
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

A High-Performance Design, Implementation,
Deployment, and Evaluation of The Slim Fly Network
Nils Blach and Maciej Besta, ETH Zürich; Daniele De Sensi, ETH Zürich and Sapienza

University of Rome; Jens Domke, RIKEN Center for Computational Science (R-CCS);
Hussein Harake, Swiss National Supercomputing Centre (CSCS); Shigang Li, ETH Zürich

and BUPT, Beijing; Patrick Iff, ETH Zürich; Marek Konieczny, AGH-UST;
Kartik Lakhotia, Intel Labs; Ales Kubicek and Marcel Ferrari, ETH Zürich;

Fabrizio Petrini, Intel Labs; Torsten Hoefler, ETH Zürich

https://www.usenix.org/conference/nsdi24/presentation/blach

A High-Performance Design, Implementation, Deployment,
and Evaluation of The Slim Fly Network

Nils Blach1, Maciej Besta1, Daniele De Sensi1,2, Jens Domke3,
Hussein Harake5, Shigang Li1,4, Patrick Iff1, Marek Konieczny6, Kartik Lakhotia7,

Ales Kubicek1, Marcel Ferrari1, Fabrizio Petrini7, Torsten Hoefler1

1 ETH Zürich 2 Sapienza University of Rome 3 RIKEN Center for Computational Science (R-CCS)
4 BUPT, Beijing 5 Swiss National Supercomputing Centre (CSCS) 6 AGH-UST 7 Intel Labs

{ nils.blach, maciej.besta, htor } @ inf.ethz.ch

Orange IB cables:

Optical cables for inter-rack

InfiniBand connections.

Each bunch contains 10 links

Black IB cables:

Copper cables for intra-rack

InfiniBand connections

Colored Ethernet cables:

The blue, white and green

cables are Ethernet cables

Figure 1: First real-world deployment of the Slim Fly topology. The left-most rack displays labels detailing the arrangement of various components such as
InfiniBand (IB) switches, compute nodes and Ethernet switches. Two types of IB links are present: black copper links for intra-rack connections and orange
optical fiber links for inter-rack connections. The orange lines above the racks represent bundles of ten optical fiber links each. Additionally, blue, white and
green (arbitrary color scheme) Ethernet cables are visible within the racks, which establish the cluster management network together with the Ethernet switches.

Abstract
Novel low-diameter network topologies such as Slim Fly (SF)
offer significant cost and power advantages over the estab-
lished Fat Tree, Clos, or Dragonfly. To spearhead the adoption
of low-diameter networks, we design, implement, deploy, and
evaluate the first real-world SF installation. We focus on de-
ployment, management, and operational aspects of our test
cluster with 200 servers and carefully analyze performance.
We demonstrate techniques for simple cabling and cabling
validation as well as a novel high-performance routing archi-
tecture for InfiniBand-based low-diameter topologies. Our
real-world benchmarks show SF’s strong performance for
many modern workloads such as deep neural network train-
ing, graph analytics, or linear algebra kernels. SF outperforms
non-blocking Fat Trees in scalability while offering compa-
rable or better performance and lower cost for large network
sizes. Our work can facilitate deploying SF while the associ-
ated (open-source)1 routing architecture is fully portable and
applicable to accelerate any low-diameter interconnect.
1https://github.com/spcl/opensm

1 INTRODUCTION

Low-diameter2 network topologies such as Slim Fly (SF) [1]
have gained significant traction during the last decade. Initial
designs in that line of work, Dragonfly (DF) [2] and Flattened
Butterfly [3], both with diameter three, focused on improv-
ing latency and physical layout. After that, SF lowered the
diameter to two, based on an observation that low-diameter
does not only improve performance by reducing end-to-end
latencies, but it also reduces cost and power consumption.
This is because, when the diameter is lower, packets on aver-
age traverse fewer switches, switch buffers, and links. Thus,
fewer links and buffers are needed to construct the network
(for a fixed bandwidth), and less dynamic power is needed for
moving the packets through the network.

SF’s construction costs, consumed power, and latency are
lower than those of Clos and Fat Tree (FT) by respectively,
≈25-30%, ≈25-30%, and ≈50% [1]. However, SF has still
not seen a real physical deployment, and it is uncertain how to

2Network diameter is the maximum distance between any two switches.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1025

https://github.com/spcl/opensm

deploy SF in practice. To spearhead the practical development
of low-diameter networks and show the state-of-the-practice,
we design, implement, deploy, and evaluate the first SF instal-
lation that includes switches and endpoints, as shown in Fig. 1.
We discuss the encountered challenges, and we show that the
construction process is straightforward and comparable to
established designs such as Clos.

Moreover, to maximize performance benefits from using
SF, we design and implement a novel high-performance mul-
tipath routing scheme for general low-diameter networks, and
we install and use it with the deployed SF cluster. Our rout-
ing shows superior performance over the state-of-the-art, and
it is independent of the underlying topology details and of
the interconnect architecture. Thus, it could be portably used
on different topologies (e.g., Xpander [4]) and on different
architectures (e.g., Ethernet or InfiniBand [5]).

The equipment available to us is based on the InfiniBand
(IB) architecture [5]. IB enables a high-speed switched fabric
with hardware (HW) support for remote direct memory ac-
cess (RDMA) [6, 7]. IB is widely used in high-performance
systems, for example four out of ten most powerful systems in
the Top500 list (Jun. 2023 issue) [8], manufactured by IBM,
Nvidia, and Atos, use the IB interconnect. We use our routing
protocol with the IB networking stack; our whole implemen-
tation is publicly available to foster future research into multi-
path routing. Importantly, we provide the first multipathing
for IB that can use arbitrary paths (including non-minimal and
disjoint ones) and that is independent of the structure details
of the underlying network [9, 10].

In our evaluation, we consider a broad range of
communication-intense applications that represent traditional
dense computations (like physics simulations), sparse graph
processing [11, 12, 13, 14, 15, 16], deep neural network (DNN)
training [17, 18, 19], and a number of microbenchmarks test-
ing particular popular communication patterns. Our results
showcase that SF delivers high performance while achieving
optimal, or near optimal scalability, which directly translates
to low construction costs. To further reinforce these outcomes,
we also conduct a comprehensive comparison between SF and
a non-blocking FT that we deploy using the same hardware.
Here, SF offers comparable or better performance to FT in
a majority of used applications. Simultaneously, its superior
scalability ensures up to 50% cost improvements over FT,
particularly for large installation sizes [1].

2 NETWORK MODEL & TOPOLOGIES
We start with fundamental concepts and notation. We model
a network as an undirected graph G = (V,E); V is a set of
switches3 (|V |= Nr) and E is a set of full-duplex inter-switch
cables (we do not model endpoints explicitly). A network
has N endpoints, with p endpoints attached to each switch

3We abstract away HW details and denote switches and routers with a common term
“switch”. However, we use a term “routing” when referring to determining a path,
because IB switches in our physical implementation have routing capabilities.

(concentration). We also use the term node to refer to either a
switch or any of its endpoints, when the discussion is generic.
Total port count in a switch (radix) is k = k′+ p, where k′

is the number of channels from a switch to other switches
(network radix). The diameter is D. All the symbols are listed
in Tab. 1.

Table 1: The most important symbols used in this work.
V,E Sets of vertices/edges (switches/links, V = {0, . . . ,Nr −1}).
N The number of endpoints in the network.
Nr The number of switches in the network (Nr = |V |).
p The number of endpoints attached to a switch.
k′ The number of channels from a switch to other switches.
k Switch radix (k = k′+ p).
D,d Network diameter and the average path length.

We overview SF’s structure in Fig. 2, and compare it to a
3–level Fat Tree with diameter four, as they are widely used
in medium and large installations [20, 21], and to a diameter-
3 Dragonfly, which has also been deployed in practice [22,
23]. SF has >50% fewer switches and >55% fewer cables
than a full-bandwidth non-blocking FT of a comparable size.
Second, SF’s switches form groups that are not necessarily
fully connected; FT’s edge and aggregation switches form
pods, DF’s groups are fully connected. Third, both SF and
DF are direct topologies (each switch is attached to some
number of servers), while in a FT, only edge switches attach
to servers.

3 FIRST AT-SCALE SF INSTALLATION
We start by discussing the deployment of the first SF cluster,
illustrating the simplicity of its construction and arguing why
deploying other SFs would also be straightforward. The clus-
ter is hosted by the Swiss National Supercomputing Centre
(CSCS).

3.1 Deployed Hardware Equipment
We use 50 36-port, 56Gb/s IB SX6036 switches and 200 com-
pute endpoints. Each endpoint hosts two 20-core Intel Xeon
CPUs and 32 GiB RAM, split equally in a Non-Uniform
Memory Access (NUMA) configuration, and a single Mel-
lanox ConnectX-3 MT4099 HCA, which implements the IB
Architecture Specification Volume 1, Release 1.2. Copper
and optical cables are used for intra and inter-rack switch
connections, respectively.

3.2 Topology Structure and Construction
We use a SF based on the graphs by McKay, Miller, and
Širáň [24]. We outline its structure, the details are in Ap-
pendix A and in the original SF paper [1]. The complete SF
installation is shown in Fig. 1 with a highlighted view of the
group structure in Fig. 3. One first chooses a prime power
q; q is an input parameter that determines the whole topol-
ogy structure. For example, the number of vertices (switches)
is Nr = 2q2 and the network radix k′ = 3q−δ

2 . In our case,
Nr = 50, thus q = 5 and k′ = 7 (every switch connects to
7 other switches). Interestingly, this construction forms the

1026 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

diameter: 2

A pod A switch

diameter: 4 Slim Fly (SF)Fat Tree (FT)

diameter: 3

Dragonfly (DF)
Core

routers

A bunch of cables
between each pod
and core switches

A group (fully
connected)

A group
(not necessarily
fully connected)

A group
becomes

a rack
A group
becomes

a rack

A pod
becomes

a rack

Core switches
form a rack

One cable
between any
two groups

A bunch
of cables
between
any two
groups

Only edge
switches attach

to endpoints

Many
endpoints
attached

50% ports connect
to endpoints, but

only in edge switches
Moderate
endpoint

concentration

Figure 2: The structure of a small example Fat Tree (FT), Dragonfly (DF), and Slim Fly (SF), and the corresponding installations. Each topology comes with a
modular design, where switches form groups (SF, DF) or pods (FT). Such groups can become racks in a physical installation.

Each switch
has p = 4
endpoints
attached

Each switch has
k' = 7 links to
other switches

Each rack
consists of

subgroups 0
and 1

Each subgroup 0
has identical intra

connections

There are q = 5 links
between subgroups

within each rack

Each rack has
q = 5 switches

Endpoints in
subgroup 0

Endpoints in
subgroup 1

Switches in
subgroup 0

Switches in
subgroup 1

Ports to
endpoints

Ports to
switches

Figure 3: Internal organization of a rack. The image displays a side-by-side
comparison of a theoretical diagram and an actual photograph of a single rack
in the cluster. The rack consists of two distinct subgroups, each housing 5 IB
switches and 40 compute nodes (endpoints). Each IB switch is connected to
4 endpoints and 7 other IB switches.

famous Hoffman-Singleton graph [25, 26], which is opti-
mal with respect to the Moore Bound [27]. Finally, one uses
p =

⌈
k′
2

⌉
endpoints connected to each switch to ensure full

global bandwidth [1]. In our case, p = 4. Note that, while the
switch port count in the considered SF is k′+ p = 11 (and
11-port switches would be the appropriate selection when
building the SF from scratch), we use 36-port switches be-
cause this has been the only HW equipment available to us.

The whole installation consists of five identical racks. Ev-
ery two racks are connected with the same number of 2q = 10
cables. There are 2q = 10 switches in each rack. Each rack
consists of two subgroups, subgroup 0 and subgroup 1. All

subgroups 0 and all subgroups 1 are identical, but a subgroup 0
and 1 are usually different. We place switches from sub-
group 0, together with their attached endpoints, at the top of
each rack; subgroup 1 goes to the bottom of the rack. The de-
tails on how any two switches are connected is determined by
the underlying algebraic structure of the SF topology. We of-
fer full details in Appendix A, with Appendix A.3 explaining
the three simple equations that determine switch connectivity;
here, we stress that the deployment is straightforward.

3.3 Deployment Efficiency and Ease
To facilitate deployment, we develop scripts that outline both
intra- and inter-rack connections. The output of these scripts
can be used to create diagrams for every rack pair to ensure
a smooth wiring process. Thanks to the algebraic structure
of the SF topology, such descriptions for any SF can be au-
tomatically generated, providing concrete port-to-port link
descriptions and rack placements for each switch. We illus-
trate an example diagram of connections between racks 0
and 1, and between 0 and 2, that was created based on these
generated descriptions, in Fig. 4.

We use our scripts as a basis of an efficient 3-step wiring
process. First, we wire intra-subgroup connections; they are
identical across all racks for each of the two subgroups. The
second step consists of connecting each switch from sub-
group 0 to its neighboring switches in subgroup 1 within the
same rack. As the subgroups are of equal size, an incorrectly
connected pair will result in easily recognizable errors, which
break that symmetry. Lastly, the inter-rack connections are es-
tablished. Hereby, the fact that each switch in a rack uses the
same port to connect to the switches in another rack, enables
straightforward connection of rack-pairs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1027

The simplicity of the wiring process can mainly be at-
tributed to the scalable three-step approach, which is equally
applicable to larger SF topologies, enabling the efficient de-
ployment of SF clusters. Overall, stripping the previous sys-
tem and executing the 3-step wiring process were completed
within 3 days by a team of two.

0.0.0

8 9 10 11

0.0.1

8 9 10 11

0.0.2

8 9 10 11

0.0.3

8 9 10 11

0.0.4

8 9 10 11

1.0.0

8 9 10 11

1.0.1

8 9 10 11

1.0.2

8 9 10 11

1.0.3

8 9 10 11

1.0.4

8 9 10 11

0.1.0

8 9 10 11

0.1.1

8 9 10 11

0.1.2

8 9 10 11

0.1.3

8 9 10 11

0.1.4

8 9 10 11

1.1.0

8 9 10 11

1.1.1

8 9 10 11

1.1.2

8 9 10 11

1.1.3

8 9 10 11

1.1.4

8 9 10 11

Rack 0 Rack 1

0.0.0

8 9 10 11

0.0.1

8 9 10 11

0.0.2

8 9 10 11

0.0.3

8 9 10 11

0.0.4

8 9 10 11

1.0.0

8 9 10 11

1.0.1

8 9 10 11

1.0.2

8 9 10 11

1.0.3

8 9 10 11

1.0.4

8 9 10 11

0.2.0

8 9 10 11

0.2.1

8 9 10 11

0.2.2

8 9 10 11

0.2.3

8 9 10 11

0.2.4

8 9 10 11

1.2.0

8 9 10 11

1.2.1

8 9 10 11

1.2.2

8 9 10 11

1.2.3

8 9 10 11

1.2.4

8 9 10 11

Rack 0 Rack 2

Figure 4: Illustration of the example diagrams created from the output
of our scripts, facilitating the cabling process. The diagrams show all the
inter-rack connections and the corresponding ports in switches. Each switch
is labeled using a triple (S,R, I), where S ∈ {0,1} indicates the subgroup
type, R ∈ {0, ...,4} indicates the rack, and I ∈ {0, ...,4} is the consecutive
switch ID within a rack/subgroup. Then, we only show ports 8–11; these
ports are used to connect racks. Ports 1–4 (for endpoints) and 5–7 (for intra-
rack switch-switch links) are omitted for clarity. The equations presented
in Appendix A.3 determine which switches are connected based on the
assigned labels.

3.4 Correctness Verification
We provide a set of scripts that ensure the correctness of the
cabling. These scripts utilize the auto-generated port-to-port
link descriptions and rack placements for each switch and
compare it with the output of ibnetdiscover, an IB com-
mand that performs fabric discovery. This allows us to not
only identify incorrectly wired cables and provide concrete
instructions on how to rectify mistakes, but also detect miss-
ing or broken links. These scripts could even be used on a
live cluster, while going through the wiring process, to imme-
diately identify and flag errors.

4 HIGH-PERFORMANCE MULTIPATHING
We now propose a novel high-performance multipath routing
protocol for low-diameter networks, which we use on the
described SF deployment. For this, we extend the recently
proposed FatPaths multipath routing protocol [28] so that it

A minimal path
(globally): 2 hops

Layer 1

Layer 2

FatPaths: layers as link subsets.

Acyclicity of layers restricts
layers' structure, there may be

large link overlap across layers

Layers define separate
forwarding trees for each node,

ensuring advantageous paths

Initial network: all the links. This work: layers as sets of paths.

Layer 0 (FatPaths and this work)
(solid links) (solid paths)

(dashed paths)(dashed links)
Layer 1

Layer 2

Almost-minimal paths: 3 hopsOnly minimal paths

Figure 5: Layered routing in FatPaths and in this work. Traffic is divided and
sent using different layers. Our scheme relaxes the requirement in FatPaths for
all layers to be trees, as in our scheme deadlock resolution is decoupled from
layer creation. This ensures more flexibility in developing layers, leading
to more throughput. Specifically, while in FatPaths, paths in different layers
often overlap (cf. Layer 1 and 2), our routing alleviates this issue and reduces
overlap/congestion and increases performance.

offers vastly superior throughput while still ensuring very low
latency.

4.1 Original FatPaths Routing in Slim Fly
In terms of path diversity, FT has multiple same-length min-
imal paths between any two edge switches. Thus, one often
uses ECMP [29] for multipath routing in FT. In SF (and
to some degree in DF [28]), there is usually only one mini-
mal path, but multiple “almost” minimal paths between any
switch pair. This makes it challenging to achieve high path
diversity in SF using ECMP. To alleviate this and to enable
non-minimal high-speed multipathing in SF, the FatPaths ar-
chitecture has recently been proposed [28]. FatPaths harnesses
the concept of layered routing [30, 31] for low-diameter net-
works. In layered routing, one first creates layers: subsets of
switch-switch links. Within one layer, one uses shortest-path
routing. However, as a layer does not contain all the links,
paths within this layer are usually non-minimal (in the global
sense). If two nodes4 want to communicate using multiple
paths, the sending node simply sends its data using paths re-
siding in different layers. Note that multipathing is orthogonal
to transport-level issues, and one can use different layers to
transfer different flows between two nodes, but also different
packets or flowlets within one flow [28]. In FatPaths, selecting
links (when constructing layers) is done with simple random
uniform sampling; a more elaborate scheme minimizing load
imbalance is also provided. Layered routing is summarized
in Fig. 5.

4.2 Proposed Multipath Routing: Summary
The central issue in layered routing is how to divide links
into layers. We aim to minimize the number of layers (which
minimizes the usage of HW resources in switches) while si-
multaneously maximizing the number of disjoint and almost-

4Multipathing can be applied both at the switch and at the endpoint level. Thus, we use
a term “node” to refer to switches or endpoints when a discussion is generic

1028 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

minimal paths between any switch pair (for more path diver-
sity). Moreover, a detailed analysis from FatPaths indicates
that – to maintain high performance in layered routing in vir-
tually all low-diameter networks and traffic patterns – at least
three disjoint paths per switch pair are needed [28]. Thus, the
main goal of the layer construction algorithm is to find a min-
imum set of layers that together provide each switch pair with
at least three disjoint paths while ensuring minimum overlap
between specific layers. Ideally, these three paths include the
minimal one (that always exists) and two “almost” minimal
ones (in the following, an “almost” minimal path means a
path that is longer by one hop than the minimal path between
two given switches).

An overview of our proposed layer routing is shown in
Fig. 5 (right). The key difference between our scheme and
FatPaths is that we do not remove links from layers in or-
der to ensure deadlock-freedom or to introduce non-minimal
paths. Instead, we decouple deadlock resolution from layer
creation, and explicitly construct paths satisfying the appro-
priate constraints on their count, non-minimal length, and
well-balancedness. This facilitates creating layers that result
in much higher throughput.

4.3 Generating Routing Layers
Our layer construction scheme is detailed in Algorithm 1. The
input is the topology of inter-switch connections G = (V,E),
and the desired number of layers |L|. The output is a set
of layers L, where each layer contains a collection of paths
connecting different pairs of nodes. These paths together
define a separate forwarding tree for each node.

The layer generation starts with assigning all links to
layer 1. In layer 1, we only use minimal paths, as we want
to ensure that the single minimal path existing between all
node pairs is included in at least one layer for each pair. More-
over, a matrix W and a priority queue p are initialized. These
structures are used to find advantageous non-minimal paths
for each node pair. Intuitively, a priority p(u,v) of a node
pair u,v is determined by the number of non-minimal paths
already assigned to u,v (and maintained in other layers). The
higher p(u,v) is, the lower the priority of u,v is. Hence, when
looking for new non-minimal paths, node pairs with fewer
paths assigned are prioritized. This facilitates balancing the
number of advantageous paths across all pairs of nodes, to
eliminate potential hotspots in the network.

Second, each entry W (r,s) in matrix W describes the
weight of a link between switches r,s. This weight equals
the number of paths (from any layer) that already use this link.
The higher W (r,s) is, the more paths use the corresponding
link. Hence, when selecting new paths, we use W to balance
numbers of paths across single links, minimizing risk of con-
gestion. We also use W to balance the paths in the first layer
to ensure minimal overlap of minimal paths.

Then, for every layer 2 . . . |L|, and for each node pair in each
layer, we find a single almost-minimal path that minimizes

overlap with respect to paths already added to any other layer.
For this, when finding paths in a layer l, we first copy the
current priorities of node pairs into a list that preserves the
current state of priorities (copy_pairs). Here, node pairs with
the same priority are in a random order, but come before any
node pair with lower priority. Note that each node pair appears
twice in the list, once for each direction. This enables using
different paths when routing in different directions, further
increasing the flexibility of path selection.

After that, we iterate over each node pair, in an attempt to
construct a path for each such pair in each layer. Note that, in
principle, it is possible that one cannot find a path for each
node pair in each layer (we elaborate on dealing with such
rare cases in Appendix B.1; we resolve them with a simple
fallback to a minimal path – our evaluation shows that this
does not negatively impact throughput).

In each such iteration, we first use the find_path routine to
try to find an almost-minimal path for a given node pair pair,
based on already inserted paths for that layer (specified in l)
and weights assigned to each link (specified in W). If we are
able to find a valid path, we accordingly update priorities p
(update_priorities) and link weights W (update_weights). Fi-
nally, we insert the path into layer l (add_path_to_layer).

Algorithm 1: Construct routing layers; details are in § 4.3

Input : Network topology G = (V,E), number of layers |L|
Result : A set of L routing layers
// W ∈ RNr×Nr contains weights of links; p is a priority
queue, with entries being pairs of nodes

1 W = init_link_weight_matrix() // Set all matrix entries to 0
2 p = init_p_queue(G) // Each node pair gets the same priority
3 L = {E} // Layer 0 contains all the links (E)
4 for l = 1 to |L|−1 do
5 init_layer(l) // Initialize the next layer as empty
6 node_pairs = copy_pairs(p)
7 while node_pairs ̸= /0 do
8 pair = node_pairs.dequeue()
9 path = find_path(G, W , pair, l)

10 if valid(path) then
11 update_priorities(path, p)
12 update_weights(path, W)
13 add_path_to_layer(path, G, l)
14 end
15 end
16 L = L∪{l} // Add a new layer to finalized layers
17 end

5 IMPLEMENTATION OF MULTIPATHING
The IB architecture [5] enables a high-speed switched fab-
ric with HW support for RDMA [6, 32] and atomic oper-
ations [33]. IB provides lossless destination-based packet
forwarding that relies on link-level, credit-based flow con-
trol [34]. We now discuss the used IB features.

An IB network usually forms a single subnet consisting of
physical IB switches and Host Channel Adapters (HCAs) that
correspond to Ethernet NICs. All communication up to and
including the transport layer is implemented within these two
components.

Routing configuration is managed by a centralized subnet
manager (SM). The SM configures connected IB devices,
appropriately computes the forwarding tables to implement

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1029

the used destination-based routing algorithm, and monitors
the network for failures. Within an IB subnet, each HCA and
each switch receive a unique local identifier (LID), assigned
by the SM.

Each physical IB port has several independent virtual lanes
(VLs). Each VL has its own receive and transmit buffers and
flow control resources. There can be up to 15 VLs per physical
port (depending on the equipment) and 1 VL for management
traffic. Multiple VLs per port are used for deadlock freedom
and to eliminate head-of-line blocking [34] (we discuss dead-
locks in more detail in § 5.2).

Each switch provides a forwarding table called the Linear
Forwarding Table (LFT) that – for a given packet – deter-
mines the outgoing port using the destination address (DLID)
from the packet header. Then, for a given outgoing port, to
determine the outgoing VL for a given packet, the switch uses
a four-bit Service Level (SL) field from the packet header, in
combination with the incoming and outgoing packet ports, to
index into the SL-to-VL table. This enables packets to change
virtual lanes at each hop and it allows for seamless utilization
of switches with potentially different numbers of virtual lanes.

5.1 Routing
OpenSM, our choice of IB compliant SM, provides com-
plete subnet information, including a list containing all nodes
(switches, HCAs, routers) and ports, as well as the connec-
tions between them. We use this information to create and
populate forwarding tables so that they implement the pre-
scribed layered routing.

Multipathing In ECMP, each router stores multiple pos-
sible next-hops that each lie on a minimal path towards the
destination. This approach of storing multiple next-hops for
a given destination is not possible in IB. However, it can be
emulated by assigning multiple LIDs to each HCA, a fea-
ture that we use to enable multipathing and to implement
our layered routing in an IB setting. An HCA can receive a
contiguous range of LID addresses. This range is determined
by the so called LID Mask Control (LMC) value. Specifi-
cally, for an LMC equal x, each HCA port hosts a consecutive
range of 2x LIDs. Then, one routes towards each such LID
using a different path. We use the information provided by
OpenSM to appropriately populate forwarding tables so that
they implement the layered routing described in § 4.

Implementation of Layers We assign multiple addresses
to each node; one address falls into one layer (each layer
gets one address from each node). Hence, a layer is physi-
cally formed by the assigned addresses and the associated
forwarding entries that route traffic to these addresses. The
forwarding entries are set according to the specification of
layers in the initialization phase. Our scheme for construct-
ing layers provides a data structure port, which specifies the
output port to be used for a packet traveling to a node d, from
a switch s, within a layer l; this output port is denoted with
port[l][s][d].

Routing Within Layers The number of layers equals the
number of addresses assigned to each node. Thus, we can
treat the layer ID as the offset to the base (i.e., to the first)
LID of each node. Hence, for instance, routing in the first
layer (ID 0) uses the base LID of each node, whereas routing
in the second layer uses the base LID plus offset 1.

Populating Forwarding Tables To populate forwarding
entries, we add a value port[l][s][d] into the LFT of switch s,
as the outgoing port number for packets being routed towards
node d. As the destination address, we use the base LID of
the node, increased by the offset l, to ensure routing within
layer l. As the last step, we run a deadlock-resolution scheme
that fills all SL-to-VL tables, eliminating the risk of deadlocks
(cf. § 5.2).

5.2 Deadlock-Freedom
One downside of IB’s credit-based flow control ensuring loss-
lessness is the possibility of deadlocks. Specifically, an IB
network may enter a state in which packets in different buffers
wait for each other indefinitely long to free the buffers, result-
ing in a deadlock. To overcome this, most routing schemes
use different VLs to send packets [35, 36, 37, 38, 39, 40]. By
splitting a single port buffer into multiple independent logical
VLs, one can break dependencies between waiting packets.

In FatPaths, each layer is acyclic, to ensure no dead-
locks within each layer. However, this does not imply global
deadlock-freedom on IB because of its lossless design based
on channels. Specifically, one has to ensure that dependencies
between packets using routes stored in any layers are also
deadlock-free. Thus, we change the FatPaths approach by
decoupling deadlock-avoidance from layer creation. Instead,
we apply deadlock-removal after the layers are created. This
also enables much more throughput because acyclic layers
vastly restrict the choice of paths to be taken.

In our IB implementation, we propose and enable the use
of two different deadlock-avoidance schemes. Firstly, if a
sufficient number of VLs is available, we use the scheme in-
troduced with the Deadlock-Free Single Source Shortest-Path
(DFSSSP) [36] algorithm, which is already integrated in IB.
Intuitively, given a ready routing (i.e., the populated forward-
ing tables), DFSSSP first finds all dependencies that could
lead to a deadlock, and then it iteratively accommodates these
dependencies in a deadlock-free way, by assigning selected
routes to use yet unoccupied VLs. If not enough VLs are
available, the algorithm fails. If not all VLs are exhausted,
DFSSSP additionally balances the number of paths using each
VL, for more throughput.

By increasing the number of layers used, the total number
of unique paths between node pairs increases, resulting in a
higher number of virtual lanes (VLs) required to resolve dead-
locks using the DFSSSP scheme. To maximize the number
of supported layers, we propose a novel deadlock avoidance
scheme based on the Duato’s approach [41], that is agnostic
to the number of layers and tailored for IB deployments that

1030 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rely exclusively on paths of length <= 3, such as those based
on SF with our multipath routing method. The proposed al-
gorithm ensures that the first, second, and third inter-switch
hop of any path connecting two nodes use disjoint subsets of
VLs. To achieve this, at least three VLs need to be available,
and switches, for a given packet, must be able to identify their
respective positions on the path using only the packet’s SL,
incoming and outgoing port.

To illustrate the algorithm’s functionality, we consider each
case individually. The first case, which involves paths of
length 1 (sw1 − sw2), can be solved trivially since sw1 can
determine that it is the first hop along the path by checking
whether the incoming packet port is connected to an endpoint.
This information can then be encoded easily in the SL-to-VL
table.

The strategy to address the second case, paths of length 2
(sw1− sw2− sw3), is the same as the one for case three; there-
fore, we only present it once. In the third and final case, paths
of length 3 (sw1 − sw2 − sw3 − sw4), we treat sw1 as in case
one but use a different approach to differentiate between sw2
and sw3. We establish a proper coloring of switches, using at
most as many colors as there are available SLs. This color
assignment is then mapped to SLs, ensuring each switch has
a unique color and SL among its neighbours. By setting the
SL of a packet routed along a path of length 2 or 3 to the
SL assigned to the second switch (sw2) along that path, it is
guaranteed that the packet’s assigned SL matches the SL of
the second hop but not the SL of the third. Subsequently, if
a switch is neither the first nor last hop on a path – a condi-
tion trivially determined through the incoming and outgoing
packet ports – then the switch’s position along the path can
be ascertained by whether the incoming packet’s assigned
SL matches the SL assigned to the switch. Specifically, if the
SLs match, then the given switch must be the second hop; if
they don’t, then it must be the third. Thus, we can differenti-
ate the second hop from a potential third hop and select the
appropriate subset of VLs at each hop accordingly.

If fewer than 3 VLs are available or no proper coloring
using the available SLs can be established, the algorithm fails.
Similar to the DFSSSP scheme, the disjoint VL subsets can
be chosen to balance the number of paths crossing each VL.

5.3 Load Balancing
For load balancing, we rely on the respective protocol higher
up in the stack to choose a layer out of the set of possible ones
available for a given destination. In our case, this is the Open
MPI [42] implementation of the Message Passing Interface
(MPI) standard [43]. Open MPI serves as a communication
library and directly interfaces with the IB networking API
(Verbs). To optimize traffic flow, we utilize Open MPI’s de-
fault load balancing technique, which distributes traffic evenly
across the available paths using a round-robin selection pro-
cess. More advanced, adaptive schemes can seamlessly be
used by changing the selection policy.

For fault tolerance, we rely on IB’s subnet manager. We
stress that our routing can be seamlessly used with other trans-
port schemes besides the ones used in the deployed cluster.

5.4 Path Diversity vs. Network Size
Increasing the number of different paths between each node
pair requires more layers and thus also more addresses as-
signed to each node (i.e., a larger LMC value). However, using
more addresses within one node decreases the maximum num-
ber of nodes that can be used in the network overall (because
the address field size is fixed to 16 bits). We analyze this trade-
off in Tab. 2. We assume the maximum SF network based on
{36, 48, 64}-port switches, that guarantees full global band-
width. The results illustrate that one can use 4 layers without
having to make any compromises on the networks size, but
anything beyond 4 layers would reduce the maximum net-
work size. At this point, the constraining factor is no longer
the switch radix, but the address space. In § 6 and § 7, we
show that – fortunately – our routing scheme’s performance
is already quite substantial with just 4 layers and does not
need more than 8 layers for high performance.

Table 2: Maximum number of switches and servers supported by a single-
subnet, full global bandwidth, SF-based IB network, with “#A”= 2LMC many
addresses per node.

36-port switches 48-port switches 64-port switches
#A Nr N k′ p Nr N k′ p Nr N k′ p

1 512 6144 24 12 882 14112 31 16 1568 32928 42 21
2 512 6144 24 12 882 14112 31 16 1250 23750 37 19
4 512 6144 24 12 800 12000 30 15 800 12000 30 15
8 450 5400 23 12 450 5400 23 12 450 5400 23 12
16 288 2592 18 9 288 2592 18 9 288 2592 18 9
32 162 1134 13 7 162 1134 13 7 162 1134 13 7
64 98 588 11 6 98 588 11 6 98 588 11 6
128 72 360 9 5 72 360 9 5 72 360 9 5

6 THEORETICAL ANALYSIS
We conduct a theoretical analysis of the developed routing
protocols using the deployed SF network as a case study.
We focus on how well our routing uses the diversity of non-
minimal paths, which is necessary for high performance [28].

Baselines and Parameters We analyze our layered routing
that minimizes path overlap (§ 4) and compare it to a simple
random layer construction (RUES, Random Uniform Edge
Selection) and to the state-of-the-art FatPaths scheme [28].

We vary different parameters, including the fraction p of
preserved links in a layer, which refers to the proportion of
links from the network that are included in each layer for the
RUES scheme (specifically, we consider p = 40%, p = 60%,
and p = 80%), and the number of layers used. We focus on
the deployed SF with 50 switches, but the results general-
ize to larger sizes. Overall, we show that the proposed lay-
ered routing is superior to the state-of-the-art in crucial met-
rics: lengths, distribution, and diversity of used paths, and the
achieved throughput.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1031

1 2 3 4 5 6 7 8 9 10
Path Length

0%

20%

40%

60%

80%

100%

4 Layers AVG

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6 7 8 9 10
Path Length

4 Layers MAX

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6 7 8 9 10
Path Length

8 Layers AVG

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6 7 8 9 10
Path Length

8 Layers MAX

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

Fr
ac

tio
n

of
 S

wi
tc

h
Pa

irs

Figure 6: Histograms of average path lengths and maximum path lengths across all layers for each switch pair.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0 in
f

Crossing Paths

0%

20%

40%

60%

80%

100%

4 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0 in
f

Crossing Paths

8 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

Fr
ac

tio
n

of
 L

in
ks

Figure 7: Histograms (bin size = 20) of counts of paths crossing each
individual link.

1 2 3 4 5 6
Disjoint Paths

0%

20%

40%

60%

80%

100%

4 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

1 2 3 4 5 6
Disjoint Paths

8 Layers

RUES (p=40%)
RUES (p=60%)
RUES (p=80%)
FatPaths
This Work

Fr
ac

tio
n

of
 S

wi
tc

h
Pa

irs

Figure 8: Histograms of counts of disjoint paths for different switch pairs.

6.1 Path Lengths
The first important metric for evaluating routing is the length
of paths constructed using the proposed routing schemes.
Specifically, when routing in SF, one wants to use the single
available minimal path (with 1 or 2 hops, depending on picked
switch pairs) and the “almost” minimal ones – with 3 hops –
as indicated in the FatPaths study [28]. To analyze whether
the considered routing ensures this, we compute the average
and maximum lengths of the set of paths connecting each
individual switch pair, as produced by the respective routing
schemes. Fig. 6 shows the analysis results.

Our novel layered scheme outperforms all others, because
it ensures that the highest fraction of switch pairs uses the
“almost” minimal paths of length at most 3. The downside of
RUES is that the more randomness is employed, the larger
the maximum path length becomes. For a sampling factor
p = 80%, there is no switch pair with a path of length more
than 4, whereas for p = 40% some switch pairs have paths of
length greater than 8. This indicates large differences in path
lengths in different layers for some switch pairs, even if the

1 2 4 8 16 32 64 128
Number of Layers

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut

×8Thi
s W

ork

FatPa
ths

Injected Load = 10%

1 2 4 8 16 32 64 128
Number of Layers

×8
This Work

FatPaths

Injected Load = 50%

1 2 4 8 16 32 64 128
Number of Layers

×8

This Work

FatPaths

Injected Load = 90%

Figure 9: Maximum achievable throughput for the adversarial traffic pattern
under three different injection loads (fraction of communicating endpoint
pairs).

average path length is between 3 and 4. This can negatively
impact load balancing efforts as it becomes more difficult
to predict path latency. Then, in FatPaths, large fractions of
switch pairs use paths of length 2, which means that these
links may likely become congested.

Doubling the number of layers does not change the overall
trends and it has mostly no effect on the average path length
distributions. Only the maximum path lengths display a small
shift to the right. This is because using more layers increases
the probability of finding a longer path.

6.2 Path Distribution
We now count the total number of paths that cross each indi-
vidual link, see Fig. 7. Our layered routing ensures a balanced
scenario, i.e., close to equal utilization of each link. This cor-
responds to a “single bar”, i.e., the “tighter” the distribution
the better balanced the paths are.

Similarly to the analysis on path length, less randomness
leads to better results, which is expected because as layers
become less dense, the links that are present will be more
utilized. Hence, any link that by chance is included in more
than an average number of layers will have a higher number
of crossing paths and vice versa. FatPaths performs similarly
to RUES for a sampling factor of p = 80%. The distributions
for 8 layers are slightly shifted to the right compared to 4
layers, as they have twice as many paths.

6.3 Path Diversity
Two paths are disjoint if they do not share common links.
In layered routing, we aim to maximize the number of such
paths used by node pairs. Fig. 8 displays counts of disjoint
paths between switch pairs. The FatPaths layer construction
based on minimizing path overlap underperforms because

1032 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of its acyclic layers. Moreover, unlike in previous analyses,
more randomness (and thus sparser layers) leads to better
result for RUES. For a sampling factor of p = 40% and 8
layers, ≈97.5% of switch pairs have at least the 3 desired
disjoint paths. This is the best performing algorithm out of
the ones considered. However, this comes at the expense of
disadvantageous path lengths and path distribution.

Our scheme does not need to make a similar trade-off be-
cause with 8 layers already around 88.5% of switch pairs have
at least 3 disjoint paths, which we have verified to grow to
almost 100% percent when scaling to the next higher config-
uration that uses 16 layers. At the same time, the lengths and
path distributions over links are highly beneficial.

6.4 Maximum Achievable Throughput
We also analyze the maximum achievable throughout (MAT).
MAT is defined as the maximum fraction of traffic demands
from all endpoint pairs that can be accommodated simultane-
ously, while adhering to network and routing constraints. For
example, a throughput of 1.5 denotes that the network can
sustain 1.5 times the traffic demand of each communicating
node pair simultaneously.

Here, we consider an adversarial traffic pattern, which max-
imizes stress on the interconnect by incorporating several
large elephant flows between endpoints that are separated by
more than one inter-switch hop, and combining these large
flows with many small flows [44]. We use TopoBench [44],
a throughput evaluation tool which relies on linear program-
ming to compute MAT. The results are displayed in Fig. 9.

Our algorithm outperforms FatPaths for different traffic in-
tensities and layer counts. This is most important for a small
number of layers, which is key for routing on IB hardware
as using many layers reduces the supported network sizes
(cf. Tab. 2). Our layered routing experiences diminishing re-
turns beyond 16 layers. This is expected, as almost 100% of
endpoint pairs have at least 3 disjoint paths for 16 layers (one
needs at least that many disjoint paths to ensure high perfor-
mance with non-minimal routing). Before diminishing returns
set in, FatPaths requires 8× as many layers to reach equivalent
performance, making our design much more practical.

6.5 Insights & Takeaways - Theoretical Results
Our novel IB layered routing achieves superior performance
in all considered path quality measures and especially in MAT.
Almost around 60% of switch pairs have at least 3 disjoint
non-minimal paths when using only 4 layers, which grows
to 88.5% with 8 layers. Furthermore, we achieve the most
balanced distribution of paths over the links in the network.
FatPaths performs similarly in terms of average and maximum
path lengths, but underperforms in the available number of
disjoint paths per switch pair. For RUES, a sampling factor
of p = 60% achieved the most balanced results across all
metrics, but RUES performs much worse in comparison to
FatPaths and our work overall.

7 EVALUATION
We now illustrate the feasibility of our SF installation by
evaluating a broad set of applications from numerous domains
against a comparable FT installation.

7.1 2-Level Non-Blocking Fat-Tree
FT topologies have historically been the usual choice for large-
scale computing systems, largely due to their predictable be-
havior and full-bandwidth capabilities, when configured in a
non-blocking manner. However, their high cost often leads to
oversubscribed deployments at the tree’s lowest level, reduc-
ing construction costs at the expense of bisection bandwidth.

To ensure a fair performance comparison with our SF in-
stallation, we construct a 2-level non-blocking FT, reusing the
same hardware. The FT and SF both share the same network
diameter and full-bandwidth capabilities. Our FT configura-
tion employs 6 core and 12 leaf switches, compatible with
our 36-port switches. Each leaf switch connects to each core
switch through 3 links, and the remaining ports link to evenly
distributed endpoints. This configuration supports up to 216
endpoints, making the FT marginally under-subscribed and
thus strengthening the fairness of our comparison.

7.2 Workloads & Configurations
We utilize a significant subset of the benchmarks included in
the TSUBAME2 HyperX (t2hx) benchmark suite [10] and en-
hance them with a custom implementation of MPI_Alltoall5,
as well as three DNN proxies introduced by Hoefler et al. [57].
The configuration of each benchmark is provided in Tab. 3.
Our analysis includes three classes of benchmarks:

Microbenchmarks We evaluate the system’s bandwidth
using Intel MPI Benchmarks’ (IMB) measurements of the
Allreduce and Bcast collectives [45], and a custom alltoall.
We also assess the effective bisection bandwidth (ebb) of the
system using Netgauge’s eBB benchmark [46].

Scientific Application & HPC Benchmarks We evaluate
a wide range of benchmarks, covering various scientific appli-
cations, all of which are listed in Tab. 3 and taken directly from
the t2hx benchmark suite. We also analyze the performance
of the High Performance Linpack (HPL) [55] benchmark and
of the breadth-first search (BFS) [60] in the Graph 500 Bench-
mark [53]. Additionally, we extend the BFS performance
analysis by changing the average degree of the vertices (edge-
factor), while scaling the number of vertices linearly with
the number of participating compute nodes. Specifically, we
consider edgefactors 16, 128 and 1024.

DNN Proxies The DNN proxies evaluated on SF include
ResNet152 [56] (pure data parallelism), CosmoFlow [58]
(data and operator parallelism) and GPT-3 [59] (data, operator,
and pipeline parallelism), as outlined in Tab. 3. For GPT-3,
each pipeline stage processes one DNN-layer.

5Details on the performance improvements for the custom alltoall collective,
over the default, can be found in the appendix (Sec C.1).

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1033

Table 3: Workload Configurations.

Workload Configuration # Nodes (N) Scaling Metric

Custom Alltoall Message Sizes: 1B → 4MiB 2,4,8,16,32,64,128,200 Weak Bandwidth [MiB/s]
IMB Bcast/Allreduce [45] Message Sizes: 1B → 32MiB 2,4,8,16,32,64,128,200 Weak Bandwidth [MiB/s]
eBB [46] Message Size: 128MiB 2,4,8,16,32,64,128,200 Strong Bandwidth [MiB/s]
CoMD [47] 1003 Atoms per Process 25,50,100,200 Weak Time [s]
FFVC [48] 1283 Cuboid per Process for ≤ 64 processes, else 643 25,50,100,200 Weak Time [s]
mVMC [49] Unmodified job_middle weak-scaling test 25,50,100,200 Weak Time [s]
MILC [50, 51] benchmark_n8 Input 25,50,100,200 Weak Time [s]
NTChem [52] taxol Model 25,50,100,200 Strong Time [s]
BFS16 [53, 54] # Vertices: 223, 224, 225, 226 Avg. Degree: 16 25,50,100,200 Weak Giga-Traversed Edges per Second [GTEPS]
BFS128 [53, 54] # Vertices: 223, 224, 225, 226 Avg. Degree: 128 25,50,100,200 Weak Giga-Traversed Edges per Second [GTEPS]
BFS1024 [53, 54] # Vertices: 223, 224, 225, 226 Avg. Degree: 1024 25,50,100,200 Weak Giga-Traversed Edges per Second [GTEPS]
HPL [55] Matrix A ≈ 1 GiB ,1 GiB ,1 GiB and 0.25 GiB pre Process 25,50,100,200 Weak Giga-Floating point OP/s [GFLOPS]
ResNet152 [56, 57] Pure Data Parallelism 40,80,120,160,200 Weak Iteration Time [s]
Cosmoflow [57, 58] Model Shards: 4 Data Shards: # Nodes

4 40,80,120,160,200 Weak Iteration Time [s]
GPT-3 [59, 57] Pipeline Stages (layers): 10 Model Shards: 4 Data Shards: # Nodes

40 40,80,120,160,200 Weak Iteration Time [s]

(a) MPI Bcast - SF L vs. FT (b) MPI Allreduce - SF L vs. FT (c) Custom Alltoall - SF L vs. FT (d) eBB - SF L vs. FT

Figure 10: Relative performance difference of SF (linear placement strategy) over FT for various Microbenchmarks; eBB performance of SF L in comparison to
maximum bandwidth and FT performance (higher is better), including routing improvement of this work over DFSSSP (heatmap).

7.3 Execution Environment
To ensure consistency and reproducibility, all benchmarks
were compiled using GCC v4.8.5 and executed using Open-
MPI v1.10.7. We use one MPI rank per node and assign one
OpenMP thread per physical core on Socket 1 of the dual-
socket system (pinning on Socket 2 introduces non-negligible
slowdowns due to inter-socket communication).

We investigate two MPI rank placement strategies: linear
and random. The linear strategy places rank j on node j, a
commonly used approach that enhances latency and traffic
locality, especially for FTs [61, 62]. This strategy also models
a system with minimal fragmentation. In contrast, the random
strategy represents systems with significant fragmentation. It
randomizes rank placement to potentially reduce network bot-
tlenecks on SF, albeit at the cost of increased latency. For FT,
the linear placement significantly outperformed its random
counterpart in all microbenchmarks and exhibited comparable
performance in the remaining tests. Consequently, we report
SF performance relative to the FT’s linear placement only.

Each benchmark configuration is executed five times; mi-
crobenchmarks are executed for at least 100 iterations. We
assess all SF benchmarks using our new multipath routing
algorithm based on both minimal and almost minimal paths,
as well as the defacto standard multipath routing algorithm in
IB (DFSSSP), that leverages minimal paths only [63]. We in-

stantiate each routing algorithm once with 1, 2, 4, and 8 layers,
respectively, but only report the results of the best-performing
variant for each benchmark configuration. For all FT bench-
marks we choose the commonly used ftree routing [64]. Mean
and standard deviation of the results are reported, with the
latter indicated using red error bars for all bar plots. Relative
performance differences of SF over FT are annotated above
each bar. Any significant performance gains or losses of our
novel routing algorithm in comparison to DFSSSP for any
benchmark are either explicitly stated in the text or visualized
using heatmaps.

In the main text, we present comprehensive results for
SF using the linear placement strategy, and include only mi-
crobenchmark results for the random placement strategy due
to space considerations. Detailed results of the random strat-
egy for other benchmarks, which largely mirror those obtained
with the linear strategy, are in Appendix C.

7.4 Microbenchmarks
Fig. 10a–10c illustrate the relative performance differences
of SF with linear placement over FT and Fig. 11a–11c of SF
with random placement over FT for MPI collectives bcast,
allreduce, and custom alltoall.

Generally, SF’s performance using the linear placement
strategy closely matches that of the FT, with FT only dis-
playing minor advantages in bcast and allreduce for 8 and

1034 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) MPI Bcast - SF R vs. FT (b) MPI Allreduce - SF R vs. FT (c) Custom Alltoall - SF R vs. FT (d) eBB - SF R vs. FT

Figure 11: Relative performance difference of SF (random placement strategy) over FT for various Microbenchmarks; eBB performance of SF R in comparison
to maximum bandwidth and FT performance (higher is better), including routing improvement of this work over DFSSSP (heatmap).

Figure 12: Runtime of scientific workloads (lower is better) - SF L vs. FT

Figure 13: Performance of HPC benchmarks (higher is better) - SF L vs. FT

16 node configurations at smaller, latency-sensitive message
sizes. This marginal edge of FT in specific configurations is
due to its architecture, wherein leaf switches connect to at
least 16 nodes, facilitating localized communication with zero
inter-switch hops, thus minimizing latency. While SF, under
linear placement, enjoys the benefits of zero inter-switch hops
mostly for configurations of up to 4 nodes – owing to its de-
sign of connecting 4 nodes per switch – random placement
generally does not benefit from this localized communica-
tion advantage. As a result, SF experiences marginally lower
performance in comparison to FT for these latency-sensitive
scenarios with the random placement strategy.

In contrast, for the communication-intensive alltoall collec-
tive, SF’s performance closely mirrors, or even slightly sur-

Figure 14: Iteration time of DNN proxy workloads (lower is better) SF L vs.
FT and routing improvement of this work over DFSSSP (heatmap) for SF L.

passes, that of the FT for small message sizes when employing
the linear placement strategy (cf. Fig. 10c). However, in 8,
16, and 32 node configurations, particularly with bandwidth-
critical message sizes, SF lags due to congestion caused by
all inter-switch communication occurring between 2, 4, or 8
switches, respectively. This leads to traffic bottlenecks on the
often single shortest path between these switches. While our
new routing scheme, as discussed in § 6, theoretically miti-
gates this congestion, the absence of adaptive load balancing
limits practical improvements to at most 7% over DFSSSP.

Switching to the random placement strategy markedly im-
proves SF’s performance for the alltoall collective, as shown
in Fig. 11c. This strategy not only overcomes the noted bottle-
necks but also enables SF to significantly outperform FT. This
improvement results from the random placement strategy’s
enhanced traffic distribution across the network, showcasing
the trade-off between increased latency for smaller message
sizes and superior traffic balancing within the SF topology.
These findings imply that the integration of adaptive load bal-
ancing with our routing scheme could effectively address the
congestion issues identified with linear placement, underscor-
ing the potential of our routing scheme to optimize network
performance for demanding communication patterns.

Lastly, in Fig. 10d and Fig. 11d, we present the ebb across
various node counts for the linear and random placement
strategy, respectively. At maximum node count we achieve

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1035

approximately half of the injection bandwidth, equating to
75% of the theoretical bisection bandwidth optimum [1], with
both strategies. Though the FT matches SF’s full-system ebb,
it outperforms SF with linear placement for the 8, 16, and 32
nodes configurations. This discrepancy mirrors the observa-
tions for the alltoall collective and is similarly overcome with
the random placement strategy (cf. Fig. 11d).

In the right section of both Fig. 10d and Fig. 11d, heatmaps
display the performance gains of our new routing scheme
over DFSSSP for the eBB benchmark. Notably, for the linear
placement strategy, improvements of up to 28% are observed
for the earlier described node configurations, which are es-
pecially prone to congestion. Under the random placement
strategy, the level of improvement is less significant, with only
up to 7%, suggesting that this strategy’s primary advantage
lies in its ability to distribute traffic more evenly, even in the
absence of adaptive load balancing.

7.5 Scientific Workloads & HPC Benchmarks
In Fig. 12, we present the runtime and relative performance
of the solver/kernel for each of the scientific workloads on
SF, using the linear placement strategy. The scaling behavior
of each workload, based on their configurations detailed in
Tab. 3, is evident. Notably, the drop in runtime for FFVC when
scaling from 50 to 100 nodes is due to the decrease in the
workload’s problem size when running on > 64 nodes. Utiliz-
ing almost minimal paths in combination with minimal paths
does not generate any significant speedup for these workloads
over pure minimal routing (DFSSSP), and generally results
in only small runtime variances of < 1%. This is due to the
communication time only constituting a small fraction of the
overall runtime for these scientific workloads [10, 65].

Fig. 13 shows the performance of the HPC benchmarks,
which display similar weak-scaling behavior as the scien-
tific workloads. HPL exhibits almost linear scaling perfor-
mance when increasing the number of nodes from 25 to 50
or 100 nodes, indicating that the overhead introduced by the
increased amount of communication is negligible. Consistent
with these results, introducing almost minimal paths to the
routing impacts performance by less than 1% for the HPL
benchmark. The only exception is the 200 node setting, where
the decrease in the problem size (per node) is likely the main
cause for the deviation from the linear scaling observed.

In the case of the Graph 500 - BFS benchmark, we expe-
rienced high variance with the default implementation. To
mitigate this, we fixed the seed for the graph generation and
used the same source vertex for each BFS run. The BFS scal-
ing results show more fluctuations in comparison to the HPL
results, particularly for the sparser variant. This is accompa-
nied by greater variability in speedup through almost minimal
paths, which ranged from -5% to +1%. It is not clear whether
this can be attributed purely to network communication or to
other factors such as caching effects and system noise.

Overall, our experiments show SF competes effectively

with FT in terms of performance, while being very effective
for scaling both scientific workloads and HPC benchmarks,
even when limited to minimal paths.

7.6 Deep Learning Workloads
The left part of Fig. 14 shows the runtime and relative per-
formance of the DNN proxies when linearly increasing the
number of nodes from 40 to 200. ResNet152 with pure data
parallelism only requires allreduce for gradient aggregation.
CosmoFlow with a hybrid of data and operator parallelism re-
quires allgather, reduce-scatter, allreduce, and point-to-point
communications. GPT-3 with a hybrid of data, operator, and
pipeline parallelism requires allreduce and point-to-point com-
munications. As we increase the data shards proportionally to
the number of nodes, the scalability is mainly determined by
allreduce across the data dimension.

We find that CosmoFlow’s runtime on SF is comparable to
that on FT. In contrast, GPT-3 notably performs better on SF
for configurations with 160 and 200 nodes, while ResNet152
begins to lag as the node count increases. Although both
GPT-3 and ResNet152 predominantly rely on allreduces at
higher node counts, their diverging performance trends can
be attributed to differences in message sizes; GPT-3 handles
significantly larger messages than ResNet152. Expectedly, the
performance trend of GPT-3 matches the trend of MPI Allre-
duce for the high node count configurations (cf. Fig. 10b).

The right part of Fig. 14 shows that our work generally out-
performs DFSSSP for GPT-3, with up to 24% improvements.

7.7 Insights & Takeaways - Empirical Results
When analyzing communication-intensive workloads on con-
figurations with 8, 16, or 32 nodes, we identified some con-
gestion challenges. These challenges stemmed from the non-
adaptive nature of the path selection. However, by employing
a random placement strategy, these issues were effectively
counteracted. Our findings subsequently indicate that SF con-
sistently achieves performance on par with, or even surpass-
ing, the well-established FT topology, particularly under con-
ditions of full-system utilization. Additionally, SF displays
effective scaling capabilities across a diverse range of work-
loads. In comparison to the established DFSSSP, our novel
routing approach exhibited promising performance, register-
ing improvements of over 20%.

7.8 Scalability & Cost Analysis
FT topologies are the preferred choice for large-scale HPC de-
ployments due to their adaptability, adoptable bisection band-
width, established routing, and isolation advantages. These
properties often benefit application performance consistency
[66, 67, 68]. However, their low-diameter configurations do
not scale as well as contemporary topologies [69].

We compare the scalability and deployment cost of 2-level
FTs (FT2), 3-level FTs (FT3), 2-D HyperX (HX2) [10, 70],
and SF. Our evaluation, summarized in Tab. 4, includes both

1036 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 4: Maximal scalability and costs of SF deployments compared to non-blocking FT2, FT2 oversubscribed by 3 (FT2-B), FT3 and 2-D HyperX (HX2) under
given port constraints. For the fixed size cluster we use 64-port switches for the FT2 and FT-B, 40-port switch for HX2, and 36-port for SF and FT3.

36-port switches 40-port switches 64-port switches 2048 nodes clusters
FT2 FT2-B FT3 HX2 SF FT2 FT2-B FT3 HX2 SF FT2 FT2-B FT3 HX2 SF FT2 FT2-B FT3 HX2 SF

Endpoints 648 972 11664 2028 6144 800 1200 16000 2744 7514 2048 3072 65536 10648 32928 2048 2048 2048 2197 2178
Switches 54 45 1620 169 512 60 50 2000 196 578 96 80 5120 484 1568 96 59 303 169 242
Links 648 324 23328 2028 6144 800 400 32000 2548 7225 2048 1024 131072 10164 32928 2048 344 4320 2028 2057

Costs [M$] 1.5 1.1 45 4.5 13.8 2.4 1.7 84.2 7.8 22.4 9 7.2 491 45.5 146 7.5 2.7 8.3 6.4 5.8
Cost/Endp [k$] 2.2 1.2 3.8 2.2 2.2 3 1.5 5.2 2.8 2.9 4.4 2.3 7.5 4.3 4.4 3.6 1.3 4 3.1 2.8

the non-blocking FT2 variant and its 3:1 oversubscribed ver-
sion (FT2-B). The pricing details are in Appendix D.

Scalability We show that SF networks offer a distinct ad-
vantage in scalability by evaluating maximum network size
for a HW setup with 36, 40, and 64-port switches. SF can ac-
commodate approximately 10, 6, and 3 times more endpoints
than FT2, FT2-B, and HX2 respectively, while maintaining
a lower or comparable cost-to-endpoint ratio and the same
network diameter of 2. FT3 can accommodate more endpoints
than SF, however, this comes at a significantly larger (around
1.75x) cost-to-endpoint ratio and increased network diameter
which has an impact on a performance of latency critical ap-
plications. This makes SF a compelling choice for large-scale
diameter-2 deployments.

Cost When the number of endpoints is predetermined, SF’s
requirement for fewer port switches can reduce overall de-
ployment costs, while keeping comparable benchmark per-
formance to FT2 as shown in § 7. Tab. 4 further shows an
example of fixing a cluster requirement to 2048 endpoints.
Realising such a cluster using SF in comparison to FT2, HX2,
and FT3 results in absolute cost saving of $1.7M, $0.6M, and
$2.5M respectively. While using FT2-B might be cheaper in
this scenario, it does not provide the full bandwidth property
as SF, FT2, HX2, and FT3.

8 RELATED WORK
Our work touches on different areas. We now outline related
works, excluding the ones covered in past sections.

Network Topologies Several recent networks build upon SF.
This includes Megafly [71], Bundlefly [72], Galaxyfly [73],
and Xpander [4]. Yet, they do not provide diameter-2 and thus
none of them are competitive with SF in latency, cost, or power
consumption, as observed by recent results [28]. Although
PolarFly has shown promising results in recent studies, its
advantages over SF can be attributed to the diligent design
of routing protocols that leverage its structure to guarantee
optimal routing decisions [74, 75]. Some recent designs based
on similar principles target on-chip networks only [76, 77].

Physical Interconnect Installations The majority of works
on interconnects use simulations for evaluation [1, 2, 3, 4, 71,
72, 73, 78, 79, 80, 81]. However, some topologies have been
evaluated with real installations. This includes – for example –
HyperX [10] and Dragonfly [22]. Here, we offer the first real
evaluation of Slim Fly.

Congestion Control & Load Balancing In general, we
do not focus on transport protocols (flow, congestion). Here,
we rely on mechanisms from the FatPaths [28] architecture.
In layered routing, traffic is balanced across layers. We use
simple randomized and round-robin schemes, which results in
high performance. Other schemes could also be incorporated,
including load balancing based on flows [29, 82, 83, 84, 85,
86, 87, 88, 89], flowcells [90], flowlets [91, 92, 93, 94, 95],
and single packets [96, 97, 98, 99, 100, 101].

9 CONCLUSION

Slim Fly (SF) is the first network topology that lowered cost
and improved performance by reducing the network diameter
to two, promising significant improvement over established
interconnects. However, it has not yet been tested in practice.
We address this by deploying the first at-scale SF installation
and establishing and implementing open-source routines for
cabling and physical layout, to guide future deployments and
effectively verify cabling. This can foster the adoption of SFs
in broad industry and facilitate practical deployments of other
low-diameter topologies, including the most recent ones, such
as PolarFly or Bundlefly.

We further introduce a novel high-performance routing
scheme that improves upon state of the art, achieving up to
24% speedup for the evaluated deep neural network (DNN)
workloads over the standard IB multipath routing algorithm
(DFSSSP) through non-minimal paths.

We use the first practical, real-world deployment of SF
to demonstrate the topology’s ability to scalably process a
wide selection of modern workloads such as distributed DNN
training, graph analytics, or linear algebra kernels. It consis-
tently matches or surpasses the performance of a comparable
non-blocking Fat Tree (FT) deployment for a wide selec-
tion of workloads, for example, achieving a 66% speedup for
distributed deep neural network training. Importantly, SF si-
multaneously delivers superior scalability. For example, it en-
ables connecting between 3× and 10× the number of servers
compared to other diameter-2 topologies like 2-level FT and
2-D HyperX, while maintaining both a comparable cost-to-
endpoint ratio and full bandwidth. For larger installation sizes,
SF’s scalability translates to significant cost advantages, for
example, 50% over full bandwidth non-blocking 3-level Fat
Tree configurations [1]. Overall, this effort will spearhead
future research into more powerful network topologies.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1037

Acknowledgments
We thank Colin McMurtrie, Mark Klein, Angelo Mangili,
and the whole CSCS team granting access to the Ault and
Daint machines, and for their excellent technical support with
the Slim Fly cluster infrastructure. We thank Timo Schnei-
der for help with infrastructure at SPCL. This project re-
ceived funding from the European Research Council (Project
PSAP, No. 101002047), and the European High-Performance
Computing Joint Undertaking (JU) under grant agreement
No. 955513 (MAELSTROM). This project received funding
from the European Union’s HE research and innovation pro-
gramme under the grant agreement No. 101070141 (Project
GLACIATION). This project was supported by JSPS KAK-
ENHI Grant Number JP19H04119.

References
[1] Maciej Besta and Torsten Hoefler. 2014. Slim fly: a cost effective

low-diameter network topology. In ACM/IEEE Supercomputing.
New Orleans, Louisana, 348–359. ISBN: 9781479955008. DOI: 10
.1109/SC.2014.34.

[2] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008.
Technology-Driven, Highly-Scalable Dragonfly Topology. In Proc.
of Intl. Symp. Comp. Arch. (ISCA ’08). IEEE Computer Society,
Washington, DC, USA, 77–88. ISBN: 978-0-7695-3174-8. DOI: 10
.1109/ISCA.2008.19.

[3] John Kim, William J. Dally, and Dennis Abts. 2007. Flattened But-
terfly: A Cost-efficient Topology for High-radix Networks. In Proc.
of Intl. Symp. Comp. Arch. (ISCA ’07). ACM, San Diego, California,
USA, 126–137. ISBN: 978-1-59593-706-3. DOI: 10.1145/125066
2.1250679.

[4] Asaf Valadarsky, Michael Dinitz, and Michael Schapira. 2015.
Xpander: unveiling the secrets of high-performance datacenters.
In ACM HotNets.

[5] The InfiniBand Trade Association. 2004. Infiniband Architecture
Spec. Vol. 1, Rel. 1.2. InfiniBand Trade Association.

[6] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013.
Enabling highly-scalable remote memory access programming with
mpi-3 one sided. In ACM/IEEE Supercomputing, 1–12.

[7] Salvatore Di Girolamo et al. 2019. Network-accelerated non-
contiguous memory transfers. In ACM/IEEE Supercomputing.

[8] Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. 1997.
Top500 supercomputer sites. Supercomputer, 13, 89–111.

[9] Maciej Besta, Jens Domke, Marcel Schneider, Marek Konieczny,
Salvatore Di Girolamo, Timo Schneider, Ankit Singla, and Torsten
Hoefler. 2020. High-performance routing with multipathing and
path diversity in ethernet and hpc networks. IEEE TPDS.

[10] Jens Domke et al. 2019. HyperX Topology: First At-Scale Imple-
mentation and Comparison to the Fat-Tree. In ACM/IEEE Super-
computing.

[11] Maciej Besta et al. 2017. To push or to pull: on reducing communi-
cation and synchronization in graph computations. In ACM HPDC.
ACM. Washington, DC, USA, 93–104. ISBN: 9781450346993. DOI:
10.1145/3078597.3078616.

[12] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer,
Michał Podstawski, Claude Barthels, Gustavo Alonso, and Torsten
Hoefler. 2023. Demystifying graph databases: analysis and taxon-
omy of data organization, system designs, and graph queries. ACM
CSUR.

[13] Maciej Besta et al. 2021. Sisa: set-centric instruction set architec-
ture for graph mining on processing-in-memory systems. In ACM
MICRO.

[14] Maciej Besta et al. 2021. Graphminesuite: enabling high-
performance and programmable graph mining algorithms with set
algebra. VLDB.

[15] Maciej Besta et al. 2020. High-performance parallel graph coloring
with strong guarantees on work, depth, and quality. In ACM/IEEE
Supercomputing.

[16] Maciej Besta et al. 2022. Practice of streaming processing of dy-
namic graphs: concepts, models, and systems. IEEE TPDS.

[17] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos
Ziogas, Daniel Peter, and Torsten Hoefler. 2019. A modular bench-
marking infrastructure for high-performance and reproducible deep
learning. In IEEE IPDPS. IEEE, 66–77.

[18] Maciej Besta and Torsten Hoefler. 2023. Parallel and distributed
graph neural networks: an in-depth concurrency analysis. IEEE
TPAMI.

[19] Maciej Besta et al. 2023. The graph database interface: scaling
online transactional and analytical graph workloads to hundreds of
thousands of cores. In ACM/IEEE Supercomputing.

[20] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.
A scalable, commodity data center network architecture. In ACM
SIGCOMM Computer Communication Review number 4. Vol. 38.
ACM, 63–74.

[21] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington,
Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Sub-
ramanya, and Amin Vahdat. 2009. Portland: a scalable fault-tolerant
layer 2 data center network fabric. ACM SIGCOMM CCR, 39, 4,
39–50.

[22] Greg Faanes et al. 2012. Cray Cascade: A scalable HPC system
based on a Dragonfly network. In Proc. of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (SC’12) Article 103. IEEE Computer Society, Salt Lake
City, Utah, 103:1–103:9. ISBN: 978-1-4673-0804-5. http://dl.ac
m.org/citation.cfm?id=2388996.2389136.

[23] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Dun-
can Roweth, and Torsten Hoefler. 2020. An in-depth analysis of the
slingshot interconnect. CoRR, abs/2008.08886. https://arxiv.o
rg/abs/2008.08886 arXiv: 2008.08886.

[24] Brendan D McKay, Mirka Miller, and Jozef Siran. 1998. A note on
large graphs of diameter two and given maximum degree. J. Comb.
Theory Ser. B, 74, 1, (Sept. 1998), 110–118. DOI: 10.1006/jctb.1
998.1828.

[25] Alan J Hoffman and Robert R Singleton. 1960. On moore graphs
with diameters 2 and 3. IBM Journal of Research and Development,
4, 5, 497–504.

[26] Paul R Hafner. 2003. The hoffman-singleton graph and its automor-
phisms. Journal of Algebraic Combinatorics, 18, 1, 7–12.

[27] Mirka Miller and Jozef vSirávn. 2005. Moore graphs and beyond: a
survey of the degree/diameter problem. Electronic Journal of Com-
binatorics, Dynamic survey, 14, (Dec. 2005), 1–61.

[28] Maciej Besta, Marcel Schneider, Karolina Cynk, Marek Konieczny,
Erik Henriksson, Salvatore Di Girolamo, Ankit Singla, and Torsten
Hoefler. 2020. Fatpaths: routing in supercomputers and data centers
when shortest paths fall short. ACM/IEEE Supercomputing.

[29] C Hopps. 2000. RFC 2992: Analysis of an Equal-Cost Multi-Path
Algorithm. (2000).

[30] Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares,
and Jeffrey C Mogul. 2010. SPAIN: COTS Data-Center Ethernet for
Multipathing over Arbitrary Topologies. In NSDI, 265–280.

1038 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1145/1250662.1250679
https://doi.org/10.1145/1250662.1250679
https://doi.org/10.1145/3078597.3078616
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dl.acm.org/citation.cfm?id=2388996.2389136
https://arxiv.org/abs/2008.08886
https://arxiv.org/abs/2008.08886
https://arxiv.org/abs/2008.08886
https://doi.org/10.1006/jctb.1998.1828
https://doi.org/10.1006/jctb.1998.1828

[31] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter.
2012. PAST: Scalable Ethernet for data centers. In ACM CoNEXT.

[32] Infiniband Trade Association and others. 2014. Rocev2. (2014).

[33] Hermann Schweizer et al. 2015. Evaluating the cost of atomic op-
erations on modern architectures. In ACM/IEEE PACT. IEEE, 445–
456.

[34] William Dally and Brian Towles. 2003. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA. ISBN: 0122007514.

[35] Jens Domke, Torsten Hoefler, and Satoshi Matsuoka. 2016. Routing
on the Dependency Graph: A New Approach to Deadlock-Free High-
Performance Routing. In Proceedings of the 25th Symposium on
High-Performance Parallel and Distributed Computing (HPDC’16).
(June 2016).

[36] Jens Domke, Torsten Hoefler, and Wolfgang E. Nagel. 2011.
Deadlock-Free Oblivious Routing for Arbitrary Topologies. In Pro-
ceedings of the 25th IEEE International Parallel & Distributed
Processing Symposium (IPDPS). IEEE Computer Society, (May
2011), 613–624.

[37] Timo Schneider, Otto Bibartiu, and Torsten Hoefler. 2016. Ensuring
deadlock-freedom in low-diameter infiniband networks. In Proceed-
ings of the IEEE 24th Annual Symposium on High-Performance
Interconnects (HOTI) (Santa Clara, CA, USA).

[38] Keun Sup Shim, Myong Hyon Cho, Michel Kinsy, Tina Wen,
Mieszko Lis, G. Edward Suh, and Srinivas Devadas. 2009. Static vir-
tual channel allocation in oblivious routing. In 2009 3rd ACM/IEEE
International Symposium on Networks-on-Chip. IEEE. DOI: 10.11
09/nocs.2009.5071443.

[39] Tor Skeie, Olav Lysne, Jose Flich, Pedro Lopez, Antonio Robles, and
Jose Duato. 2004. Lash-tor: a generic transition-oriented routing al-
gorithm. In Proceedings. Tenth International Conference on Parallel
and Distributed Systems, 2004. ICPADS 2004. IEEE, 595–604.

[40] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. 2002. Layered short-
est path (lash) routing in irregular system area networks. In ipdps.
Citeseer, 0162.

[41] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. 2002. Intercon-
nection Networks: An Engineering Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. ISBN: 1558608524.

[42] Edgar Gabriel et al. 2004. Open mpi: goals, concept, and design
of a next generation mpi implementation. In European Parallel
Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 97–104.

[43] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. 1994. The mpi
message passing interface standard. In Programming environments
for massively parallel distributed systems. Springer, 213–218.

[44] Sangeetha Abdu Jyothi, Ankit Singla, P Brighten Godfrey, and
Alexandra Kolla. 2016. Measuring and understanding throughput of
network topologies. In ACM/IEEE Supercomputing.

[45] Intel Corporation. 2018. Intel®mpi benchmarks user guide. https:
//software.intel.com/en-us/imb-user-guide. (2018).

[46] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2008.
Multistage switches are not crossbars: effects of static routing in
high-performance networks. In Proceedings of the 2008 IEEE In-
ternational Conference on Cluster Computing, 29 September - 1
October 2008, Tsukuba, Japan, 116–125. DOI: 10.1109/CLUSTR.2
008.4663762.

[47] ExMatEx. 2012. Comd proxy application. http://www.exmatex
.org/comd.html. (2012).

[48] the University of Tokyo Institute of Industrial Science. 2014. Ffvc-
mini. https : / / github . com / fiber - miniapp / ffvc - mini.
(2014).

[49] RIKEN Advanced Institute for Computational Science. 2016. Mvmc-
mini. https : / / github . com / fiber - miniapp / mVMC - mini.
(2016).

[50] G. Bauer, S. Gottlieb, and T. Hoefler. 2012. Performance Modeling
and Comparative Analysis of the MILC Lattice QCD Application
su3 rmd. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE Computer Society, Ottawa, Canada, (May 2012), 652–659.
ISBN: 978-0-7695-4691-9.

[51] Steven Gottlieb, W. Liu, William D Toussaint, R. L. Renken, and
R. L. Sugar. 1987. Hybrid-molecular-dynamics algorithms for the
numerical simulation of quantum chromodynamics. English (US).
Physical review D: Particles and fields, 35, 8, 2531–2542. DOI:
10.1103/PhysRevD.35.2531.

[52] RIKEN Advanced Institute for Computational Science. 2016.
Ntchem-mini. https://github.com/fiber- miniapp/ntche
m-mini. (2016).

[53] James A. Ang, Brian W. Barrett, Kyle B. Wheeler, and Richard C.
Murphy. 2010. Introducing the graph 500. In.

[54] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fu-
jisawa, and Satoshi Matsuoka. 2016. Extreme scale breadth-first
search on supercomputers. In 2016 IEEE International Conference
on Big Data (Big Data), 1040–1047. DOI: 10.1109/BigData.201
6.7840705.

[55] Antoine Petitet, R. Whaley, Jack Dongarra, and A. Cleary. 2008.
Hpl - a portable implementation of the high-performance linpack
benchmark for distributed-memory computers, (Jan. 2008).

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
Deep residual learning for image recognition. (2015). arXiv: 1512
.03385 [cs.CV].

[57] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di
Girolamo, Shigang Li, Marco Heddes, Jon Belk, Deepak Goel, and
Steve Scott Miguel Castro. 2022. HammingMesh: A Network Topol-
ogy for Large-Scale Deep Learning. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis (SC’22). (Nov. 2022).

[58] Amrita Mathuriya et al. 2018. Cosmoflow: using deep learning to
learn the universe at scale. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis.
IEEE, 819–829.

[59] Tom Brown et al. 2020. Language models are few-shot learners.
Advances in neural information processing systems, 33, 1877–1901.

[60] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten
Hoefler. 2017. Slimsell: a vectorizable graph representation for
breadth-first search. In IEEE IPDPS. IEEE, 32–41.

[61] George Michelogiannakis, Khaled Z Ibrahim, John Shalf, Jeremiah
J Wilke, Samuel Knight, and Joseph P Kenny. 2017. Aphid: hier-
archical task placement to enable a tapered fat tree topology for
lower power and cost in hpc networks. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 228–237.

[62] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. Slurm:
simple linux utility for resource management. In Job Scheduling
Strategies for Parallel Processing. Dror Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn, (Eds.), 44–60.

[63] J. Domke, T. Hoefler, and W. Nagel. 2011. Deadlock-Free Oblivi-
ous Routing for Arbitrary Topologies. In Proceedings of the 25th
IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE Computer Society, Anchorage, AL, USA, (May
2011), 613–624. ISBN: 0-7695-4385-7.

[64] Joan Jacobs. 2010. D-mod-k routing providing non-blocking traffic
for shift permutations on real life fat trees. In https://api.seman
ticscholar.org/CorpusID:1831393.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1039

https://doi.org/10.1109/nocs.2009.5071443
https://doi.org/10.1109/nocs.2009.5071443
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://doi.org/10.1109/CLUSTR.2008.4663762
https://doi.org/10.1109/CLUSTR.2008.4663762
http://www.exmatex.org/comd.html
http://www.exmatex.org/comd.html
https://github.com/fiber-miniapp/ffvc-mini
https://github.com/fiber-miniapp/mVMC-mini
https://doi.org/10.1103/PhysRevD.35.2531
https://github.com/fiber-miniapp/ntchem-mini
https://github.com/fiber-miniapp/ntchem-mini
https://doi.org/10.1109/BigData.2016.7840705
https://doi.org/10.1109/BigData.2016.7840705
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://api.semanticscholar.org/CorpusID:1831393
https://api.semanticscholar.org/CorpusID:1831393

[65] Benjamin Klenk and Holger Fröning. 2017. An overview of mpi
characteristics of exascale proxy applications. In High Performance
Computing: 32nd International Conference, ISC High Performance
2017, Frankfurt, Germany, June 18–22, 2017, Proceedings. Springer-
Verlag, Frankfurt, Germany, 217–236. ISBN: 978-3-319-58666-3.
DOI: 10.1007/978-3-319-58667-0_12.

[66] Craig B Stunkel, Richard L Graham, Gilad Shainer, Michael Kagan,
SS Sharkawi, B Rosenburg, and GA Chochia. 2020. The high-speed
networks of the Summit and Sierra supercomputers. IBM Journal of
Research and Development, 64, 3/4, 3–1.

[67] Sebastien Varrette, Hyacinthe Cartiaux, Teddy Valette, and Abatcha
Olloh. 2022. Aggregating and Consolidating two High Performant
Network Topologies: The ULHPC Experience. In Practice and
Experience in Advanced Research Computing, 1–6.

[68] Abhinav Bhatele, Nikhil Jain, Misbah Mubarak, and Todd Gamblin.
2019. Analyzing cost-performance tradeoffs of hpc network designs
under different constraints using simulations. In Proceedings of the
2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, 1–12.

[69] Georgios Kathareios, Cyriel Minkenberg, Bogdan Prisacari, German
Rodriguez, and Torsten Hoefler. 2015. Cost-effective diameter-two
topologies: analysis and evaluation. In ACM/IEEE Supercomputing.
ACM, 36.

[70] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and
Robert S. Schreiber. 2009. HyperX: Topology, Routing, and Pack-
aging of Efficient Large-Scale Networks. SC.

[71] Mario Flajslik et al. 2018. Megafly: a topology for exascale sys-
tems. In International Conference on High Performance Computing.
Springer, 289–310.

[72] Fei Lei, Dezun Dong, Xiang-Ke Liao, and José Duato. 2020. Bundle-
fly: a low-diameter topology for multicore fiber. In Proceedings of
the 2020 International Conference on Supercomputing. (June 2020),
1–11. DOI: 10.1145/3392717.3392747.

[73] Fei Lei, Dezun Dong, Xiangke Liao, Xing Su, and Cunlu Li. 2016.
Galaxyfly: a novel family of flexible-radix low-diameter topologies
for large-scales interconnection networks. In ACM ICS.

[74] Kartik Lakhotia, Maciej Besta, Laura Monroe, Kelly Isham, Patrick
Iff, Torsten Hoefler, and Fabrizio Petrini. 2022. PolarFly: a cost-
effective and flexible low-diameter topology. In Proceedings of the
International Conference on High Performance Computing, Net-
working, Storage and Analysis, 1–15.

[75] Kartik Lakhotia, Kelly Isham, Laura Monroe, Maciej Besta, Torsten
Hoefler, and Fabrizio Petrini. 2023. In-network allreduce with multi-
ple spanning trees on polarfly. In ACM SPAA.

[76] Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, Rachata
Ausavarungnirun, Onur Mutlu, and Torsten Hoefler. 2018. Slim noc:
a low-diameter on-chip network topology for high energy efficiency
and scalability. In ACM ASPLOS number 2. Vol. 53. ACM New
York, NY, USA, 43–55. DOI: 10.1145/3296957.3177158.

[77] Patrick Iff, Maciej Besta, Matheus Cavalcante, Tim Fischer, Luca
Benini, and Torsten Hoefler. 2022. Sparse hamming graph: a cus-
tomizable network-on-chip topology. In DAC.

[78] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey.
2012. Jellyfish: Networking data centers randomly. 9th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI).

[79] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and
Robert S Schreiber. 2009. HyperX: topology, routing, and packaging
of efficient large-scale networks. In ACM/IEEE Supercomputing, 41.

[80] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank
Hsu, and Henri Casanova. 2012. A case for random shortcut topolo-
gies for HPC interconnects. In ISCA’12. IEEE, 177–188.

[81] Maciej Besta, Marcel Schneider, Salvatore Di Girolamo, Ankit
Singla, and Torsten Hoefler. 2021. Towards million-server network
simulations on just a laptop. arXiv preprint arXiv:2105.12663.

[82] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. 2011.
Mahout: low-overhead datacenter traffic management using end-
host-based elephant detection. In INFOCOM, 2011 Proceedings
IEEE. IEEE, 1629–1637.

[83] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter,
Kanak Agarwal, John Carter, and Rodrigo Fonseca. 2014. Planck:
millisecond-scale monitoring and control for commodity networks.
In ACM SIGCOMM Computer Communication Review number 4.
Vol. 44. ACM, 407–418.

[84] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freed-
man. 2013. Scalable, optimal flow routing in datacenters via local
link balancing. In CoNEXT.

[85] Fung Po Tso, Gregg Hamilton, Rene Weber, Colin Perkins, and
Dimitrios P. Pezaros. 2013. Longer is better: exploiting path diversity
in data center networks. In IEEE 33rd International Conference on
Distributed Computing Systems, ICDCS, 430–439.

[86] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
2011. Microte: fine grained traffic engineering for data centers. In
Proceedings of the Seventh COnference on emerging Networking
EXperiments and Technologies. ACM, 8.

[87] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. 2014. Wcmp: weighted
cost multipathing for improved fairness in data centers. In ACm
EuroSys.

[88] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic flow
scheduling for data center networks. In NSDI. Vol. 10, 19–19.

[89] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duch-
ene. 2014. FlowBender: Flow-level Adaptive Routing for Improved
Latency and Throughput in Datacenter Networks. In Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies. ACM, 149–160.

[90] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John B.
Carter, and Aditya Akella. 2015. Presto: edge-based load balancing
for fast datacenter networks. In ACM SIGCOMM.

[91] Naga Praveen Katta, Mukesh Hira, Aditi Ghag, Changhoon Kim,
Isaac Keslassy, and Jennifer Rexford. 2016. CLOVE: how I learned
to stop worrying about the core and love the edge. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks, HotNets,
155–161.

[92] Mohammad Alizadeh et al. 2014. CONGA: Distributed congestion-
aware load balancing for datacenters. In Proceedings of the 2014
ACM conference on SIGCOMM. ACM, 503–514.

[93] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and
Tom Edsall. 2017. Let it flow: resilient asymmetric load balancing
with flowlet switching. In NSDI, 407–420.

[94] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman,
and Jennifer Rexford. 2016. Hula: scalable load balancing using
programmable data planes. In Proceedings of the Symposium on
SDN Research. ACM, 10.

[95] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger.
2007. Dynamic load balancing without packet reordering. ACM
SIGCOMM Computer Communication Review, 37, 2, 51–62.

[96] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur,
and Randy H. Katz. 2012. Detail: reducing the flow completion time
tail in datacenter networks. In ACM SIGCOMM, 139–150.

[97] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In ACM SIGCOMM.

1040 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1007/978-3-319-58667-0_12
https://doi.org/10.1145/3392717.3392747
https://doi.org/10.1145/3296957.3177158

[98] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kom-
pella. 2013. On the impact of packet spraying in data center networks.
In INFOCOM, 2013 Proceedings IEEE. IEEE, 2130–2138.

[99] Jiaxin Cao et al. 2013. Per-packet load-balanced, low-latency routing
for clos-based data center networks. In ACM CoNEXT, 49–60.

[100] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2015. Fastpass: a centralized zero-queue datacenter
network. ACM SIGCOMM Computer Communication Review, 44,
4, 307–318.

[101] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Green-
halgh, Damon Wischik, and Mark Handley. 2011. Improving dat-
acenter performance and robustness with multipath TCP. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cations, 266–277.

[102] Van Emden Henson and Ulrike Meier Yang. 2002. Boomeramg:
a parallel algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics, 41, 1, 155–177. Developments and Trends
in Iterative Methods for Large Systems of Equations - in memorium
Rudiger Weiss. DOI: https://doi.org/10.1016/S0168-9274(0
1)00115-5.

[103] Mantevo Project. 2016. Minife finite element mini-application. htt
ps://github.com/Mantevo/miniFE. (2016).

A Details of Slim Fly Construction

A.1 Selecting Topology Size, Parametrizing In-
put

Overall, one first chooses a prime power q that satisfies the
equation q = 4w+ δ for some δ ∈ {−1,0,1} and w ∈ N. q
is an input parameter that determines the whole topology
structure. For example, the number of vertices (switches)
is Nr = 2q2 and the network radix k′ = 3q−δ

2 . In our case,
Nr = 50, thus q = 5, which satisfies the equation q = 4w+δ

for w = 1, δ = 1, and k′ = 7. Hence, every switch is connected
to 7 other switches. Interestingly, this construction forms the
famous Hoffman-Singleton graph [25, 26], which is optimal
with respect to the Moore Bound. Finally, as a regular and di-
rect network, it is recommended to attach p =

⌈
k′
2

⌉
endpoints

to each switch to ensure full global bandwidth [1]. In our case,
p = 4.

A.2 Finding Needed Algebraic Structures
Once q is selected, one uses it to construct several alge-

braic structures. Specifically, one finds a base ring Zq (for
us, Z5 = {0,1, ...,4}), its primitive element ξ that generates
all elements of Zq (for us, ξ = 2), and two generator sets
X = {ξ0,ξ2, ...,ξq−3} and X ′ = {ξ1,ξ3, ...,ξq−2} (for our in-
stallation, X = {1,4} and X ′ = {2,3}). While not complex,
details on these structures are not necessary to understand our
Slim Fly deployment. The interested readers may check them
in the original publication [1].

A.3 Labeling and Connecting Switches
Each switch receives a 3-tuple label from a set {0,1}×Zq ×
Zq. Thus, SF switches come in two flavors determined by
the first elements of their labels: (0, ·, ·) and (1, ·, ·). These

labels determine how the switches are connected. Specifically,
switches with labels (0, ·, ·) are connected using the following
equation [1]:

switch (0,x,y) is connected to (0,x,y′) ⇐⇒ y− y′ ∈ X . (1)

Symmetrically, switches with labels (1, ·, ·) use the follow-
ing equation:

switch (1,m,c) is connected to (1,m,c′) ⇐⇒ c− c′ ∈ X ′. (2)

Lastly, two switches with labels (0, ·, ·) and (1, ·, ·), respec-
tively, are connected according to the following equation:

switch (0,x,y) is connected to (1,m,c) ⇐⇒ y = m · x+ c (3)

A.4 Topology Structure & Physical Layout
The graph underlying the SF topology consists of two same-
size subgraphs. One subgraph contains routers (0,x,y), the
other consists of routers (1,m,c). Each subgraph contains q
identical groups of routers. Groups in different subgraphs
usually differ from one another. There are no connections
between groups within the same subgraph, i.e., no two routers
(0,x,y) from different groups are linked, the same holds for
routers (1,m,c). However, each group from one subgraph has
connections to every other group in the other subgraph; thus
the groups form a fully connected bipartite graph.

This property facilitates physical layout and we use it in
our installation. Specifically, as recommended in the origi-
nal work [1], we combine groups from different subgraphs
pairwise; these combined groups form racks. In general, this
leads to q racks, each with 2q routers. In our installation, we
have 5 racks, each with 10 routers and 40 compute nodes.

A.5 Constructing Slim Fly with N nodes
As the space of valid SF topologies is quite sparse, we show
the simple steps needed to find a SF network with the number
of nodes as close to N as possible:

1. Obtain the cube root R of the desired node count N

2. Find prime powers close to R

3. Obtain the corresponding full-bandwidth network con-
figurations (see previous sections)

4. Verify network sizes and select the network that is closest
to N in terms of number of supported nodes

B Routing Details

B.1 Details of Layer Generation
We provide more details on crucial parts of layer generation.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1041

https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE

B.1.1 Finding Almost-Minimal Paths
We look for almost-minimal paths that are exactly 3 hops

long (one hop longer than SF’s diameter of two), while bal-
ancing the number of paths crossing each link (to avoid highly
congested links). We do not target longer paths, in order to
conserve network resources (i.e., a flow taking fewer hops
occupies fewer buffers).

For this, we design a heuristic based on a modified breadth
first search graph traversal starting from the source node src,
constraining the path length to 3. In theory one could also
define a range of valid lengths. The heuristic obtains the set
P of all valid paths starting in src and ending in the destina-
tion node dst; P = {(u1, . . . ,ul) | l = 3∧u1 = src∧ul = dst}.
Here, a path is considered valid if it satisfies the given length
constraint 3 and if its insertion into the layer does not affect
any previously inserted paths. Then, we choose a path p ∈ P
that minimizes link weights, i.e., ∀p′ ∈P ω(p)≤ω(p′) where
ω(p) is the sum of weights of links included in p.

B.1.2 Node Pair Priority Queue
The order in which the paths are inserted is very important,

because it may impact whether we are able to find new paths.
If one would first find a given number of paths for a single
node pair, and only then proceed to the next node pair, some
node pairs might not receive any, or much fewer, paths than
other pairs. To alleviate this, we balance the total number of
added almost-minimal paths across all node pairs. For this,
each node pair is assigned a priority value, equal to its total
number of almost-minimal paths across all layers; the lower
the value, the more important it is to find a path for this node
pair. Therefore, the number of required priority levels is upper-
bounded by |L|−1, because each node pair can have at most
one almost-minimal path per each of |L| − 1 layers, and is
initially in the highest priority value (value of 0). The lowest
priority level is value |L|−1, which only contains node pairs
who have had an almost-minimal path inserted in every layer.

Whenever a path is added to a layer, all of the node pairs
that have a non-minimal path inserted have their priority de-
creased and they move up to the next higher priority layer. For
instance, in Fig. 16 by assuming that the minimum length for
an almost-minimal path is two, adding the illustrated path to
a layer, results in both node pairs (v1,v4) and (v2,v4) having
an almost-minimal path added for them (assuming we allow
paths of length 2 and 3 as non-minimal paths and dst is one of
the receiving nodes). Therefore, both of their priorities would
be decreased by 1. This also assumes that the paths were
not already in this layer, which could have been the case for
(v2,v4).

The node_pairs list generated from the priority queue p
in Algorithm 1 contains the entries of the priority queue in
the order of priority value, and randomized within each level.
Hence, the layer generation algorithm first tries to add an
almost-minimal path for all nodes of priority value 0 in a
random order, and then move to the nodes of the next value.

Hence, it first processes all node pairs with no inserted paths,
then with one inserted path, and so forth, facilitating a bal-
anced path distribution across node pairs.

B.1.3 Path Weighting

A weight update is performed after the insertion of a new
path into any layer. The weight of each link in any existing
path is increased by the total number of new “routes” that now
occupy the link. An example is shown in Fig. 15. The weight
of link (v1,v2) is increased by 9 because it has 9 new routes
using it, as there are 3 sending nodes (a1−a3) and 3 receiving
nodes (b1 −b3). The weight of link (v3,v4) is increased by 27
as there are 9 sending nodes (a1 −a9) and 3 receiving nodes
(b1 −b3).

a1a1 a2
a3 a4 a5

a6 a7 a8 b2
a9 b1 b3

W(v1,v2)+=9 W(v2,v3)+=18 W(v3,v4)+=27
v4

v4
v3v2v1

sending nodes sending nodes sending nodes

inserted path

receiving nodes

Figure 15: Illustration of the weight update methodology employed by the
algorithm. After the insertion of the path from v1 to v4, the weights of the
links (v1,v2), (v2,v3) and (v3,v4) are increased by 9, 18, and 27, respectively.

B.1.4 Potential Invalidity of Paths

For a given source src and destination dst, it may happen
that P = /0, in which case no almost-minimal path is added
to a given layer for that node pair. There are two scenarios
when this may happen, we illustrate them in Fig. 16 and in
Fig. 17. The first one occurs when a path for the node pair is
already included in another (previously inserted) path into the
layer. For instance, after the path in the figure is inserted into
layer l, all sub-paths ((v2,v4), (v3,v4)) become included as
well, forcing v2 and v3 to route along minimal paths towards
destination v4 in layer l.

The second scenario occurs when no path of required
length can be found because routing via any of the source
node’s neighbors would result in a path too short or too long.
In our second example, the almost-minimal paths are con-
strained to have length exactly 3. At first, the two almost-
minimal paths q= (v1,v2,v3,u3) and q′ = (w1,w2,w3,u3) are
inserted, which fixes the paths for all node pairs in the set
{(vi,u3),(wi,u3) | i ∈ {1,2,3}}. Now any path for the node
pair (u1,u3) that respects the already inserted paths will have
length l ∈ {1,2,4} because it would have to come from the
following set of paths: {(u1,q), (u1,q′), (u1,u3), (u1,u2,u3),
(u1,u2,v2,v3,u3), (u1,u2,w2,w3,u3)}. If this scenario occurs,
we route minimally, i.e. path (u1,u3).

B.1.5 Specification of Forwarding Tables

In layered routing, each forwarding entry (l,s,d) ∈ layers×
switches× switches corresponds to the port that switch s uses

1042 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a1a1 a2
a3 a4 a5

a6 a7 a8 b2
a9 b1 b3

p(v1,v4)+=1 p(v2,v4)+=1 minimal routing
from v3 to v4

v4v3v2v1

sending nodes sending nodes sending nodes

inserted path

receiving nodes

Figure 16: Illustration of an almost-minimal path from v1 to v4, which
enforces minimal routing from src nodes like a7, located on the sub-paths, to
dst nodes, i.e. b1, in this layer.

b1
b2

b3
v1

b4
b5

b6
v2

b7
b8

b9
v3

c1
c2

c3
w1

c4
c5

c6
w2

c7
c8

c9
w3

inserted path q inserted path q'

a1
a2

a3
u1

a4
a5

a6
u2

a7
a8

a9
u3

Figure 17: Illustration of a scenario in which no almost-minimal, valid path
of length exactly 3 can be found for node pair (u1,u3) in the given layer due
to the prior insertion of two valid paths.

when routing in layer l and transmitting a packet addressed
to a switch d.

C Additional Results

C.1 Changes for Custom Alltoall
We decided not to use the OpenMPI’s default implementation
of alltoall, as the algorithms it relies on result in sub-optimal
performance for the deployed SF. Empirically, we determined
that the best-performing alltoall for our system was a sim-
ple algorithm that posts all non-blocking send and receive
requests simultaneously and then waits for completion. Other
collectives did not show a similar impact, and we thus used
the default implementations. These issues are not expected
with newer hardware.

C.2 Scientific Workloads & HPC Benchmarks
We show in Fig. 18 the runtime and relative performance
of the solver/kernel for each of the scientific workloads on
SF using the random placement strategy. We observe similar
trends as for the linear placement strategy for all scientific
workloads and SF’s performance aligns closely with FT’s,
while no significant speedup or slowdown through the use of
non-minimal paths could be observed.

Figure 18: Runtime of scientific workloads (lower is better) - SF R vs. FT

(a) SF R vs. FT (b) SF L vs. FT

Figure 19: Runtime of additional scientific workloads (lower is better)

In Fig.19, we present the relative performance of two ad-
ditional scientific workloads, AMG[102] and MiniFE [103],
on SF, using both placement strategies. For this assessment,
AMG was configured with a 1283 cube per process, while
MiniFE was set with grid input dimensions of nx|y|zb

= 90.
In accordance with these configurations, clear weak-scaling
behavior is evident under the random placement strategy. On
the other hand, with the linear placement strategy, the ob-
served trends are less distinct, and, there are instances where
SF outperformed FT by unexpected margins. We believe that
this disparity can’t be merely attributed to the variations in
communication stemming from the placement strategy, as the
applications in consideration aren’t generally communication-
bound and the FT is fully non-blocking. However, the precise
cause remains unclear.

Fig. 20 shows the performance of the HPC benchmarks on
SF using the random placement strategy, results that largely
mirror those obtained using the linear placement strategy.

C.3 Deep Learning Workloads
The left part of Fig. 21 shows the runtime and relative per-
formance of the DNN proxies with the random placement
strategy. The results are also very similar to those obtained
using the linear placement strategy, including GPT-3 match-
ing the performance trends of the MPI Allreduce pattern with
the random placement strategy and comparable node counfig-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1043

Figure 20: Performance of HPC benchmarks (higher is better) - SF R vs. FT

Figure 21: Iteration time of DNN proxy workloads (lower is better) SF R vs.
FT and routing improvement of this work over DFSSSP (heatmap) in SF R

urations (cf. Fig. 11b).
However, similar to previous results, the right part of Fig. 21

shows that our work generally matches or outperforms DF-
SSSP, achieving up to a 1.18x speedup.

D Pricing details

We based our pricing on data colfaxdirect.com6 and SHI.com7.
Regarding the equipment selection, we use InfiniBand Topol-
ogy Configurator 8. For different switch sizes, we selected
different models from current Nvidia offerings. For exam-
ple, for a 36-port switch, we chose Mellanox SB7800 EDR
100Gb/s9. For a 40-port switch, we decided to use Mellanox
Quantum QM8700 HDR 200Gb/s 10. Finally, for a 64-port
switch, we use Nvidia QM9700 NDR 400G 11 model. For
AoC cables, we selected active fiber links, and for DAC ca-
bles, we chose passive copper cables for endpoint connections.
Again, we base our estimations on mentioned earlier Infini-
Band Topology Configurator online service. However, it can
be challenging to determine the cost of networking hardware
because the prices of such hardware can vary greatly depend-

6COLFAX DIRECT website
7SHI website
8Mellanox InfiniBand Topology Generator tool
9Mellanox SB7800 EDR 100Gb/s product detail
10Mellanox Quantum QM8700 HDR 200Gb/s product detail
11Nvidia QM9700 NDR 400G product detail

ing on the quantity ordered, and large orders may be eligible
for substantial discounts.

1044 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.colfaxdirect.com
https://www.shi.com/
https://www.nvidia.com/en-us/networking/infiniband-configurator/
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3049
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3685
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=4165&idcategory=0

	INTRODUCTION
	NETWORK MODEL & TOPOLOGIES
	FIRST AT-SCALE SF INSTALLATION
	Deployed Hardware Equipment
	Topology Structure and Construction
	Deployment Efficiency and Ease
	Correctness Verification

	HIGH-PERFORMANCE MULTIPATHING
	Original FatPaths Routing in Slim Fly
	Proposed Multipath Routing: Summary
	Generating Routing Layers

	IMPLEMENTATION OF MULTIPATHING
	Routing
	Deadlock-Freedom
	Load Balancing
	Path Diversity vs. Network Size

	THEORETICAL ANALYSIS
	Path Lengths
	Path Distribution
	Path Diversity
	Maximum Achievable Throughput
	Insights & Takeaways - Theoretical Results

	EVALUATION
	2-Level Non-Blocking Fat-Tree
	Workloads & Configurations
	Execution Environment
	Microbenchmarks
	Scientific Workloads & HPC Benchmarks
	Deep Learning Workloads
	Insights & Takeaways - Empirical Results
	Scalability & Cost Analysis

	RELATED WORK
	CONCLUSION
	Details of Slim Fly Construction
	Selecting Topology Size, Parametrizing Input
	Finding Needed Algebraic Structures
	Labeling and Connecting Switches
	Topology Structure & Physical Layout
	Constructing Slim Fly with N nodes

	Routing Details
	Details of Layer Generation
	Finding Almost-Minimal Paths
	Node Pair Priority Queue
	Path Weighting
	Potential Invalidity of Paths
	Specification of Forwarding Tables

	Additional Results
	Changes for Custom Alltoall
	Scientific Workloads & HPC Benchmarks
	Deep Learning Workloads

	Pricing details

