ 3.60GHz
3090 RTX 3090 Ti AMD Ryzen 9 @ 4.95GHz

Network traces. We use network traces from FCC [23], ran-
domly selecting 1,000 traces from two tests conducted for
“video streaming” and “http get”. These traces represent a
range of diverse network scenarios. The “video streaming”
and “http get” traces have an average bandwidth of 3.9 Mbps
and 15.8 Mbps, respectively, indicating limited and adequate
bandwidth.
Video datasets. We merged two video datasets, UVG [42]
and MCL-JCV [56]. This unified dataset consists of 37 videos
with a resolution of 2K, operating at 30 frames per second
with a total runtime of around 5 minutes.
Baselines. In our evaluation, we compare LiFteR with video
streaming systems that use state-of-the-art learned codecs
(DVC [39] and RLVC [63]) and traditional codecs (x264 [57]
and x265 [52]), all employing BOLA for rate adaptation with
the same GOP and segment size as LiFteR. To test the tradi-
tional codecs, we use the FFmpeg [54] implementation and
configure each codec into three modes: veryfast, medium,
and veryslow. These modes are denoted by x264-veryfast
(x264f), x264-medium (x264m), x264-veryslow (x264s),
x265-veryfast (x265f), x265-medium (x265m), and x265-
veryslow (x265s). Commands for the different modes can
be found in Appendix A. To optimize PSNR, DVC and RLVC
are configured in the same way as LiFteR. To ensure a fair
evaluation, we encode videos for all baseline systems into
seven bitrates, covering a range that is comparable to LiFteR’s
videos. Note that there are learned codecs [2, 48] that adopt
alternate designs of motion estimation and compensation in-
stead of that of DVC, RLVC, and ours, which are not included
in the evaluation for fairness. However, as they still rely on
TFR, we claim the performance gain achieved with LFR is
applicable to them.

5.2 End-to-end performance

End-to-end QoE. Figures 11 and 12 illustrate that the over-
all QoE of LiFteR outperforms other baselines on network
traces with limited (“video stream”) and adequate (“http
get”) bandwidth, respectively. The QoE metric is calculated
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Figure 11: LiFteR shows consistent advantages in QoE across different hardware on the “video stream” traces.
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Figure 12: LiFteR demonstrates consistent advantages in QoE across different hardware on the “http get” traces.
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Figure 13: LiFteR’s normalized QoE is 1.5%-23.8% and 5%-10.3% higher than the best-performing learned and traditional
approaches, respectively, with limited bandwidth (“video stream” traces).
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Figure 14: LiFteR demonstrates 4.5%-23.2% and 9.6%-19.7% improvements in normalized QoE than the best-performing
learned and traditional approaches, respectively, with adequate bandwidth (on “http get” traces).

based on Equation 1, normalized per hardware and trace, with
the lowest and highest values mapped to 0 and 1. On the
“video stream” traces with limited bandwidth, LiFteR’s nor-
malized QoE is 1.5%-23.8% and 5%-10.3% higher than the
best-performing learned and traditional streaming systems,
respectively (Figure 13(a)). On the “http get” traces with ade-
quate bandwidth, the advantages in normalized QoE become
4.5%-23.2% and 9.6%-19.7%, respectively (Figure 14(a)),
indicating that LiFteR better utilizes adequate bandwidth than
other approaches. The performance of DVC and RLVC is

significantly impacted by the hardware platform. DVC has
the second-best performance on “2080” but one of the worst
performances on “1080”, whereas RLVC has the second-best
performance on “3090” but the worst performance on “1080”
and “2080”. In contrast, LiFteR performs well on different
hardware consistently.

QoE breakdown. To improve visualization, the metrics of
video quality and rebuffer rate were normalized per hardware
and trace, with the lowest and highest values being mapped
to 0 and 1, respectively. In Figure 13(b) and Figure 14(b), the
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Figure 15: LiFteR decodes faster
than other learned codecs.
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video quality of DVC and RLVC is mostly better than others
because their virtual buffers are consumed slower or increas-
ing, resulting in the ABR algorithm downloading segments
with higher bitrates. Regarding the rebuffer rate (Figure 13(c)
and Figure 14(c)), LiFteR significantly outperforms DVC and
RLVC due to its real-time frame rate (Figure 15). For high-
end hardware like NVIDIA RTX 3090 Ti, the rebuffer rate of
LiFteR is lightly above others because it tends to wait for bit-
streams of several frames before parallel processing. It causes
rebuffering more easily than learned codecs with TFR (DVC
and RLVC), which plays frames immediately after receiving
them. Although this downside is outweighed by the bene-
fits of LiFteR’s superior frame rates on low-end hardware,
it becomes noticeable for high-end hardware. Nevertheless,
LiFteR’s overall QoE is better than others due to its superior
quality. We also notice a gap in rebuffer rate between our
system and traditional systems, particularly on less power-
ful hardware. The reason is primarily the longer decoding
latency of LiFteR than traditional codecs. It causes LiFteR
to take more time on average to display the first frame after
rebuffering. Nevertheless, the subsequent frames in LiFteR
do not experience any additional delays. As a result, the QoE
of LiFteR is not significantly affected by this fact.

Frame rate. In Figure 15, we compare the frame rates of
systems using learned codecs on different GPUs and systems
using traditional codecs on a CPU. LiFteR achieves consis-
tent real-time frame rates across different hardware platforms.
However, DVC and RLVC demonstrate worse frame rates
than LiFteR on low-end hardware, such as “1080” and “2080”.
Despite optimizations in LiFteR, it does not outperform tradi-
tional video codecs, which are heavily engineered in speed.

Compression performance. In Figure 16, it is evident that
LiFteR outperforms other baselines in terms of coding effi-
ciency. Among the traditional systems, x265-veryslow per-
forms the best, achieving a PSNR of 38.20 dB at 0.59 bpp.
However, LiFteR achieves the same PSNR with less than half
the bandwidth usage, requiring only 0.28 bpp. In comparison,
the best-performing learned approach, RLVC, needs 0.39 bpp
to achieve a PSNR of 38.50 dB, while LiFteR achieves a su-
perior PSNR of 39.12 dB at the same bpp. LiFteR’s superior
coding efficiency stems from (i) the inter-frame dependency
presented by LFR at the cost of increased GPU utilization,
and (ii) ECC (§3.2.2), which effectively captures such de-

pendency via the self-attention mechanism. These factors
mitigate and outweigh the negative impact of the LFR video
dispatcher (§3.1) and highly-parallelized motion estimation
(§3.2.1), which potentially widen the gap between a frame
and its reference.
Adaptability of LiFteR. LiFteR has the unique feature of
adapting the subGOP size to achieve varying speeds. We eval-
uated LiFteR’s performance across different subGOP sizes,
including 2, 6, 14, and 30, corresponding to the full binary
tree depths of 2, 3, 4, and 5, respectively. We also included a
special case, “subGOP=1”, representing LiFteR processing
with TFR, similar to DVC and RLVC. In Figure 17, we can
observe the frame rate of LiFteR as a function of the subGOP
size and compare it with other learned approaches processing
the same number of frames. The results indicate that LiFteR
improves its speed by 2-3.2× as the subGOP size increases,
while the other learned approaches’ speed remains almost
unchanged. It is worth noting that there is a slight increase in
frame rates of other learned approaches. The reason is that the
GPU is relatively slower when performing the first forward
propagation. Then, it improves and gradually stabilizes for
subsequent forward propagations. As a result, even if these
approaches process frames one by one with TFR, their speed
is slightly increased when the number of frames increases.

Figure 18 compares LiFteR’s coding efficiency at different
subGOP sizes. Initially, LiFteR is suboptimal when the sub-
GOP size is 1 or 2. We speculate the time dimension of the
input is not large enough to benefit from ECC for these small
subGOP sizes. As the subGOP size increases, the coding ef-
ficiency improves and stabilizes. This result also indicates
LiFteR’s ability to adapt to larger subGOP sizes (14 and 30)
than what it is trained with (6) with noticeable degradation.

5.3 Design Analysis

Impact of dependency graph and ECC. The dependency
graph and ECC are the two key designs in LiFteR. To demon-
strate their significance via comparison, we introduced three
alternative designs, in addition to our original design (“De-
fault”): 1) “w/o IFL”: eliminating inter-frame dependency
from the learned codec, i.e., removing IFL, 2) “Chain”: sub-
stituting the binary tree in the dependency graph with a chain,
and 3) “One-hop”: substituting the binary tree in the depen-
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Figure 22: LiFteR’s quality is more stable than others.
dency graph with a one-hop tree. We examine the impact of
each design on coding efficiency and frame rate. For coding
efficiency, Figure 21(a) shows both “Chain” and “One-hop”
modes cause a PSNR drop of approximately 0.5 dB at the
same bpp, compared to “Default”. Additionally, the “w/o IFL”
mode experiences a more significant loss of coding efficiency
than the “Default” mode, as its PSNR drops by around one
dB at the same bpp. These results highlight the importance
of the combination of binary tree and inter-frame dependency
in achieving satisfactory coding efficiency. Regarding frame
rate, the “Default” mode has roughly twice the frame rate of
the “Chain” mode, demonstrating a significant advantage of
the binary tree. The “One-hop” mode exhibits a similar frame
rate as the “Default” mode, indicating that is it not necessary
to parallelize the processing of all frames to achieve substan-
tial decode speed improvement. It is also found that the “w/o
IFL” and “Default” modes have similar frame rates, which
suggests that the inclusion of the inter-frame dependency has
negligible impact on the frame rate. Overall, the binary tree
and the leverage of inter-frame dependency strike the optimal
balance of coding efficiency and frame rate for LiFteR.
Impact of the virtual buffer. To illustrate the significance
of the virtual buffer, we remove it from LiFteR and perform
streaming experiments with the “1080” hardware on two net-
work traces. Figure 23 reports the average normalized QoE,
video quality, and rebuffer rate. We observe a decline in both
the learned approaches’ QoE and video quality. Even when
the bandwidth condition changes from limited to adequate,
the quality and QoE of the learned approaches do not im-
prove as significantly as the traditional approaches. This is
because, without the virtual buffer, the real buffer in learned
approaches remains consistently low, causing the ABR algo-
rithm to download low-quality segments, irrespective of the
bandwidth condition. Additionally, the downloaded segments
have low bitrates, so the contrast in rebuffer rates between

traditional and learned approaches is less pronounced than in
Figure 13(c) and Figure 14(c).

5.4 Micro Benchmark
Resource allocation. Time (computation time) and space
(bitstream size) are two critical resources for learned codecs.
We analyze the allocation of these resources in our approach,
DVC, and RLVC using the UVG dataset. Figure 19 displays
the time spent on encoding and decoding across various hard-
ware. All approaches require more time for encoding than
decoding, as the decoder modules are a subset of the encoder
modules. Figure 20 illustrates the allocation of bits for mo-
tions and residuals over λ values of 256, 512, 1024, and 2048.
We observe that our approach allocates a higher percentage
of bits to the residual bitstream than the other approaches.
We speculate that this is because LFR increases errors in ME
and MC, thereby necessitating more bits in the residual to
compensate for those errors.
Error propagation. In Figure 22, we visualize the quality of
frames reconstructed by our codec, DVC, and RLVC, based
on their position in a seven-frame GOP using the UVG dataset
(λ = 256 and 2048). For our codec, we set the subGOP size to
6. As the temporal distance between P and I frames increases,
the PSNR of the P frame monotonically decreases for DVC
and RLVC, which could lead to degradation of QoE when
viewing frames distant from the I frame, particularly with
large GOP sizes. In contrast, our approach with LFR can
increase the PSNR of P frames even when their temporal
distance to the I frame increases, potentially allowing for a
smoother viewing experience.

6 Related Work

Video codecs. Video codec standards, such as MPEG-2 [33],
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Figure 23: Learned codecs do not outperform traditional codecs without the virtual buffer.

H.264 [57], and H.265 [52], rely on traditional handcrafted
methods. Due to recent advancements in deep learning, re-
searchers have started to replace operations in traditional
video codecs with DNNs [1, 6, 12, 16, 18, 37, 40, 47, 59].
DNNs can also serve as hints to assist codecs in video analyt-
ics [13,14,22,36]. Besides, researchers have proposed learned
codecs built purely from DNNs [2, 25, 38, 39, 48, 62, 63]. An-
other category of learned approaches integrates DNN and
progressive coding [21]. However, all existing learned codecs
employ a TFR principle, suffering from slow decoding and
low QoE problems. LiFteR addresses the low frame rate prob-
lem in video streaming systems with learned codecs with
LFR. Further, LiFteR can be easily integrated into these TFR-
based learned codecs for improved decoding speed. Although
learned codecs with speed optimization like ELFVC [48] may
achieve near real-time performance, e.g., 30 fps, on certain
hardware, they cannot meet the real-time requirements when
the hardware degrades or the frame rate requirements increase
to 60 fps or 120 fps. In contrast, LiFteR flexibly handles these
variations by adapting the subGOP size.

Video streaming. Enhancing the quality of video streaming
has been the focus of numerous techniques, typically falling
into one of three categories: push-based, pull-based, and video
super-resolution (VSR). Push-based strategies analyze play-
back statistics from clients and push the appropriate bitrate
of videos to each client from a central server. Several stud-
ies [8, 24, 28, 35] have investigated the effectiveness of these
approaches. In contrast, pull-based strategies guide clients to
download videos of appropriate bitrates from the server based
on the predicted bandwidth or buffer level. Several studies,
such as [41, 51, 61, 65, 67, 68], have explored the efficacy of
these strategies. VSR techniques can also be applied to im-
prove video streaming quality, where super-resolution models
are used to increase the video resolution of downloaded seg-
ments, enhancing QoE [30, 64, 66]. Our approach innovates
the video codecs of video streaming systems and can be in-
tegrated into these orthogonal designs without requiring any
changes to the network protocol or application details.

Parallelism in video codec. Parallel processing techniques
have been widely exploited in video compression to circum-
vent the speed limit of processors. There have been sophis-
ticated hardware designs that parallelize vector quantization
[43,45], discrete cosine transform [17,29,53], variable length
coding [11], and motion estimation [15, 27, 49]. Software-

based techniques are categorized into spatial and temporal
parallelism. Spatial parallelism [4, 5, 32] processes different
regions in a frame concurrently. Temporal parallelism [3, 50]
allocates several video frames to each processor. In contrast
to these works focusing on parallelism at the GOP level, we
allow parallelism at the frame level.

7 Discussion

Hardware requirements. As LiFteR trades the GPU uti-
lization for its frame rate via LFR, the GPU memory might
limit its decode speed. However, our experiments have demon-
strated that everyday GPUs are sufficient for LiFteR to achieve
a frame rate over 30 fps (Figure 15). It is also feasible to fur-
ther reduce the hardware requirements via neural network
compression [10, 34], which is orthogonal to our approach.
Applicable scenarios. As shown in Figure 19, the encoding
time of LiFteR, like other learned codecs, is higher than that
of decoding. However, in video-on-demand (VoD) streaming,
the encoding speed is not critical since video segments are en-
coded before streaming. Therefore, LiFteR is highly suitable
in the VoD streaming scenario.

8 Conclusion

Tight frame referencing has a long history of being adopted
in video codecs. However, it is proven ineffective in video
streaming with learned codecs, causing a low frame rate. To
overcome its limitation, we design LiFteR, a video stream-
ing system that employs a learned codec with loose frame
referencing. Our experiments show that LiFteR delivers supe-
rior QoE compared to systems using existing traditional and
learned codecs consistently.
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A H.264 and H.265 Commands

We denote the frame width, the frame height, the frame rate,
the GOP size, the compression quality, and the output file-
name as w, h, f ps, GOP, Q, and out put. The command for
compressing a video from Pipe using ‘veryfast’, ‘medium’
and ‘veryslow’ modes of x264 are listed as follows, respec-
tively.

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx264 -pix_fmt yuv420p -preset veryfast -tune
zerolatency -crf Q -g GOP -bf 2 -b_strategy 0 -sc_threshold 0
-loglevel debug output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx264 -pix_fmt yuv420p -preset medium -crf
Q -g GOP -bf 2 -b_strategy 0 -sc_threshold 0 -loglevel debug
output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx264 -pix_fmt yuv420p -preset veryslow -crf
Q -g GOP -bf 2 -b_strategy 0 -sc_threshold 0 -loglevel debug
output

The command for compressing a video from Pipe using
‘veryfast’, ‘medium’ and ‘veryslow’ modes of x265 are listed
as follows, respectively.

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps -i
pipe: -vcodec libx265 -pix_fmt yuv420p -preset veryfast -tune
zerolatency -x265-params "crf=Q:keyint=GOP:verbose=1"
output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps
-i pipe: -vcodec libx265 -pix_fmt yuv420p -preset medium
-x265-params "crf=Q:keyint=GOP:verbose=1" output

ffmpeg -y -s wxh -pixel_format bgr24 -f rawvideo -r fps
-i pipe: -vcodec libx265 -pix_fmt yuv420p -preset veryslow
-x265-params "crf=Q:keyint=GOP:verbose=1" output
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